• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Tuning of FOPID-Like Fuzzy Controller for High-Performance Fractional-Order Systems

    2022-11-09 08:13:20AhmedNassefandHegazyRezk
    Computers Materials&Continua 2022年1期

    Ahmed M.Nassef and Hegazy Rezk

    1College of Engineering at Wadi Addawaser,Prince Sattam Bin Abdulaziz University,Al-Kharj,11911,Saudi Arabia

    2Department of Computers and Automatic Control Engineering,Faculty of Engineering,Tanta University,Tanta,31733,Egypt

    3Department of Electrical Engineering,Faculty of Engineering,Minia University,Minia,61517,Egypt

    Abstract:This paper addresses improvements in fractional order(FO)system performance.Although the classical proportional-integral-derivative(PID)-like fuzzy controller can provide adequate results for both transient and steady-state responses in both linear and nonlinear systems,the FOPID fuzzy controller has been proven to provide better results.This high performance was obtained thanks to the combinative benefits of FO and fuzzy-logic techniques.This paper describes how the optimal gains and FO parameters of the FOPID controller were obtained by the use of a modern optimizer,social spider optimization,in order to improve the response of fractional dynamical systems.This group of systems had usually produced multimodal error surfaces/functions that occasionally had many variant local minima.The integral time of absolute error (ITAE) used in this study was the error function.The results showed that the strategy adopted produced superior performance regarding the lowest ITAE value.It reached a value of 88.22 while the best value obtained in previous work was 98.87.A further comparison between the current work and previous studies concerning transient-analysis factors of the model’s response showed that the strategy proposed was the only one that was able to produce fast rise time,low-percentage overshoot,and very small steady-state error.However,the other strategies were good for one factor,but not for the others.

    Keywords: Fuzzy-logic control;fractional-order systems;parameter estimation;optimization

    1 Introduction

    Fuzzy-logic control (FLC),established by the use of integer orders,has been used in several engineering applications,including photovoltaic [1],fuel-cell [2],thermoelectric generation [3],and biodiesel [4] systems.In engineering applications,numerous dynamic systems can be controlled more precisely by the use of fractional orders (FOs).However,recently the use of FLC systems with FOs instead of integer orders has produced a significant improvement in system performance [5].FLC systems provide an alternative approach to design controllers by using empirical data.These data are generated from a human operator who directly controls the procedure.The operator identifies a set of rules for controlling the process.These rules are then included in the fuzzy controller to mimic the decision-making procedure of the operator.Fractional FLC is the result of integrating the traditional FLC and FO techniques.This integration exhibits improved performance for a wide range of dynamic systems compared to conventional FLC.

    Control systems based on fractional calculus have recently been drawing growing attention in research,due to their extra flexibility and improved design performance [6].Fractional calculus has been used in such engineering applications as signal processing,process control [7],nuclear reactor control [8],and chaos synchronization [9].Fractional calculus has also been integrated into different controllers to improve their performance.The FO proportional-integral-derivative(FOPID) controller is a generalized controller of conventional PID.It offers superior response and more stability compared to conventional PID [10] yet determining the parameters of FOPID is a dilemma.Five parameters need to be identified,instead of only three in the case of conventional PID.Consequently,several tuning approaches have recently been established to determine the parameters of FOPID [10].

    FOPID has been demonstrated to be an effective controller in several complex nonlinear systems [11].Li et al.[12] designed a fuzzy-PID controller for a nonlinear hydraulic turbinegoverning system.Mohanty et al.[13] conducted an analytical study of a FOPID controller with a derivative filter for automatic generation control in a multiarea power system.Xu et al.[14]studied an adaptive controller based on FLC for a pumped storage unit.Arya et al.[15] proposed a FOPID controller for automatic generation control of multizone,multisource power-generation systems.These studies have proven that the FOPID controller shows better performance and robustness.

    The current research aimed to determine the optimal gains and FO parameters of FOPID when using social spider optimization (SSO) to improve the response of fractional dynamic systems.This type of system usually produces a multimodal error surface that occasionally has many local minima.During the optimization process,the gains and FO parameters of PID are used as the decision variables,whereas the integral time of the absolute error (ITAE) is assigned as the objective function.The results are compared with genetic algorithms (GAs),particle-swarm optimization (PSO),harmony search (HS),gravitational search algorithms (GSA),and cuckoo search (CS).

    This paper is organized as follows.In Section 2,the concept of a FOPID-like fuzzy controller is introduced.In Section 3,a brief description of the SSO algorithm is presented.Section 4 presents the discussion of the results obtained and comparative testing.Finally,in Section 5,the main findings are outlined.

    2 FOPID-Like Fuzzy Controller

    In the classical PID controller,the controlling signal (control action) is calculated according to proportion of error,integral of error,and derivative of error.The constants of proportionality are the controller’s gains.They are usually namedKP,KI,andKDfor proportional,integral,and derivative gains,respectively.The control action and transfer function of the PID controller as a function of the system’s error are shown in Eqs.(1) and (2),respectively:

    FOPID is an example of the use of fractional calculus in control systems.The modification in the controller’s transfer function includes the derivative and integral terms by changing the Laplace complex frequency,s,to accept FOs.Therefore,FOPID becomes:

    whereλandαare two positive real numbers.

    Since the concept’s introduction in 1965,FL has become an effective technique in industrial applications.Accordingly,FL added a new perspective to the control theory with the aim of formulating the relationship between input and output variables.Previously,this relationship had been represented mathematically.However,in the sense of FL,the relationship between inputs and outputs can be represented by a set of “if-then” rules.Every rule signifies a portion in the input-output space.Therefore,signal processing in the fuzzy controller passes through the three processing operations like a normal fuzzy system.In other words,every input should be fuzzified(converted from crisp to fuzzy) through its associated fuzzy membership functions (MFs).These fuzzy inputs are passed to the rules in the knowledge base in the inference engine to produce the rules’fuzzy outputs.The overall fuzzy output is obtained by the aggregation (union) of the fired fuzzy rules.Finally,the defuzzification (conversion from fuzzy to crisp) operation takes place to come up with the final output value.In control systems,a Mamdani-type fuzzy rule is preferable for most systems:

    IF error is NS and change-of-error is PS,THEN control action is Z

    where NS is negative small,PS positive small,and Z zero MFs.

    Two crucial parameters have to be set properly in the design of a fuzzy controller.The first is the controller’s inputs and their associated MFs.The second is the fuzzy rule-based list.In classical PID,the control-action value is based on information about the system’s error,integration of error,and derivative of error.However,in fuzzy control,integration of error cannot produce sufficient information to take any action based on its value.Therefore,information related to the integration term can be obtained by considering the controller’s input as a derivative term,then integrating the controller’s output.In this respect,two configurations can be adopted to implement a PID-like fuzzy controller.The first is to build both a PD and a PI fuzzy controller,and sum their outputs.The following is an example of two fuzzy rules for PD and PI controllers,respectively:

    IF error is NS and change in error PS,THEN control action is Z

    IF error is NS and change in error PS,THEN change in control action is Z

    The PI-like fuzzy controller of the first configuration is shown in Fig.1.

    Fortunately,the same rule base can be used for both PD and PI controllers.The second configuration of the PID-like fuzzy controller is to use a combination of PD and PI controllers,as shown in Fig.2.It can be seen from the figure that the configuration is composed of a PDlike fuzzy controller added to a classical integrator.The latter configuration is adopted in many industrial processes.

    Figure 1:PI-like fuzzy-controller closed-loop configuration

    Figure 2:FO PD + I fuzzy-controller configuration

    In this study,the error (E) and change in error (Δ E) are considered the fuzzy controller inputs.Each input is represented by seven MFs that cover the universe of discourse in the range[-1,1].Usually,the rule base is built with the help of an expert who fully understands the system’s behavior and the controller’s dynamics.PD-like fuzzy controller rules are listed in Tab.1.Linguistic variables of the MFs are N and P,denoting negative and positive,respectively,and B,M,S,and Z,denoting big,medium,small,and zero,respectively.

    Table 1:Rule base of the PD-like fuzzy controller

    3 Optimal SSO-Based Parameters

    In this work,SSO,a recent and efficient optimizer,was applied to obtain optimal gains and optimal FOs for the controller.SSO simulates the cooperative behavior of spiders within a colony.It uses a population (S) of N candidate solutions,where every solution represents a spider position,whereas the general web symbolizes the search space—X.During the optimization process,every spider (i) maintains a weight (wi) based on its best solution:

    wherefitnessidenotes the value of the cost function of theith spider’s position.An important feature of SSO is the exchange of information among spiders through the vibrations produced in the communal web.This feature is modeled thus:

    wherewjdenotes the spider weight andthe distance between spidersiandj.

    The update process depends on the sex.For the female,these equations can be used:

    whereα,β,δ,andrdenote random values,Kthe iteration number,Vi,cthe vibration transferred by the closest individual (c),andVi,bthe vibration transferred by the best solution.For male members,this update equation can be used:

    whereSfrepresents the nearest female element to the individual male andVi,fthe vibration transferred by the nearest female spider.More details about the algorithm’s mathematical modeling and physical illustration can be found in Cuevas et al.[16].

    The objective function is used as in Eq.(3),with a time range (T) of 3 s.The configuration of the optimization process is shown in Fig.3.

    To optimally track the system’s input,the tracking error should be as minimal as possible.Accordingly,the performance of a controller is best evaluated in terms of the error criterion.Most optimization techniques use the objective function in terms of system error.However,the most popular performance-assessment criteria are integral of absolute errors,integral square of errors,mean-squared error,and ITAE.In this work,ITAE was selected as the objective function [16] for a fair comparison with the results obtained by Cuevas et al.[5].The formulae for the objective function are:

    wheree(t),r(t),andy(t) are system error,unit-step reference value,and system output,respectively,Tsystem-response time,andxcontrolling-variable vector containing the controller gainsKP,KI,KD,andKU,as well as the controller FOs—λandα.

    Figure 3:FOPID-like fuzzy controller-optimization process

    Systems’performances are usually compared by their behavior in the transient-response phase.This can be done using quantitative markers.The most important markers of a system’s response include rise time (tr),delay time (td),steady-state time (ts),peak time (tp),percentage overshoot(%OS),and steady-state error (Ess).Fig.4 shows the step response of the second-order system on the main performance indices.In this work,we adopted the most important markers:tr,%OS,andEss.

    Figure 4:Transient-response specifications of second-order system

    trdefines the time elapsed for the system’s output to go from 10% to 90% of its final value and %OS is the percentage of the difference between output and input at the first peak,Mp,over output at the steady state—y(∞):

    Essis the difference between the reference value and the final value of the system’s response.For a unit-step response,it can be calculated asEss=1-y(∞),wherey(∞) is the steady-state value of the system’s response.

    4 Results and Discussion

    The closed-loop system,comprising the FO system as the controlled process and the FOPID fuzzy controller,was implemented using MatLab R2020b and its Simulink toolbox.The FO part was implemented using the Fomcon toolbox.In this work,seven triangular MFs were selected as the fuzzification functions for the inputs and the output,which resulted in 49 Mamdani-type fuzzy rules.The output was defuzzified using center-of-gravity defuzzification method.

    In this study,the system under consideration included a fractional dynamical system that usually produces a multimodal error surface with many local minima.The transfer function of the fractional system is presented in Eq.(11):

    The configuration of the closed-loop model of the proposed FOPID fuzzy controller that controls the fractional system is presented in Fig.5.

    Figure 5:The closed-loop model of the proposed FOPID fuzzy controller

    The results of the strategy proposed compared to previous work in the literature are presented in Tab.2.The table shows that adding a fractional integrator produced better performance with regard to lowest ITAE value compared to other strategies.

    Table 2:Comparison of results of strategy proposed and others previously proposed

    Fig.6 presents plots of the system’s response at the resulting optimal gains and FOs obtained through the technique proposed,as well as responses obtained with previous techniques.

    Figure 6:Step response of the FOPID fuzzy controller vs.previous strategies

    The comparison was extended to measure transient-response factors.This analysis included calculation of systemtr,%OS,andEss.The resulting values of all factors for the strategy proposed in comparison to the other strategies are shown in Tab.3.FOPID provided the best set of transient-response factors.It yielded fasttr,low %OS,and smallEss,the only strategy to accomplish this.The findings of this study confirm that the combination of FL and fractional calculus can provide a robust and efficient FOPID-like fuzzy controller that can improve the performance of complex systems,such as FO ones.

    Table 3:Transient-response factors of strategy proposed and others

    5 Conclusion

    This study describes the use of a FOPID-like fuzzy controller to enhance the performance of FO systems.The properly set values of the controller played a vital role in the system’s performance.The optimal parameters of the controller relative to its gains and the FOs were obtained using SSO.The resulting gains and FOs produced the best (lowest) ITAE value: that obtained using the strategy proposed exceeded the previous best in the literature by 10.77%.Transient-response factors showed better performance in terms of fasttr,low %OS,and smallEss.Consequently,the findings of this study prove that compared to other controllers,the use of a FOPID-like fuzzy controller can produce outstanding performance in linear or nonlinear systems.

    Funding Statement: The authors received no specific funding for this study.

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

    精品一区在线观看国产| 亚洲人成网站高清观看| 伊人久久国产一区二区| videos熟女内射| 免费少妇av软件| 成人一区二区视频在线观看| 波多野结衣巨乳人妻| 99久久精品一区二区三区| 亚洲在久久综合| 你懂的网址亚洲精品在线观看| 91av网一区二区| 99久久中文字幕三级久久日本| 色综合站精品国产| 日本猛色少妇xxxxx猛交久久| 一夜夜www| 五月天丁香电影| 亚洲精品日本国产第一区| 女的被弄到高潮叫床怎么办| 国产精品麻豆人妻色哟哟久久 | 中文字幕人妻熟人妻熟丝袜美| 波多野结衣巨乳人妻| .国产精品久久| 亚洲精品乱码久久久久久按摩| av专区在线播放| 免费黄色在线免费观看| 99久久精品一区二区三区| 亚洲av不卡在线观看| 久久韩国三级中文字幕| 亚洲婷婷狠狠爱综合网| 男插女下体视频免费在线播放| 在线免费观看不下载黄p国产| 非洲黑人性xxxx精品又粗又长| 丝袜美腿在线中文| 久久久国产一区二区| 成人特级av手机在线观看| 精品人妻视频免费看| 午夜爱爱视频在线播放| 久久精品久久精品一区二区三区| 草草在线视频免费看| 在线观看一区二区三区| 只有这里有精品99| 日本熟妇午夜| 国产伦精品一区二区三区四那| 91狼人影院| 日本午夜av视频| 亚洲精品久久久久久婷婷小说| 国产一区二区在线观看日韩| 日韩精品有码人妻一区| 久久久久久久久大av| 亚洲18禁久久av| 又粗又硬又长又爽又黄的视频| 国产国拍精品亚洲av在线观看| 亚洲18禁久久av| 久久久精品欧美日韩精品| 毛片一级片免费看久久久久| 久久精品国产亚洲av天美| 精品酒店卫生间| av国产免费在线观看| 午夜亚洲福利在线播放| 国产69精品久久久久777片| 日日摸夜夜添夜夜添av毛片| av在线观看视频网站免费| 综合色av麻豆| 国产精品久久久久久久久免| 亚洲av二区三区四区| 成人国产麻豆网| 午夜亚洲福利在线播放| 欧美成人午夜免费资源| 免费无遮挡裸体视频| 3wmmmm亚洲av在线观看| 精品久久久久久久末码| 又黄又爽又刺激的免费视频.| 中国美白少妇内射xxxbb| 白带黄色成豆腐渣| 亚洲人成网站在线观看播放| 国产在线男女| 成人高潮视频无遮挡免费网站| 九九在线视频观看精品| 一级毛片aaaaaa免费看小| 如何舔出高潮| 一本久久精品| 亚洲av一区综合| 亚洲欧美清纯卡通| 国产老妇伦熟女老妇高清| 啦啦啦啦在线视频资源| 精品人妻熟女av久视频| 亚洲四区av| 亚洲欧美一区二区三区国产| 久久久色成人| 成年人午夜在线观看视频 | 七月丁香在线播放| 国国产精品蜜臀av免费| 少妇猛男粗大的猛烈进出视频 | 亚洲内射少妇av| 亚洲伊人久久精品综合| 成人国产麻豆网| 亚洲一级一片aⅴ在线观看| 激情五月婷婷亚洲| 3wmmmm亚洲av在线观看| 一级片'在线观看视频| 我要看日韩黄色一级片| 亚洲av免费在线观看| 成人午夜精彩视频在线观看| 成年版毛片免费区| ponron亚洲| 99热网站在线观看| 日本爱情动作片www.在线观看| 性插视频无遮挡在线免费观看| 一区二区三区乱码不卡18| 最近的中文字幕免费完整| 蜜桃久久精品国产亚洲av| 成人欧美大片| 亚洲经典国产精华液单| 亚洲国产av新网站| 亚洲欧美一区二区三区国产| 久久久久国产网址| 菩萨蛮人人尽说江南好唐韦庄| 综合色丁香网| 简卡轻食公司| 欧美3d第一页| 日本爱情动作片www.在线观看| 成人性生交大片免费视频hd| 国产久久久一区二区三区| 免费看不卡的av| 国产精品一区二区性色av| 菩萨蛮人人尽说江南好唐韦庄| 日本av手机在线免费观看| 五月天丁香电影| 免费看av在线观看网站| 欧美成人午夜免费资源| 80岁老熟妇乱子伦牲交| 国产精品.久久久| 日韩人妻高清精品专区| 亚洲精品色激情综合| 国内精品宾馆在线| 99re6热这里在线精品视频| 最新中文字幕久久久久| 国产人妻一区二区三区在| 97超碰精品成人国产| 深夜a级毛片| 嫩草影院精品99| 超碰97精品在线观看| 欧美激情久久久久久爽电影| 五月玫瑰六月丁香| 欧美成人精品欧美一级黄| 精品酒店卫生间| 九九久久精品国产亚洲av麻豆| 99九九线精品视频在线观看视频| 久久久久久久久久久丰满| 午夜福利在线观看免费完整高清在| 国产国拍精品亚洲av在线观看| 建设人人有责人人尽责人人享有的 | 国产高清三级在线| 免费高清在线观看视频在线观看| 好男人视频免费观看在线| 久久久a久久爽久久v久久| 日本黄大片高清| 国产成人精品福利久久| 国产成年人精品一区二区| 欧美xxxx性猛交bbbb| 人妻一区二区av| 欧美bdsm另类| 人妻少妇偷人精品九色| 国产精品.久久久| 国产成年人精品一区二区| 最近2019中文字幕mv第一页| 大香蕉久久网| 国产男人的电影天堂91| 国产精品一区www在线观看| 国产成人一区二区在线| 亚洲精品色激情综合| 久久精品国产亚洲网站| 最近中文字幕2019免费版| 日韩av免费高清视频| 超碰97精品在线观看| 久久久久久久久久人人人人人人| 一级毛片电影观看| 日本三级黄在线观看| 国产精品一区二区性色av| 亚洲av免费在线观看| 最近的中文字幕免费完整| 内射极品少妇av片p| 男的添女的下面高潮视频| 99久久中文字幕三级久久日本| 国产综合精华液| 亚洲成人久久爱视频| 免费黄频网站在线观看国产| 全区人妻精品视频| 成人国产麻豆网| 亚洲av一区综合| 51国产日韩欧美| 亚洲天堂国产精品一区在线| 精品国产露脸久久av麻豆 | 久久精品久久精品一区二区三区| 欧美成人精品欧美一级黄| 免费看不卡的av| 午夜福利网站1000一区二区三区| 亚洲av福利一区| 午夜老司机福利剧场| 国产精品美女特级片免费视频播放器| 久久精品国产鲁丝片午夜精品| 日韩国内少妇激情av| 男女啪啪激烈高潮av片| 我要看日韩黄色一级片| 国产成人精品一,二区| 中文欧美无线码| 午夜老司机福利剧场| 18+在线观看网站| 色综合亚洲欧美另类图片| 国产美女午夜福利| 亚洲第一区二区三区不卡| 免费看美女性在线毛片视频| 成人一区二区视频在线观看| 七月丁香在线播放| 精品久久久久久成人av| 亚洲精品视频女| 一区二区三区免费毛片| 精品久久久久久久人妻蜜臀av| 搡女人真爽免费视频火全软件| 国产精品美女特级片免费视频播放器| 一级毛片黄色毛片免费观看视频| av在线播放精品| 精品国内亚洲2022精品成人| 在线观看一区二区三区| 免费看av在线观看网站| 日韩av不卡免费在线播放| 午夜福利在线观看吧| 亚洲精品一二三| 亚洲综合色惰| 成年免费大片在线观看| 国内少妇人妻偷人精品xxx网站| 91精品伊人久久大香线蕉| 久久这里有精品视频免费| 又大又黄又爽视频免费| 国产单亲对白刺激| 国产极品天堂在线| 中文乱码字字幕精品一区二区三区 | 欧美精品国产亚洲| 亚洲图色成人| 久久国产乱子免费精品| 男人爽女人下面视频在线观看| 亚洲色图av天堂| 欧美另类一区| 日日啪夜夜爽| 国产精品福利在线免费观看| 精品人妻熟女av久视频| 亚洲av日韩在线播放| 亚洲aⅴ乱码一区二区在线播放| 欧美变态另类bdsm刘玥| 久久久成人免费电影| 亚洲国产精品专区欧美| 亚洲精品成人av观看孕妇| 夜夜看夜夜爽夜夜摸| av在线播放精品| 小蜜桃在线观看免费完整版高清| 国产av不卡久久| 成人亚洲精品av一区二区| 天天躁夜夜躁狠狠久久av| 国语对白做爰xxxⅹ性视频网站| 内射极品少妇av片p| 日本猛色少妇xxxxx猛交久久| 亚洲久久久久久中文字幕| 亚洲精品自拍成人| 女人十人毛片免费观看3o分钟| 欧美极品一区二区三区四区| 国产一级毛片七仙女欲春2| 久久久久久久久久黄片| 简卡轻食公司| 成人高潮视频无遮挡免费网站| 免费播放大片免费观看视频在线观看| 午夜精品在线福利| 日日摸夜夜添夜夜添av毛片| 欧美日韩在线观看h| 日本免费a在线| 午夜福利成人在线免费观看| 亚洲电影在线观看av| 国产精品一区二区三区四区久久| 久久人人爽人人片av| 色5月婷婷丁香| 亚洲精品日韩av片在线观看| 性色avwww在线观看| 国产高清三级在线| av在线观看视频网站免费| 在线观看美女被高潮喷水网站| 极品教师在线视频| 国产午夜福利久久久久久| 精品午夜福利在线看| 亚洲国产精品成人久久小说| 高清视频免费观看一区二区 | 久久精品久久久久久久性| 国产一区二区三区综合在线观看 | 乱系列少妇在线播放| 男女边摸边吃奶| 最近手机中文字幕大全| 老司机影院毛片| 日本免费a在线| 欧美变态另类bdsm刘玥| 亚洲欧洲日产国产| 亚洲丝袜综合中文字幕| 久久人人爽人人爽人人片va| 真实男女啪啪啪动态图| 99久久中文字幕三级久久日本| 国产精品蜜桃在线观看| 91aial.com中文字幕在线观看| 简卡轻食公司| 亚洲精品aⅴ在线观看| 欧美日韩国产mv在线观看视频 | 美女被艹到高潮喷水动态| 日日撸夜夜添| 高清在线视频一区二区三区| 精品一区二区免费观看| 国产在线一区二区三区精| 深夜a级毛片| 一级黄片播放器| 边亲边吃奶的免费视频| 亚洲精品日本国产第一区| 欧美日韩综合久久久久久| 日韩成人av中文字幕在线观看| a级一级毛片免费在线观看| 国产成年人精品一区二区| 日日啪夜夜爽| 美女国产视频在线观看| 日日啪夜夜爽| 99热网站在线观看| 国产大屁股一区二区在线视频| 免费播放大片免费观看视频在线观看| 蜜桃亚洲精品一区二区三区| 久久国产乱子免费精品| 久热久热在线精品观看| 哪个播放器可以免费观看大片| 三级国产精品片| 久久热精品热| 日本欧美国产在线视频| 亚洲av日韩在线播放| 久久久久九九精品影院| 高清午夜精品一区二区三区| 久久久久九九精品影院| 国产精品久久久久久久电影| 春色校园在线视频观看| 99视频精品全部免费 在线| 日韩av在线大香蕉| 岛国毛片在线播放| 一区二区三区四区激情视频| 久久久久国产网址| 国产免费视频播放在线视频 | 禁无遮挡网站| 国内精品美女久久久久久| 亚洲精品国产av成人精品| 波野结衣二区三区在线| 成人午夜高清在线视频| 看十八女毛片水多多多| 午夜福利在线观看吧| 亚洲经典国产精华液单| 亚洲国产最新在线播放| 最近中文字幕2019免费版| 大片免费播放器 马上看| 岛国毛片在线播放| 69人妻影院| 中国美白少妇内射xxxbb| or卡值多少钱| 尾随美女入室| 日本免费a在线| 国产伦在线观看视频一区| 日韩av免费高清视频| 亚洲人成网站高清观看| 高清av免费在线| 一级爰片在线观看| 国产av不卡久久| 日韩电影二区| av一本久久久久| 亚洲av中文字字幕乱码综合| 久久久精品94久久精品| 97超碰精品成人国产| 日韩强制内射视频| 高清视频免费观看一区二区 | 最近中文字幕2019免费版| 大片免费播放器 马上看| 成人亚洲精品一区在线观看 | 亚洲欧美成人综合另类久久久| 欧美成人精品欧美一级黄| av免费观看日本| 婷婷色av中文字幕| 日韩伦理黄色片| 亚洲久久久久久中文字幕| 国产精品av视频在线免费观看| 亚洲av电影不卡..在线观看| 久久久成人免费电影| 精品人妻一区二区三区麻豆| 国产一区亚洲一区在线观看| 国产欧美日韩精品一区二区| 日韩强制内射视频| 国产探花极品一区二区| 国产精品一二三区在线看| 亚洲真实伦在线观看| 免费黄色在线免费观看| 欧美日韩在线观看h| 蜜桃亚洲精品一区二区三区| 久久这里只有精品中国| 免费黄频网站在线观看国产| 日韩av免费高清视频| 久久这里有精品视频免费| 色综合站精品国产| 久久久久久久久久成人| 久久韩国三级中文字幕| 欧美日韩综合久久久久久| 男插女下体视频免费在线播放| 亚洲电影在线观看av| 精品欧美国产一区二区三| av网站免费在线观看视频 | 最近中文字幕2019免费版| 亚洲欧美清纯卡通| 国产精品综合久久久久久久免费| 午夜激情欧美在线| 亚洲精品日韩av片在线观看| 色尼玛亚洲综合影院| 一级毛片 在线播放| 亚洲av成人精品一区久久| 亚洲国产欧美在线一区| 天堂av国产一区二区熟女人妻| 亚洲国产欧美人成| 国产午夜精品论理片| 69人妻影院| 国产黄片美女视频| 亚洲最大成人手机在线| 午夜福利高清视频| 天堂俺去俺来也www色官网 | 免费黄色在线免费观看| 哪个播放器可以免费观看大片| 晚上一个人看的免费电影| 日本wwww免费看| 国产乱人偷精品视频| 黑人高潮一二区| 久久精品熟女亚洲av麻豆精品 | 中文在线观看免费www的网站| 国产一区亚洲一区在线观看| 午夜免费男女啪啪视频观看| 天美传媒精品一区二区| h日本视频在线播放| 久久久久九九精品影院| 天天躁夜夜躁狠狠久久av| 少妇熟女欧美另类| 97人妻精品一区二区三区麻豆| 99热这里只有精品一区| 国产成人91sexporn| 真实男女啪啪啪动态图| 精品久久国产蜜桃| 久久亚洲国产成人精品v| 啦啦啦中文免费视频观看日本| 国产毛片a区久久久久| 欧美xxxx黑人xx丫x性爽| 国产一级毛片七仙女欲春2| 最近2019中文字幕mv第一页| 国产午夜精品久久久久久一区二区三区| 一级av片app| 亚洲熟女精品中文字幕| 欧美xxxx性猛交bbbb| 边亲边吃奶的免费视频| 男的添女的下面高潮视频| 日本猛色少妇xxxxx猛交久久| 欧美高清性xxxxhd video| 国产精品国产三级国产专区5o| 国产精品麻豆人妻色哟哟久久 | 中文字幕制服av| 国产精品一及| 小蜜桃在线观看免费完整版高清| 91在线精品国自产拍蜜月| .国产精品久久| 亚洲av免费高清在线观看| 在线观看av片永久免费下载| 久久久久性生活片| 黄片无遮挡物在线观看| 九九爱精品视频在线观看| 国产成人91sexporn| 国产淫语在线视频| av一本久久久久| 99re6热这里在线精品视频| 18禁在线无遮挡免费观看视频| 国产熟女欧美一区二区| 精品久久久久久久末码| 免费av不卡在线播放| 久久精品久久精品一区二区三区| 中文资源天堂在线| 亚洲内射少妇av| 精品一区二区三卡| 亚洲av福利一区| 男女那种视频在线观看| 久久久久久久久久黄片| 国产一区有黄有色的免费视频 | videossex国产| 网址你懂的国产日韩在线| 一区二区三区四区激情视频| 久久久久国产网址| 欧美zozozo另类| 天天一区二区日本电影三级| 国产高清有码在线观看视频| 国产成人freesex在线| 视频中文字幕在线观看| 日本熟妇午夜| 国产av国产精品国产| 久久鲁丝午夜福利片| 欧美日韩视频高清一区二区三区二| 在线播放无遮挡| 亚洲最大成人av| 在线播放无遮挡| 国产精品精品国产色婷婷| 亚洲国产日韩欧美精品在线观看| 激情 狠狠 欧美| 国产亚洲精品av在线| 最近视频中文字幕2019在线8| 亚洲av中文字字幕乱码综合| 亚洲精品国产成人久久av| 看黄色毛片网站| 久久久久久久午夜电影| 亚洲精品一二三| 深爱激情五月婷婷| 十八禁网站网址无遮挡 | 纵有疾风起免费观看全集完整版 | 午夜日本视频在线| 欧美成人午夜免费资源| 一级毛片电影观看| 亚洲经典国产精华液单| 最近2019中文字幕mv第一页| 日韩不卡一区二区三区视频在线| 国产伦精品一区二区三区四那| 国产高清有码在线观看视频| 亚洲欧美一区二区三区黑人 | www.色视频.com| 亚洲人成网站在线观看播放| 午夜福利在线观看吧| 日韩精品青青久久久久久| 99久久人妻综合| 国产成人免费观看mmmm| 又黄又爽又刺激的免费视频.| 五月玫瑰六月丁香| 日日啪夜夜爽| 欧美激情久久久久久爽电影| 只有这里有精品99| 精品久久久久久成人av| 亚洲精品乱久久久久久| 80岁老熟妇乱子伦牲交| 69人妻影院| 黄色日韩在线| 欧美日韩视频高清一区二区三区二| 一个人看视频在线观看www免费| 性插视频无遮挡在线免费观看| 不卡视频在线观看欧美| 狂野欧美激情性xxxx在线观看| 色5月婷婷丁香| 亚洲aⅴ乱码一区二区在线播放| 精品国产露脸久久av麻豆 | 建设人人有责人人尽责人人享有的 | www.色视频.com| 久久久久久久亚洲中文字幕| xxx大片免费视频| 天堂av国产一区二区熟女人妻| 国产精品爽爽va在线观看网站| 国产午夜精品论理片| 亚洲欧美日韩卡通动漫| 夫妻性生交免费视频一级片| 国产在视频线精品| 亚洲精品aⅴ在线观看| 免费黄色在线免费观看| 国产午夜精品久久久久久一区二区三区| 中文字幕亚洲精品专区| 男女下面进入的视频免费午夜| 国产在视频线在精品| 国产精品人妻久久久影院| 成人欧美大片| 国产综合精华液| 人人妻人人澡人人爽人人夜夜 | 大又大粗又爽又黄少妇毛片口| 久久99热这里只频精品6学生| 欧美精品一区二区大全| 直男gayav资源| 18禁在线播放成人免费| 国内精品美女久久久久久| 久久草成人影院| 色哟哟·www| 在线a可以看的网站| 欧美丝袜亚洲另类| 亚洲国产精品专区欧美| 欧美人与善性xxx| 国产淫片久久久久久久久| 成人国产麻豆网| 亚洲国产日韩欧美精品在线观看| 亚洲最大成人手机在线| 又大又黄又爽视频免费| 在线播放无遮挡| 久久久色成人| 热99在线观看视频| 日韩在线高清观看一区二区三区| 禁无遮挡网站| 男女下面进入的视频免费午夜| 18+在线观看网站| 2021少妇久久久久久久久久久| 欧美bdsm另类| 亚洲欧美成人精品一区二区| 高清欧美精品videossex| 五月伊人婷婷丁香| 午夜视频国产福利| 欧美日韩国产mv在线观看视频 | 久久久精品免费免费高清| 日韩欧美精品免费久久| 亚洲自拍偷在线| 国产欧美日韩精品一区二区| 丰满少妇做爰视频| freevideosex欧美| 熟妇人妻不卡中文字幕| 中文精品一卡2卡3卡4更新| 亚洲在久久综合| 亚洲欧美一区二区三区国产| 日日撸夜夜添| 看黄色毛片网站| 国国产精品蜜臀av免费| 色5月婷婷丁香|