• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tour Planning Design for Mobile Robots Using Pruned Adaptive Resonance Theory Networks

    2022-11-09 08:13:22PalaniMuruganChinnaduraiandManikandan
    Computers Materials&Continua 2022年1期

    S.Palani Murugan,M.Chinnadurai and S.Manikandan

    1Department of CSE,E.G.S.Pillay Engineering College,Nagapattinam,611002,Tamil Nadu,India

    2Department of IT,E.G.S.Pillay Engineering College,Nagapattinam,611002,Tamil Nadu,India

    Abstract:The development of intelligent algorithms for controlling autonomous mobile robots in real-time activities has increased dramatically in recent years.However,conventional intelligent algorithms currently fail to accurately predict unexpected obstacles involved in tour paths and thereby suffer from inefficient tour trajectories.The present study addresses these issues by proposing a potential field integrated pruned adaptive resonance theory (PPART)neural network for effectively managing the touring process of autonomous mobile robots in real-time.The proposed system is implemented using the AlphaBot platform,and the performance of the system is evaluated according to the obstacle prediction accuracy,path detection accuracy,time-lapse,tour length,and the overall accuracy of the system.The proposed system provide a very high obstacle prediction accuracy of 99.61%.Accordingly,the proposed tour planning design effectively predicts unexpected obstacles in the environment and thereby increases the overall efficiency of tour navigation.

    Keywords: Autonomous mobile robots;path exploration;navigation;tour planning;tour process;potential filed integrated pruned ART networks;AlphaBot platform

    1 Introduction

    Fixed robotics have been widely applied for many years in numerous settings where environmental conditions are known with a very high degree of certainty.However,mobile robots have the capacity to perform a much wider range of activities,such as explore terrestrial,underwater,aerial,and outer space environments,transport cargo,complete complex tasks,perform surgery,assist in warehouse distribution centers,support security,act as a personal assistants,aid in space and ocean exploration,and provide guidance for navigation [1-4].Mobile robots that implement well-defined tasks in highly controlled environments rely upon preprogrammed or externally communicated instructions and guidance rules for moving about the environment,and generally implement only simplistic obstacle avoidance algorithms.In contrast,the goal of autonomous mobile robots is to implement tasks within uncontrolled environments without any external direction.Accordingly,autonomous mobile robots must maneuver around obstacles,in addition to addressing all other issues that guided mobile robots encounter [5].These features are achieved by mobile robots using several technologies,such as various sensors,wireless communication,integrated safety,fleet simulation software,supervisory software,and fleet management software [6].The first electronic autonomous mobile robots were Elmer and Elsie,which were created by Dr.William Grey Walter in 1948 in Bristol,England [7].This and subsequent developments in autonomous mobile robot design relied upon conventional obstacle avoidance algorithms.However,efficient autonomous operation requires predictive capabilities based upon feedback from the environment,which cannot be obtained via conventional algorithms.The first autonomous mobile robot to be controlled with the help of artificial intelligence was introduced in 1970 [8].

    More recent efforts to improve the predictive capabilities of autonomous mobile robots have been based upon the development of increasingly sophisticated artificial neural networks(ANNs) [9].For example,Tai et al.[10] implemented an ANN by integrating a convolutional neural network(CNN)with the respective decision-making process to facilitate effective robot exploration based on visual cues.The autonomous mobile robot system was trained using annotated visual information related to the exploration task,and its efficiency was evaluated in a real-time application.Similarly,Thomas et al.[11] applied a CNN in the FumeBot home monitoring robot system.Obstacles in the home environment were effectively identified from image data during the training process.Bing et al.[12] developed effective autonomous mobile robot control for exploration applications using a spiking neural network (SNN)in conjunction with various robot characteristics,such as energy,speed,and computational capabilities,during network training.The efficiency of the system was evaluated via simulations.Patnaik et al.[13] developed autonomous mobile robot control using an evolving sensory data-based network approach.Four different learning models were applied during network training to predict both obstacles and targets in the surrounding environment based on their sizes and shapes.

    The present work addresses these issues by proposing a potential field integrated pruned adaptive resonance theory (PPART) neural network for effectively managing the touring process of autonomous mobile robots in real-time based on a very high accuracy for predicting unexpected obstacles in the environment.The excellent obstacle prediction accuracy then facilitates the development of highly efficient robot trajectories in real time.Specifically,the potential field method is employed to conduct path exploration according to a given destination and the presence of obstacles in the path exploration space based on the Laplace equation and an energy field representation of the path exploration space,including the destination and obstacles within that space.The adaptive resonance theory (ART) neural network is then employed in conjunction with the determined obstacles to obtain the optimal navigation path that avoids all obstacles and is the shortest possible path to achieve operational objectives.Here,the optimal navigation pathways are identified by fuzzy and ART neural networks based on building maps that consist of several geometric primitives.The remainder of this manuscript is organized as follows.Section 2 presents the PPART neural network in detail.The obstacle prediction and path detection performance,and the tour efficiency obtained by the network are evaluated in Section 3.Finally,Section 4 concludes the manuscript.

    2 Potential Field Integrated Pruned Adaptive Resonance Theory Neural Network

    2.1 Assumptions and Notations

    The following assumptions and notations are applied to identify the obstacles,ideal travel paths,and navigation process of an autonomous mobile robot [14].

    · The tour planning working environment with in which the mobile robot is placed is defined asWE,and the boundary of the environment is denoted as the tour environment boundary(TEB).

    · A specific area to be analyzed and accessed by the robot inWEis denoted asWEa,which is approximately a circle with a radius defined asra.

    · TheWEand TEB contain both unknown and known stationary obstacles with unknown positions and shapes.

    · The shape of the mobile robot is approximately a circle with a radius defined asRrobot.

    · The mobile robot path configuration space inWEis defined asSP,and the free space is defined asSPfree.

    · The robot sensing data captured with inWEais defined asRSsensing,and the specific area radius is defined asra.

    2.2 Mobile Robot Path Identification Process Based on the Potential Field

    The path exploration problem and any obstacles within the defined environmentWEmust be identified [15].Initially,the obstacles are identified throughRSsensingare,and the points are connected to facilitate path exploration inWE.The primary objective of the path identification process is to minimize the path length by analyzing all of the obstacles present inWE.To this end,we first define the respective observation points of the mobile robot aspii (i=1,2,...,N),whereNis the total number of observation points.The defined observation points must satisfy the following equation:

    Once the observation points related to the path exploration process are detected,the detected robot path must adhere to the mapping relationpi(t): [0,1] →WEa.Therefore,the following condition must also be satisfied:

    whereτiis defined as the path navigation of all observation pointspii...During exploration,the path initiates fromp(0)and traverses to the initial pointp(1).The tour planning process and the kinematic robot model are illustrated in Fig.1.The motion of the mobile robot in the defined system is constrained in WE using the following dynamic non-holonomic constraints in thex,y,andztranslational directions and in the rotational direction [16]:

    wherezis the translational velocity of the robot,the angular robot orientation is represented asφ,ZRrepresents the translational velocity of the right wheel,ZLdenotes the translational velocity of the left wheel,mdenotes the robot’s rotational velocity,andLis the distance between the right and left wheels [17].

    Figure 1:(a) Sample mobile robot and (b) Kinematic robot model

    During the analysis process,WEis split into grids within which the obstacles and destination are represented,and the obstacles and destination are respectively assigned repulsive and attractive potentials according to an artificial potential field [18].This converts robot path exploration into an energy minimization problem [19].A representative potential field within a divided working space is illustrated in Fig.2,where the green color represents the attractive potential of the destination and the brown color represents the repulsive potential of the obstacles.The potentials presented in Fig.2 are defined in the following discussion.

    Figure 2:Working environment representation using potential field

    The attractive potential of the destination is defined as follows:

    wherexandyare the robot coordinates in two-dimensional (2D) space,xgoalandygoalare the 2D coordinates of the destination,andcis a constant.Then,the potentials of obstacles inWEare defined as follows:

    wherepmaxis the maximum potential ofWE,andgis derived as follows.

    Here,xoandyoare the 2D coordinates of the obstacle,andlis the obstacle length.In addition,robot path exploration is maintained withinWEby applying a repulsive potential to the TEB as follows:

    Here,δis a constant,giis a linear boundary convex region function,and the boundary face segments are represented ass.Finally,the total potential acting on the robot at (x,y) is computed as the sum of the attractive and repulsive potentials:

    The successful identification ofWE,RSsensing,and ?pis∈WEa,?i∈{1,2,...,N},‖pis-pii‖≤riare used to define the obstacle-related information inWE.These observation points are analyzed by the kinematic constraints of the mobile robot,such asandThe positions of all obstacles inWEare then predicted based on an effective examination of the values ofPo.

    The output of this process generates vector informationI=[I1I2...IM]Tof lengthM,where each element lies in a range (0,1),which,along with the geometric primitives and corresponding parameters,is represented as velocity,position,and acceleration into the ART neural network.

    2.3 Mobile Robot Navigation Using an ART Neural Network

    The proposed ART neural network architecture and corresponding processing are illustrated in Fig.3.The network consists of an input layer denoted asF0.that receives vector inputsI=[I1I2...IM]T.The incoming inputs are received asy1=[y11y12...y1M]Tby the following layerF1in the bottom-up process,which are then transmitted to the following layerF2asy2=[y21y22...y2N]Tof lengthNin the top-down inputs,where the inputsIare processed.After initializing the input vectors and respective processing layers,the particular weight values of the network nodes are denoted aswj={wj1,wj2,...,wjM}.

    The specific navigation choice function is defined as follows:

    Figure 3:ART network structure

    Here,∧ represents the fuzzy operator defined as

    wherepiandqidenoteM-dimensional vectors.In addition,αis the scalar value,and the Manhattan norm is applied,which is estimated as follows:

    Furthermore,a matching process is performed for every incoming input,where upon the exact navigation path is identified successfully.Otherwise,network training is continued by updating the weight values as follows:

    Here,the ART network uses the learning parameterβis 1 and vigilance parameterρto implement a very fast network training process.The value ofβlies in the range (0,1),and a constant value ofρis employed.

    The complete training process is illustrated in Fig.4.Here,category pruning,direct category updating,and direct category creation are applied to further refine the ART network output.

    In the category pruning process,a fuzzy ART rectangular map is identified for every obstacle present inWE.The pruning process removes obstacles related to the rectangular map from the touring environment,and the related categories are also eliminated from the list.The weight values of the removed obstacles are written in the form ofwj=(uj,vcj),whereujandvcjare the vertices of the corresponding rectangular map.Finally,the respective weight values are changed in both layers F1and F2.For layer F1,these are computed as follows.

    For layer F2,the weight values are computed as follows.

    This process is repeated for all removed obstacles in the touring environment.

    Figure 4:Pruned ART network learning process

    Then,direct category updating is applied to the ART network to resize the rectangular map categories.In addition,the corresponding weight values are also updated aswj=(uj,vcj)according to the new vertices of the rectangular maps.This process is repeated whenever the size of a rectangle map decreases or one map divides into two or more maps.

    Finally,direct category creation is applied whenever the incoming input is not matched with the trained features.Moreover,categories are created only when obstacles are present in the environment.A new rectangular map is created with the respective weight values defined above,and a new category is created (Eq.(19)).Afterward,the category value is increased continuously to meet the corresponding tour path.

    According to the above discussion,each incoming input feature is processed by a pruned ART network that completely recognizes the obstacles present in the environment.Then,the effective navigation path is detected from source to destination by eliminating unwanted categories from the list.This process is repeated,and the mobile robot efficiently moves in the tour environment until reaching the destination.

    3 Experimental Analysis

    The proposed PPART approach was developed using the AlphaBot robotic development platform.The development platform is compatible with Ardunio and Raspberry Pi,and includes several components,such as a mobile chassis and a main control board for providing motion within a test environment boundary.The effective utilization of the components and compatibility helps to predict the obstacles,line tracking,infrared remote control,Bluetooth,ZigBee process,and video monitoring.The mobile robot path exploration and navigation process performance provided by the PPART neural network is evaluated according to its obstacle prediction accuracy,path detection accuracy,error rate,and overall system accuracy based on different evaluation metrics.The accuracy of obstacle prediction was compared with those obtained using three existing machine learning techniques,including ANN-,CNN-,and SNN-based methods.

    Tab.1 lists the average obstacle prediction accuracy obtained by the four methods considered based on 250 touring attempts.The results in the table demonstrate that the obstacle prediction accuracy of the PPART approach effectively predicts the artificial potential regions inWE.This prediction process is facilitated by the continuous collection of observation points inWE.The results in Tab.1 are graphically presented in Fig.5 for a more intuitive appraisal of the obstacle prediction accuracy of the proposed approach.

    Table 1:Obstacles prediction accuracy on navigation attempts

    Figure 5:Obstacles detection accuracy on the number of navigation attempts

    In addition,the efficiency of the obstacle detection process was analyzed,the results of which are listed in Tab.2.The results in the table clearly demonstrate that the proposed PPART approach efficiently predicts the obstacles present inWE.The results in Tab.2 are graphically presented in Fig.6.

    Table 2:Obstacles prediction accuracy on various time interval

    Figs.5 and 6 illustrate the accuracy and efficiency of obstacle identification.The computation ofPgbased on Eq.(8) andPHAbased on Eq.(11) reduce the occurrence of mobile robot navigation outside of the TEB.Meanwhile,the computation ofPobased on Eq.(9) maximizes the obstacle detection process.Following the computation of the repulsive potential values,the obstacles are effectively predicted in the different time intervals.

    The path navigation accuracy values are listed in Tab.3.From the table we can understand that the proposed PART approach offers better prediction accuracy in different navigation attempts.The results in Tab.3 are graphically presented in Fig.7.

    Figure 6:Obstacles detection accuracy based on the time interval

    Table 3:Path prediction accuracy on navigation attempts

    Figure 7:Navigation path accuracy

    The efficiency of the navigation path identification process was analyzed.The results,listed in Tab.4,show that the proposed PART approach offers better prediction accuracy at various time intervals.The results in Tab.4 are graphically presented in Fig.8.

    Table 4:Navigation path prediction accuracy on the various time interval

    The error rates of the three different classifiers considered in comparison with that of the PPART approach are illustrated in Fig.9.The overall accuracy obtained by the four classifiers is illustrated in Fig.10.This figure demonstrates that the PPART approach provides an overall accuracy of up to 99.61%.

    Figure 8:Navigation path prediction accuracy based on time interval

    Figure 9:Error rate

    Figure 10:Accuracy

    4 Conclusion

    The present work addressed the generally inefficient tour trajectories obtained by conventional intelligent algorithms due to the poor prediction of unexpected obstacles in the environment by proposing the PPART neural network.The potential field method was employed to conduct path exploration according to a given destination and the presence of obstacles in the path exploration space based on an energy field representation of the path exploration space.An ART neural network was then employed in conjunction with the determined obstacles to obtain the optimal navigation path that avoids all obstacles and is the shortest possible path to achieve operational objectives.The proposed system was implemented using the AlphaBot platform,and the performance of the system was evaluated according to the obstacle prediction accuracy,path detection accuracy,and the overall accuracy of the system.These results demonstrated that the proposed system provides a very high obstacle prediction accuracy of 99.61%.Accordingly,the proposed tour planning design effectively predicts unexpected obstacles in the environment,and thereby increases the overall efficiency of tour navigation.In future work,we will seek to improve the efficiency of the mobile robot navigation process by applying optimized techniques.

    Acknowledgement: We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

    Funding Statement: The authors received no specific funding for this study.

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

    国产私拍福利视频在线观看| 日本 av在线| 欧美激情久久久久久爽电影 | 老熟妇仑乱视频hdxx| 久久久国产欧美日韩av| 91精品三级在线观看| 大型av网站在线播放| 免费不卡黄色视频| 午夜日韩欧美国产| 亚洲少妇的诱惑av| 免费看美女性在线毛片视频| 免费在线观看黄色视频的| 成人18禁在线播放| 搞女人的毛片| 精品国产一区二区三区四区第35| 欧美激情高清一区二区三区| 欧美黄色淫秽网站| 成人永久免费在线观看视频| 精品电影一区二区在线| 黄色视频不卡| 午夜老司机福利片| netflix在线观看网站| 一二三四在线观看免费中文在| 超碰成人久久| netflix在线观看网站| 色尼玛亚洲综合影院| 免费在线观看黄色视频的| 十八禁人妻一区二区| 少妇被粗大的猛进出69影院| 久久青草综合色| 欧美日韩福利视频一区二区| 男女之事视频高清在线观看| 人人妻人人爽人人添夜夜欢视频| 村上凉子中文字幕在线| av网站免费在线观看视频| 1024香蕉在线观看| 18禁国产床啪视频网站| 亚洲久久久国产精品| 久久人妻福利社区极品人妻图片| 午夜福利在线观看吧| 可以在线观看的亚洲视频| 大码成人一级视频| 成人18禁高潮啪啪吃奶动态图| 日日爽夜夜爽网站| 亚洲色图av天堂| 纯流量卡能插随身wifi吗| 亚洲第一av免费看| 91精品三级在线观看| 男女之事视频高清在线观看| 亚洲av第一区精品v没综合| 日日摸夜夜添夜夜添小说| 可以在线观看的亚洲视频| 亚洲久久久国产精品| 亚洲电影在线观看av| 国产精品亚洲美女久久久| 在线国产一区二区在线| 精品无人区乱码1区二区| 国产高清有码在线观看视频 | 两个人免费观看高清视频| 日韩欧美一区视频在线观看| 一二三四社区在线视频社区8| 露出奶头的视频| 亚洲精华国产精华精| 久99久视频精品免费| 国产亚洲欧美精品永久| 欧美一级a爱片免费观看看 | 色播亚洲综合网| 一区在线观看完整版| 一卡2卡三卡四卡精品乱码亚洲| 欧美成人免费av一区二区三区| 久久亚洲真实| 国产三级在线视频| 9色porny在线观看| 久久这里只有精品19| 此物有八面人人有两片| 亚洲午夜理论影院| 久久久久国产精品人妻aⅴ院| 欧美乱码精品一区二区三区| 亚洲精品国产一区二区精华液| 十分钟在线观看高清视频www| 亚洲精品国产色婷婷电影| 99精品在免费线老司机午夜| 51午夜福利影视在线观看| 国产亚洲精品久久久久5区| 91国产中文字幕| 成年女人毛片免费观看观看9| 久久热在线av| 9191精品国产免费久久| 12—13女人毛片做爰片一| 黄色视频不卡| 99久久综合精品五月天人人| 两性午夜刺激爽爽歪歪视频在线观看 | 免费在线观看完整版高清| 久热这里只有精品99| 男人舔女人的私密视频| 欧美日韩福利视频一区二区| 黄频高清免费视频| 乱人伦中国视频| 两性午夜刺激爽爽歪歪视频在线观看 | 高清在线国产一区| 波多野结衣巨乳人妻| 欧美精品亚洲一区二区| 神马国产精品三级电影在线观看 | 正在播放国产对白刺激| 色av中文字幕| 满18在线观看网站| 亚洲av成人av| 成人国产一区最新在线观看| 国产精品1区2区在线观看.| 每晚都被弄得嗷嗷叫到高潮| 国产精品一区二区精品视频观看| 美国免费a级毛片| 国产视频一区二区在线看| 欧美日本亚洲视频在线播放| 宅男免费午夜| 一个人免费在线观看的高清视频| 色在线成人网| 黄色丝袜av网址大全| 久久久久精品国产欧美久久久| 真人做人爱边吃奶动态| 少妇熟女aⅴ在线视频| 每晚都被弄得嗷嗷叫到高潮| 91成人精品电影| 亚洲,欧美精品.| 久久久久久免费高清国产稀缺| 人人澡人人妻人| 精品国内亚洲2022精品成人| 9191精品国产免费久久| 久久伊人香网站| 给我免费播放毛片高清在线观看| 久久久国产精品麻豆| avwww免费| 午夜福利高清视频| 男人舔女人的私密视频| 无遮挡黄片免费观看| 人人妻人人澡欧美一区二区 | 久久性视频一级片| e午夜精品久久久久久久| www国产在线视频色| 后天国语完整版免费观看| АⅤ资源中文在线天堂| 两个人免费观看高清视频| 在线观看免费视频日本深夜| 手机成人av网站| 亚洲电影在线观看av| 国产一级毛片七仙女欲春2 | 99国产精品一区二区三区| 国产高清视频在线播放一区| xxx96com| 精品国产国语对白av| 99国产极品粉嫩在线观看| 一二三四社区在线视频社区8| 极品教师在线免费播放| av福利片在线| 久久国产精品人妻蜜桃| 亚洲最大成人中文| 久久婷婷成人综合色麻豆| 日本欧美视频一区| 亚洲av成人av| 美女高潮喷水抽搐中文字幕| 69精品国产乱码久久久| 在线观看免费日韩欧美大片| 大型av网站在线播放| 午夜精品在线福利| 久久久精品国产亚洲av高清涩受| 正在播放国产对白刺激| 无限看片的www在线观看| 自线自在国产av| АⅤ资源中文在线天堂| 一级,二级,三级黄色视频| 怎么达到女性高潮| 精品国产一区二区三区四区第35| 日韩有码中文字幕| 国产精品免费视频内射| 日韩av在线大香蕉| 精品国产乱码久久久久久男人| 免费在线观看亚洲国产| 成年版毛片免费区| 日韩三级视频一区二区三区| 亚洲avbb在线观看| 欧美+亚洲+日韩+国产| 亚洲黑人精品在线| 亚洲国产日韩欧美精品在线观看 | 亚洲成av片中文字幕在线观看| 国内精品久久久久久久电影| 亚洲 欧美 日韩 在线 免费| 国产av精品麻豆| 国产精品 欧美亚洲| 成人av一区二区三区在线看| 国产精品久久视频播放| 中文字幕精品免费在线观看视频| 国产一区二区在线av高清观看| 性欧美人与动物交配| 又紧又爽又黄一区二区| av天堂久久9| 精品国产超薄肉色丝袜足j| 久久久国产精品麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲熟女毛片儿| or卡值多少钱| 亚洲在线自拍视频| 精品人妻在线不人妻| bbb黄色大片| 亚洲午夜精品一区,二区,三区| 亚洲久久久国产精品| 女人被狂操c到高潮| 日韩中文字幕欧美一区二区| 久久久久久久精品吃奶| netflix在线观看网站| 十分钟在线观看高清视频www| 精品国产国语对白av| avwww免费| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美国产精品va在线观看不卡| 亚洲成人国产一区在线观看| 午夜福利成人在线免费观看| 亚洲精品在线观看二区| 日韩高清综合在线| 岛国在线观看网站| 免费高清在线观看日韩| 欧美最黄视频在线播放免费| 他把我摸到了高潮在线观看| a在线观看视频网站| 母亲3免费完整高清在线观看| 欧美成人午夜精品| 亚洲伊人色综图| 国产精品二区激情视频| 青草久久国产| 久久人妻av系列| 亚洲欧美激情在线| 日韩欧美三级三区| 制服诱惑二区| 变态另类成人亚洲欧美熟女 | 黄色a级毛片大全视频| 亚洲国产精品999在线| 国产av又大| 搞女人的毛片| 国产一区二区三区综合在线观看| 成人国语在线视频| 韩国av一区二区三区四区| 19禁男女啪啪无遮挡网站| 亚洲国产欧美一区二区综合| 少妇的丰满在线观看| 香蕉久久夜色| 亚洲自拍偷在线| 搡老妇女老女人老熟妇| 99久久综合精品五月天人人| 欧美激情久久久久久爽电影 | 日韩大尺度精品在线看网址 | 怎么达到女性高潮| 亚洲激情在线av| 亚洲免费av在线视频| 精品国产超薄肉色丝袜足j| 欧美成人性av电影在线观看| av电影中文网址| 国产精品一区二区三区四区久久 | 免费在线观看日本一区| 国产精品免费一区二区三区在线| 午夜久久久在线观看| 久久欧美精品欧美久久欧美| 麻豆国产av国片精品| 手机成人av网站| 一个人免费在线观看的高清视频| 精品一区二区三区av网在线观看| 免费av毛片视频| 欧美丝袜亚洲另类 | 国内精品久久久久久久电影| 国产高清视频在线播放一区| 欧美成狂野欧美在线观看| 亚洲国产精品合色在线| 国产伦人伦偷精品视频| 国产亚洲精品av在线| www.999成人在线观看| 精品久久蜜臀av无| 亚洲av成人不卡在线观看播放网| 久久久国产成人免费| 黄色成人免费大全| 国产成人精品无人区| 精品国产国语对白av| 天堂√8在线中文| 日本在线视频免费播放| 男女下面进入的视频免费午夜 | 欧美国产日韩亚洲一区| 国产一区在线观看成人免费| 可以免费在线观看a视频的电影网站| 精品电影一区二区在线| 99精品久久久久人妻精品| 麻豆成人av在线观看| 免费女性裸体啪啪无遮挡网站| 丁香六月欧美| 国产午夜精品久久久久久| 正在播放国产对白刺激| 国产免费av片在线观看野外av| 久久精品国产99精品国产亚洲性色 | 18禁国产床啪视频网站| 国产av一区在线观看免费| 波多野结衣av一区二区av| 男女下面插进去视频免费观看| 精品卡一卡二卡四卡免费| 长腿黑丝高跟| 日韩大尺度精品在线看网址 | 99国产精品99久久久久| 女生性感内裤真人,穿戴方法视频| 国产日韩一区二区三区精品不卡| 久久精品国产清高在天天线| 国产人伦9x9x在线观看| 国产免费av片在线观看野外av| 久久久久国产一级毛片高清牌| 乱人伦中国视频| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜在线中文字幕| 国产欧美日韩一区二区精品| 久久婷婷成人综合色麻豆| 精品无人区乱码1区二区| 曰老女人黄片| 亚洲一码二码三码区别大吗| 国产精品国产高清国产av| 亚洲性夜色夜夜综合| 久久国产亚洲av麻豆专区| 18禁国产床啪视频网站| 久久国产精品人妻蜜桃| 日韩欧美三级三区| 黄片播放在线免费| 亚洲熟妇中文字幕五十中出| 精品第一国产精品| av视频免费观看在线观看| 婷婷丁香在线五月| 日韩 欧美 亚洲 中文字幕| 国产97色在线日韩免费| 精品久久久久久,| 性少妇av在线| 村上凉子中文字幕在线| 久久精品国产99精品国产亚洲性色 | 琪琪午夜伦伦电影理论片6080| 国产精品一区二区免费欧美| 在线免费观看的www视频| 久久久久精品国产欧美久久久| 一区福利在线观看| 美女扒开内裤让男人捅视频| 国产主播在线观看一区二区| www.熟女人妻精品国产| 国产av一区二区精品久久| 成熟少妇高潮喷水视频| 久久亚洲精品不卡| 亚洲国产精品久久男人天堂| 黄色女人牲交| 久久午夜综合久久蜜桃| 深夜精品福利| 亚洲色图综合在线观看| 亚洲精品美女久久av网站| 91大片在线观看| 久久精品aⅴ一区二区三区四区| 午夜福利成人在线免费观看| 国产高清激情床上av| 校园春色视频在线观看| 啦啦啦免费观看视频1| 首页视频小说图片口味搜索| 亚洲国产精品sss在线观看| 免费不卡黄色视频| 欧美av亚洲av综合av国产av| 色av中文字幕| 一a级毛片在线观看| 精品久久蜜臀av无| avwww免费| 亚洲男人的天堂狠狠| av在线播放免费不卡| 精品午夜福利视频在线观看一区| 精品一品国产午夜福利视频| 色av中文字幕| 国产免费av片在线观看野外av| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美一区视频在线观看| 国产精品一区二区在线不卡| 91精品三级在线观看| 欧美一级a爱片免费观看看 | 欧美黄色片欧美黄色片| 中文字幕久久专区| 欧美日韩中文字幕国产精品一区二区三区 | 国产一级毛片七仙女欲春2 | 99精品在免费线老司机午夜| 久久精品aⅴ一区二区三区四区| 性少妇av在线| 性色av乱码一区二区三区2| 99久久国产精品久久久| 99久久99久久久精品蜜桃| 欧美午夜高清在线| 亚洲人成伊人成综合网2020| 国产亚洲av高清不卡| 久久中文字幕一级| 免费观看精品视频网站| 久久狼人影院| 在线观看日韩欧美| 日本免费一区二区三区高清不卡 | 不卡一级毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 波多野结衣高清无吗| 国产麻豆69| www.自偷自拍.com| 国产成人欧美在线观看| avwww免费| 久久久久国产一级毛片高清牌| 国产欧美日韩一区二区三区在线| 麻豆av在线久日| 日韩欧美免费精品| 级片在线观看| 自线自在国产av| а√天堂www在线а√下载| 91在线观看av| 国产黄a三级三级三级人| 午夜成年电影在线免费观看| 亚洲伊人色综图| 欧美成狂野欧美在线观看| 老司机在亚洲福利影院| 变态另类丝袜制服| 看免费av毛片| 国产精品自产拍在线观看55亚洲| 成人永久免费在线观看视频| 啪啪无遮挡十八禁网站| 日本黄色视频三级网站网址| 亚洲人成电影免费在线| 久久久国产欧美日韩av| 欧美日韩亚洲国产一区二区在线观看| 国产一卡二卡三卡精品| 可以在线观看毛片的网站| 亚洲av日韩精品久久久久久密| 91在线观看av| 大型av网站在线播放| 一级黄色大片毛片| 如日韩欧美国产精品一区二区三区| 免费在线观看影片大全网站| 操美女的视频在线观看| 精品一品国产午夜福利视频| 精品久久久久久久久久免费视频| 90打野战视频偷拍视频| 久久久久国产精品人妻aⅴ院| 午夜福利在线观看吧| 999久久久精品免费观看国产| 中文字幕人妻熟女乱码| 午夜影院日韩av| 色av中文字幕| 88av欧美| 午夜日韩欧美国产| 大型av网站在线播放| 国产亚洲av高清不卡| 国产熟女午夜一区二区三区| 中文字幕高清在线视频| 十八禁网站免费在线| 免费在线观看日本一区| 色综合站精品国产| 香蕉久久夜色| av视频在线观看入口| 超碰成人久久| 母亲3免费完整高清在线观看| 黄色成人免费大全| 禁无遮挡网站| ponron亚洲| 精品国产一区二区久久| 91字幕亚洲| 一区在线观看完整版| 亚洲国产精品合色在线| 久久人妻熟女aⅴ| 亚洲最大成人中文| 亚洲九九香蕉| 看片在线看免费视频| 国产欧美日韩精品亚洲av| 日日爽夜夜爽网站| 中文字幕另类日韩欧美亚洲嫩草| 国产精品国产高清国产av| 亚洲五月天丁香| 午夜两性在线视频| 后天国语完整版免费观看| 女人被躁到高潮嗷嗷叫费观| 免费在线观看黄色视频的| 国产三级在线视频| 午夜福利成人在线免费观看| 亚洲视频免费观看视频| 免费观看精品视频网站| 亚洲人成77777在线视频| 亚洲专区字幕在线| 日本a在线网址| 别揉我奶头~嗯~啊~动态视频| 日本免费一区二区三区高清不卡 | 国产精品99久久99久久久不卡| av超薄肉色丝袜交足视频| 黑人巨大精品欧美一区二区mp4| 嫁个100分男人电影在线观看| 亚洲精品国产区一区二| 黄色片一级片一级黄色片| 国产野战对白在线观看| 成人亚洲精品av一区二区| 在线永久观看黄色视频| 最近最新中文字幕大全电影3 | 91字幕亚洲| 亚洲免费av在线视频| 日本 av在线| 50天的宝宝边吃奶边哭怎么回事| 久久久国产精品麻豆| 咕卡用的链子| 亚洲一码二码三码区别大吗| 侵犯人妻中文字幕一二三四区| 男人的好看免费观看在线视频 | 亚洲在线自拍视频| 女生性感内裤真人,穿戴方法视频| 91在线观看av| 亚洲av第一区精品v没综合| 又黄又爽又免费观看的视频| 欧美成人一区二区免费高清观看 | 99国产综合亚洲精品| 欧美绝顶高潮抽搐喷水| 99国产精品一区二区蜜桃av| 亚洲成人免费电影在线观看| 免费在线观看黄色视频的| 亚洲国产精品999在线| 美女扒开内裤让男人捅视频| 国产91精品成人一区二区三区| 欧美一级a爱片免费观看看 | 国产一级毛片七仙女欲春2 | 天堂影院成人在线观看| 老汉色av国产亚洲站长工具| 精品久久久精品久久久| 老鸭窝网址在线观看| 妹子高潮喷水视频| x7x7x7水蜜桃| 在线观看免费视频网站a站| xxx96com| or卡值多少钱| 免费无遮挡裸体视频| 久久精品91无色码中文字幕| 老司机在亚洲福利影院| 满18在线观看网站| 国产精品精品国产色婷婷| 日韩欧美在线二视频| 精品人妻1区二区| 欧美人与性动交α欧美精品济南到| 欧美成人午夜精品| 免费看十八禁软件| 亚洲 欧美 日韩 在线 免费| 亚洲成av人片免费观看| 欧美日韩黄片免| 国产亚洲av嫩草精品影院| 夜夜看夜夜爽夜夜摸| 男人操女人黄网站| 每晚都被弄得嗷嗷叫到高潮| av福利片在线| 国产精品 欧美亚洲| 国产三级在线视频| 欧美黄色淫秽网站| 久久国产乱子伦精品免费另类| 在线av久久热| 亚洲第一av免费看| 成人三级做爰电影| av欧美777| 成人18禁在线播放| 国产精品久久久久久精品电影 | 色尼玛亚洲综合影院| 午夜福利免费观看在线| 亚洲专区字幕在线| 欧美乱妇无乱码| 久久人人精品亚洲av| 精品久久久久久久久久免费视频| 黄频高清免费视频| 女人被躁到高潮嗷嗷叫费观| www国产在线视频色| 欧美黑人欧美精品刺激| 亚洲最大成人中文| 可以在线观看的亚洲视频| 婷婷六月久久综合丁香| 精品高清国产在线一区| 亚洲国产精品成人综合色| av免费在线观看网站| 久久精品成人免费网站| 国产成人免费无遮挡视频| 老司机靠b影院| 真人一进一出gif抽搐免费| 成人av一区二区三区在线看| 热99re8久久精品国产| 嫩草影视91久久| 国产精品亚洲av一区麻豆| 亚洲精品久久成人aⅴ小说| 久久午夜综合久久蜜桃| 欧美日本中文国产一区发布| 亚洲午夜理论影院| av视频在线观看入口| 久久香蕉精品热| tocl精华| 午夜福利18| 国产99久久九九免费精品| 老鸭窝网址在线观看| 午夜免费成人在线视频| 国产在线精品亚洲第一网站| 久久精品国产亚洲av高清一级| 99久久久亚洲精品蜜臀av| √禁漫天堂资源中文www| 亚洲狠狠婷婷综合久久图片| 国产一级毛片七仙女欲春2 | 91精品国产国语对白视频| 丝袜人妻中文字幕| 国产在线观看jvid| 麻豆一二三区av精品| 久久久久九九精品影院| 村上凉子中文字幕在线| 国产片内射在线| 精品免费久久久久久久清纯| 大型黄色视频在线免费观看| 久久国产精品人妻蜜桃| 99国产精品一区二区蜜桃av| 婷婷精品国产亚洲av在线| 91老司机精品| 电影成人av| 国产av在哪里看| 午夜成年电影在线免费观看| 国产欧美日韩精品亚洲av| 一级毛片高清免费大全| 国产精品亚洲一级av第二区| 麻豆国产av国片精品|