• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Joint Channel and Multi-User Detection Empowered with Machine Learning

    2022-11-09 08:13:10MohammadShDaoudAreejFatimaWaseemAhmadKhanMuhammadAdnanKhanSagheerAbbasBahaIhnainiMunirAhmadMuhammadSherazJaveidandShabibAftab
    Computers Materials&Continua 2022年1期

    Mohammad Sh.Daoud,Areej Fatima,Waseem Ahmad Khan,Muhammad Adnan Khan,Sagheer Abbas,Baha Ihnaini,Munir Ahmad,Muhammad Sheraz Javeid and Shabib Aftab

    1College of Engineering,Al Ain University,Abu Dhabi,112612,UAE

    2Department of Computer Science,Lahore Garrison University,Lahore,54792,Pakistan

    3School of Computer Science,National College of Business Administration and Economics,Lahore,54000,Pakistan

    4Riphah School of Computing and Innovation,Faculty of Computing,Riphah International University,Lahore,54000,Pakistan

    5Pattern Recognition and Machine Learning Lab,Department of Software Engineering,Gachon University,Seongnam,13557,South Korea

    6Department of Computer Science,College of Science and Technology,Wenzhou Kean University,325060,USA

    7Department of Computer Science,Hameeda Rasheed Institute of Science and Technology,Multan,66000,Pakistan

    Abstract: The numbers of multimedia applications and their users increase with each passing day.Different multi-carrier systems have been developed along with varying techniques of space-time coding to address the demand of the future generation of network systems.In this article,a fuzzy logic empowered adaptive backpropagation neural network (FLeABPNN) algorithm is proposed for joint channel and multi-user detection (CMD).FLeABPNN has two stages.The first stage estimates the channel parameters,and the second performs multi-user detection.The proposed approach capitalizes on a neuro-fuzzy hybrid system that combines the competencies of both fuzzy logic and neural networks.This study analyzes the results of using FLeABPNN based on a multiple-input and multiple-output(MIMO)receiver with conventional partial opposite mutant particle swarm optimization(POMPSO),total-OMPSO(TOMPSO),fuzzy logic empowered POMPSO(FL-POMPSO),and FL-TOMPSO-based MIMO receivers.The FLeABPNN-based receiver renders better results than other techniques in terms of minimum mean square error,minimum mean channel error,and bit error rate.

    Keywords: Channel and multi-user detection;minimum mean square error;multiple-input and multiple-output;minimum mean channel error;bit error rate

    1 Introduction

    Communication systems are ubiquitous and are plagued with the perennial problem of limited channel capacity.We strive to enhance the channel capacity without compromising system performance for optimal utilization of bandwidth.The multiple-input and multiple-output (MIMO)method has been used to improve the data rates of communication systems and resolve channel capacity issues [1-4].Raut et al.[5] estimated the signals at both the sender and receiver antennas using different algorithms.The data rates increase due to the bandwidth of the channel capacity [6-9].In [10],the authors used multiple transmitter and receiver antennas to improve the system’s communication technique.The transmitted information is calculated on different transmission paths that depend on the data conveyed by the MIMO framework increments [10].

    Some antennas collect received information on the receiver end,perform calculations to gather the information,then reestablish the data on the receiver end.The MIMO technique is the midpoint for unconnected communication because the amount of information increases without any extra transmitting power or capacity in the data transfer [11,12].

    Fuzzy systems have fuzzy logic and fuzzy sets through which modeling,in the ordinary sense,is carried out.These systems have non-stationary uncertainty,an inherent property that cannot be uncertain.Fuzzy logic control (FLC) is a primitive application of fuzzy sets,and a part of many successful applications.In these applications,efficient control approaches are used for nonlinear,complex,and non-analytic systems [13].In 1975,Mamdani and Asselin developed the first FLC,which was applied to a small steam engine.Earlier researchers contributed considerably to both the theoretical and applied aspects of FLC [14].

    The widespread usage of modern multimedia services and wireless internet underlies the increased demand for high data rates,presenting problems such as inter-symbol interference (ISI)and scattered fading channels (SFC) to address this demand [15].The specific processing is required on the receiver end to resolve these issues when data arrives.Evolutionary techniques like the genetic algorithm (GA) are used to improve the multi-user detection (MUD) of multi-carrier systems.Cultural evolutionary and cooperative coevolutionary algorithms are applied to find new dimensions of MUD for fast convergence and an attractive bit error rate [16].

    An early system is known as a single input and single output used a single antenna for both the transmitter and receiver,which did not use the maximum bandwidth,which is one of the most important factors in communication systems.To overcome this issue,MIMO systems provide a solution through multiple antennas used at both ends [15].

    The proposed method can also be used with multi-carrier code division multiple accesses(MC-CDMA) and orthogonal frequency division multiplexing (OFDM) to enhance the capacity of a communication channel [16-19].

    Other techniques include total opposite mutant particle swarm optimization (TOMPSO),partial opposite mutant particle swarm optimization (POMPSO),and particle swarm optimization(PSO) [16,17,19,20].Differential equations (DE),GA,island DE,and island GA can also be used to enhance the performance of a digital communication system [21-23].The proposed method performs channel estimation (CE) for effective data rates at both ends.

    Some distortion accumulates in the signal during communication [24,25].The antenna at the receiver end cannot determine the correct information due to the weak signal strength.We use fuzzy logic [26] to resolve this issue and improve the data and channel estimation process.The proposed method introduces a new variant for the communication system: fuzzy logic-powered opposite particle swarm optimization that uses PSO on the applied side.

    The remainder of this paper is organized as follows.Section 2 discusses essential concepts such as the MIMO model system and fuzzy logic empowered adaptive backpropagation neural network (FLeABPNN)-based optimization.The problem is formulated in Section 3.Section 4 describes the simulation of the proposed framework.Section 5 provides concluding remarks.

    2 System Model

    The MIMO system uses a transmitting antenna A and receiving antenna B,with a flat fading stationary channel during the communication process of the Q (transmitted) symbols.The received signal at B is

    wherevb(i)is additive white Gaussian noise (AWGN).=2σ2V,da(i)is theithtransmitted symbol form with antenna A,taking the value from the symbol set {-1,+1} of the binary phase shift key (BPSK);hb.ais the flat fading channel coefficient that links transfer antenna A to receiving antenna B;andiis the index of the symbol.

    Eq.(1) can also be written as

    wherev(i)represents AWGN,and

    The transmitted symbol vector is

    d(i)=[d1(i) d2(i)...dA(i)]T,

    and the received signal vector is

    r(i)=[r1(i) r2(i)...rB(i)]T.

    The channel gain at the receiving antenna can always be normalized to unity:

    We define aB×V-dimensional received data matrix andA×V-dimensional transmitted data matrix as

    Eqs.(4) and (5) represent the received vector at the receiver end and the transmitted symbols/vector at the transmitter end,respectively.

    Eq.(6) represents the probability function from which we find the probability of R given the channel matrix (H) and transmitted symbol matrix(D) from all users.

    Eq.(7) represents the cost function,which we want to minimize such that the optimum value of the estimated transmitted symbolsand estimated channel matrix coefficientsare used.

    Eq.(7) can be written as

    The enhanced cost function can be written as:

    After substituting the values from Eq.(10) in Eq.(9),we have

    As we know that we want to minimize the cost function,Eq.(9) can also be written as

    Therefore,the following applies:

    The proposed method is fuzzy logic empowered adaptive backpropagation neural network(FLeAPBNN) for the joint estimation of the channel and MUD.FLeAPBNN is a hybrid fuzzy logic and adaptive backpropagation neural network.Eq.(12) is considered a fitness function and is used to evaluate the performance of the proposed algorithm.

    3 Proposed FLeABPNN-Based MIMO Receiver Model

    Fig.1 shows the proposed FLeABPNN-based MIMO receiver model in which the received signal is down-converted for theuthuser.The cyclic prefixes are removed in the first step after the signal is transferred from the serial to the parallel mode.FLeABPNN is used to optimize the weights of the receiver after the fast Fourier transform (FFT).

    Figure 1:FLeABPNN-based receiver system

    Table 1:Pseudocode of FLeABPNN-based joint channel and multi-user detection (CMD) for MIMO systems

    The proposed methodology (FLeABPNN),the input layer,a hidden layer,and an output layer are used.The proposed algorithm has steps including weight initialization,feedforward,backpropagation of error,and updating of weight and bias,as shown in Tab.1.A hidden layer has many neurons,each with an activation function in formf(x)=sigmoid(x).The sigmoid function for the input and hidden layer of FLeABPNN can be written as:

    The input taken from the output layer is

    The output layer activation is In the case of channel estimation,Eq.(18) is used to calculate the minimum mean squared channel error.

    In the case of MUD estimation,Eq.(19) is used to calculate the minimum mean squared bit error.

    Eq.(19) represents the backpropagation error,where q andoutqare the desired and estimated output,respectively.

    The rate of change in weight for the output layer is:

    whereΞis constant.After applying the chain rule,Eq.(20) can be written as

    After substituting the values of partial derivates ofin Eq.(21),the value of the change in weights between the dthhidden layer neuron and the qthoutput layer neuron can be obtained as:

    where

    Updating the weights between the input and hidden layers,we apply the chain rule:

    whereΞis a constant.After substituting the above partial derivatives,the change in weights between the cthinput layer neuron and dthhidden layer neuron can be written as

    After simplification,the above equation for the change in weights between the cthinput layer neuron and dthhidden layer neuron can be written as

    Δ?c,d=Ξζd′αc

    where

    Updating the weights between the output and hidden layers for the channel and MUD estimation,we use:

    Updating the weights between the hidden and input layers,we use

    whereλFis the learning rate of FLeABPNN.The convergence of FLeABPNN depends upon the careful selection ofλF.In this article,λFis updated using fuzzy logic,as follows:

    whereesandΔesare the mean square error and normalized mean square error,respectively,of FLeABPNN,and

    Δ=(t)-(t-1).

    Tab.2 shows the input/output variable membership functions used in the FLeABPNN-based system,both mathematically and graphically.

    The fuzzy system has four main parts: fuzzy propositions,lookup table,inference engine,and de-fuzzifier.

    The fuzzy prepositiont-norm function is written as

    Eq.(27) can also be written in terms of fuzzy sets as

    We estimate channels using Eq.(18).We apply MUD to the result of Eq.(18),using Eq.(19).

    4 Results and Discussion

    The MIMO system was implemented using BPSK signaling,and the data sequence length ofQwas 50.The transmitters were equipped withA=3 transmit antennas,while the base station hadB=3 antennas.The Rayleigh selective fading channel was implemented in four parts.The Doppler frequency was set to 25 Hz,which corresponded to a transmitter using a 900 MHz carrier frequency and moving at a speed of 30 km/h.The channel taken for simulation was 3kMIMO,withk=10 users,the data population was 100,and the number of cycles for both algorithms was five.We chose a population size of 5Ph,wherePhis the channel matrix size.However,the performance in the simulation can also be measured by minimum mean channel error (MMCE),defined as

    The performance of FLeAPBNN for channel and data estimation of the MIMO system is expressed in terms of minimum mean square error (MMSE) and bit error rate (BER),respectively,in Figs.2 and 3.The performance of FLeABPNN in terms of MMCE is shown in Fig.4.

    The number of cycles (NoC)vs.MMSE of the FLeAPBNN-based MIMO system with SNR set at 25 dB and 15 users is shown in Fig.2.Conventional POMPSO and conventional TOMPSO [24,25] gave MMSE values of 10-3and 10-5.4at the 160thand 180thNoCs,respectively.FL-POLMPSO and FL-TOLMPSO [25] converged with MMSE values of 10-3.5and 10-5.5at the 150th&160thNoCs,respectively.FLeABPNN gave an MMSE of 7.327*10-5.9at the 170thNoC.FLeABPNN gave better MMSE results than previous approaches [24,25] at the cost of NoC,and FLeABPNN converged faster than TOMPSO [24,25].

    Figure 2:NoC vs. MMSE of proposed FLeAPBNN

    Figure 3:NoC vs. MMCE of proposed FLeAPBNN

    The performance of the FLeABPNN-based solution in terms of NoCsvs.MMCE is shown in Fig.3.The SNR was fixed at 25,and the number of users was 15.Conventional POMPSO and conventional TOMPSO [24,25] had MMCE values of 10-2and 10-4,respectively.FL-POLMPSO and FL-TOLMPSO [25] converged at MMCE values of 10-3and 10-4.2,respectively.FLeABPNN had an MMCE value of 8.9002*10-5.3.These statistics confirm that the proposed FLeABPNN algorithm gives better results than previous approaches [24,25] in terms of MMCE.

    The performance of the proposed FLeABPNN-based solution in terms of signal-to-noise ratio(SNR)vs.bit error rate (BER) is shown in Fig.4.The NoCs were fixed to 180,and the number of users was 15.Conventional POMPSO and conventional TOMPSO [24,25] had BER values of 10-3and 3.205*10-4,respectively.FL-POLMPSO and FL-TOLMPSO [25] converged at BER values of 10-3and 10-4.2,respectively.The proposed FLeABPNN had a BER of 10-6.The proposed FLeABPNN algorithm? therefore,gives better results than previous approaches [24,25]in terms of BER.

    Figure 4:SNR vs. BER of proposed FLeAPBNN

    5 Conclusion

    Joint channel and multi-user detection were performed using a fuzzy logic empowered adaptive backpropagation neural network algorithm.The proposed approach exploits a neuro-fuzzy hybrid system combining the competencies of fuzzy logic and neural networks.The simulation showed that the proposed FLeABPNN-based MIMO receiver gives better results than approaches such as POMPSO,TOMPSO,FL-POMPSO,and FL-TOMPSO in terms of MMCE,MMSE,and BER.

    6 Future Work

    In the future,the efficiency of the proposed system can be tested for massive MIMO systems,and the current study can be extended to such systems.Computational complexity analysis in multiplication,addition,division and flops will also be carried out.

    Acknowledgement: Thanks to our families and colleagues,who supported us morally.

    Funding Statement: The authors received no specific funding for this study.

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

    国产成人免费无遮挡视频| www.精华液| 国产精品免费大片| 一级毛片女人18水好多| 丰满迷人的少妇在线观看| 亚洲欧洲精品一区二区精品久久久| av网站在线播放免费| 久久综合国产亚洲精品| 一级黄色大片毛片| 国产又爽黄色视频| 精品国产一区二区三区久久久樱花| 嫁个100分男人电影在线观看| 亚洲成国产人片在线观看| 我的亚洲天堂| 97人妻天天添夜夜摸| 国产精品影院久久| 女人久久www免费人成看片| 久久精品成人免费网站| 亚洲国产欧美在线一区| 亚洲精品国产av成人精品| 老熟妇仑乱视频hdxx| 午夜福利一区二区在线看| 天天添夜夜摸| 操出白浆在线播放| 国产成人av激情在线播放| 曰老女人黄片| 国产淫语在线视频| 国产伦人伦偷精品视频| 首页视频小说图片口味搜索| 天天躁日日躁夜夜躁夜夜| 亚洲精品中文字幕在线视频| 亚洲久久久国产精品| 一级片免费观看大全| 日韩大片免费观看网站| 无限看片的www在线观看| 12—13女人毛片做爰片一| 少妇被粗大的猛进出69影院| 中亚洲国语对白在线视频| 首页视频小说图片口味搜索| 咕卡用的链子| 99国产极品粉嫩在线观看| 国产精品二区激情视频| 久久九九热精品免费| 多毛熟女@视频| 国产在视频线精品| 91成人精品电影| 大香蕉久久网| 人人妻人人澡人人看| 9色porny在线观看| 亚洲精品中文字幕在线视频| 久久久水蜜桃国产精品网| 亚洲精品久久久久久婷婷小说| 老司机午夜福利在线观看视频 | 啦啦啦在线免费观看视频4| 久热爱精品视频在线9| 午夜影院在线不卡| 99国产精品一区二区蜜桃av | 丝袜人妻中文字幕| 欧美另类亚洲清纯唯美| 亚洲专区国产一区二区| 久久精品aⅴ一区二区三区四区| 俄罗斯特黄特色一大片| 一本色道久久久久久精品综合| 99国产精品99久久久久| 99国产极品粉嫩在线观看| 国产一区二区激情短视频 | 亚洲专区中文字幕在线| 日韩熟女老妇一区二区性免费视频| 青草久久国产| 精品国产乱子伦一区二区三区 | 美女主播在线视频| 亚洲精品久久午夜乱码| 美女视频免费永久观看网站| 欧美激情极品国产一区二区三区| 一进一出抽搐动态| 亚洲av成人一区二区三| 亚洲少妇的诱惑av| 天堂中文最新版在线下载| 精品久久久久久电影网| 美国免费a级毛片| 成年av动漫网址| 欧美日本中文国产一区发布| 国产国语露脸激情在线看| 久久久久久久精品精品| 国产一级毛片在线| av有码第一页| 亚洲av男天堂| 老司机影院成人| 无遮挡黄片免费观看| 亚洲av电影在线进入| 欧美日韩视频精品一区| 国产成人免费无遮挡视频| 欧美 日韩 精品 国产| 国产一区二区 视频在线| 亚洲专区国产一区二区| 亚洲久久久国产精品| 久久性视频一级片| 一区二区三区四区激情视频| 自线自在国产av| 99精品欧美一区二区三区四区| 亚洲av国产av综合av卡| 777米奇影视久久| 高清欧美精品videossex| 精品人妻一区二区三区麻豆| 纵有疾风起免费观看全集完整版| 法律面前人人平等表现在哪些方面 | 欧美日韩精品网址| 国产又色又爽无遮挡免| 超色免费av| 亚洲国产精品一区三区| 女人被躁到高潮嗷嗷叫费观| 大陆偷拍与自拍| 亚洲伊人久久精品综合| 免费日韩欧美在线观看| 国产精品久久久人人做人人爽| a级毛片在线看网站| 国产精品欧美亚洲77777| a 毛片基地| 久久精品熟女亚洲av麻豆精品| 亚洲av日韩在线播放| 亚洲精品乱久久久久久| 水蜜桃什么品种好| 黄片小视频在线播放| 最新的欧美精品一区二区| av一本久久久久| 久久国产精品影院| 久久精品aⅴ一区二区三区四区| 国产精品 国内视频| 欧美少妇被猛烈插入视频| 国产av国产精品国产| 国产日韩欧美视频二区| 欧美黄色片欧美黄色片| 日本av免费视频播放| 我的亚洲天堂| 丁香六月天网| 亚洲欧美一区二区三区黑人| 国产高清videossex| 国产亚洲av高清不卡| 亚洲第一青青草原| 久久精品亚洲av国产电影网| 日日爽夜夜爽网站| 日本91视频免费播放| 最近最新中文字幕大全免费视频| 黄片播放在线免费| 亚洲精品国产av蜜桃| 欧美精品av麻豆av| 人成视频在线观看免费观看| 国产精品一区二区免费欧美 | 视频在线观看一区二区三区| 一区二区三区四区激情视频| 欧美97在线视频| av网站免费在线观看视频| 欧美少妇被猛烈插入视频| 黄网站色视频无遮挡免费观看| 男女床上黄色一级片免费看| 操出白浆在线播放| 高清欧美精品videossex| avwww免费| 视频在线观看一区二区三区| av在线播放精品| 亚洲精品一区蜜桃| 午夜福利在线观看吧| 久久影院123| 午夜视频精品福利| 满18在线观看网站| 窝窝影院91人妻| 久久精品国产a三级三级三级| 久久中文字幕一级| 久久午夜综合久久蜜桃| 丝瓜视频免费看黄片| 香蕉丝袜av| √禁漫天堂资源中文www| 亚洲熟女毛片儿| 亚洲精品美女久久av网站| 日本wwww免费看| 热99国产精品久久久久久7| 国产主播在线观看一区二区| 三级毛片av免费| 一本大道久久a久久精品| 日韩电影二区| 男人操女人黄网站| 精品国产国语对白av| 国产一区有黄有色的免费视频| 中亚洲国语对白在线视频| 精品国产乱子伦一区二区三区 | 亚洲avbb在线观看| 亚洲国产成人一精品久久久| 大型av网站在线播放| 国产人伦9x9x在线观看| 国产野战对白在线观看| 大香蕉久久成人网| 一区二区三区乱码不卡18| 亚洲国产看品久久| 日韩有码中文字幕| 国产精品99久久99久久久不卡| 久久av网站| 老司机午夜十八禁免费视频| 亚洲欧美激情在线| videosex国产| 国产高清videossex| 午夜精品国产一区二区电影| 久久天躁狠狠躁夜夜2o2o| 色视频在线一区二区三区| 国产日韩欧美亚洲二区| 亚洲色图 男人天堂 中文字幕| 9191精品国产免费久久| a级片在线免费高清观看视频| 在线观看免费午夜福利视频| 97人妻天天添夜夜摸| 日本黄色日本黄色录像| 亚洲国产欧美在线一区| 成年av动漫网址| 大型av网站在线播放| 亚洲欧美日韩高清在线视频 | 99国产精品99久久久久| 久久精品aⅴ一区二区三区四区| 麻豆国产av国片精品| 欧美乱码精品一区二区三区| 亚洲精品久久成人aⅴ小说| 久久久国产成人免费| 亚洲欧美清纯卡通| 男女床上黄色一级片免费看| 免费不卡黄色视频| 一二三四在线观看免费中文在| 亚洲精品粉嫩美女一区| 高清在线国产一区| 欧美av亚洲av综合av国产av| 久9热在线精品视频| 一本久久精品| 精品少妇黑人巨大在线播放| 亚洲国产中文字幕在线视频| 999精品在线视频| 欧美日韩亚洲综合一区二区三区_| 欧美精品av麻豆av| 啦啦啦免费观看视频1| 亚洲熟女精品中文字幕| 老司机深夜福利视频在线观看 | 99久久综合免费| 国产淫语在线视频| av福利片在线| 精品少妇一区二区三区视频日本电影| 中文字幕人妻丝袜制服| av在线播放精品| 精品国产一区二区三区四区第35| 黄色片一级片一级黄色片| 成年人午夜在线观看视频| 亚洲久久久国产精品| 各种免费的搞黄视频| 妹子高潮喷水视频| av网站免费在线观看视频| 日日摸夜夜添夜夜添小说| 美女午夜性视频免费| 制服诱惑二区| 侵犯人妻中文字幕一二三四区| 成人亚洲精品一区在线观看| 人人妻人人添人人爽欧美一区卜| 成年动漫av网址| 18禁黄网站禁片午夜丰满| 777久久人妻少妇嫩草av网站| 在线天堂中文资源库| 久久久国产一区二区| 成人av一区二区三区在线看 | 激情视频va一区二区三区| 99精国产麻豆久久婷婷| 久久青草综合色| 啦啦啦免费观看视频1| 中文字幕人妻熟女乱码| 国产精品99久久99久久久不卡| 人人妻人人澡人人爽人人夜夜| 成人影院久久| av在线老鸭窝| tocl精华| 国产亚洲av高清不卡| 91av网站免费观看| 午夜福利视频精品| 日本精品一区二区三区蜜桃| 伦理电影免费视频| 精品亚洲成a人片在线观看| 18在线观看网站| 国产亚洲精品一区二区www | 日韩欧美一区二区三区在线观看 | 五月开心婷婷网| 欧美国产精品一级二级三级| 一个人免费看片子| 久久久国产成人免费| 日韩 亚洲 欧美在线| 国产av精品麻豆| 亚洲情色 制服丝袜| 亚洲第一av免费看| 极品人妻少妇av视频| 久久久精品区二区三区| 老鸭窝网址在线观看| 黑人操中国人逼视频| 久久中文看片网| 亚洲综合色网址| 韩国精品一区二区三区| 最黄视频免费看| 狂野欧美激情性bbbbbb| 亚洲精品中文字幕一二三四区 | 少妇粗大呻吟视频| 久久久久国内视频| 国产精品久久久久久精品电影小说| 国产精品一区二区在线观看99| 久久午夜综合久久蜜桃| av视频免费观看在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产区一区二| 丝袜人妻中文字幕| 国产精品免费视频内射| av网站免费在线观看视频| 精品久久久精品久久久| 国产男女超爽视频在线观看| 啦啦啦在线免费观看视频4| kizo精华| 黑人猛操日本美女一级片| 波多野结衣av一区二区av| 如日韩欧美国产精品一区二区三区| 777久久人妻少妇嫩草av网站| 久久人妻福利社区极品人妻图片| 99久久综合免费| 91精品三级在线观看| 国产成人啪精品午夜网站| 中文字幕制服av| 欧美日韩亚洲综合一区二区三区_| 国产成人啪精品午夜网站| 国产一级毛片在线| 午夜免费观看性视频| 另类精品久久| 最近中文字幕2019免费版| 爱豆传媒免费全集在线观看| 丁香六月欧美| 国产真人三级小视频在线观看| 欧美成狂野欧美在线观看| 日本av手机在线免费观看| 亚洲成人免费电影在线观看| 99国产精品免费福利视频| 在线精品无人区一区二区三| 国产又爽黄色视频| 欧美日韩一级在线毛片| 免费在线观看视频国产中文字幕亚洲 | 丝袜脚勾引网站| 国产在线视频一区二区| 最新在线观看一区二区三区| 黑人巨大精品欧美一区二区mp4| 黄片小视频在线播放| 精品国产一区二区久久| a 毛片基地| 成年人免费黄色播放视频| 最新在线观看一区二区三区| 秋霞在线观看毛片| 91成年电影在线观看| 色综合欧美亚洲国产小说| 激情视频va一区二区三区| 大陆偷拍与自拍| 亚洲欧洲精品一区二区精品久久久| 亚洲专区中文字幕在线| cao死你这个sao货| 91老司机精品| 日本91视频免费播放| 亚洲精品久久久久久婷婷小说| 亚洲成人手机| 久久精品国产亚洲av香蕉五月 | h视频一区二区三区| 日本av免费视频播放| 我要看黄色一级片免费的| 少妇的丰满在线观看| 蜜桃在线观看..| 人人妻人人澡人人看| 色老头精品视频在线观看| 深夜精品福利| 亚洲国产av新网站| 五月天丁香电影| 欧美黑人欧美精品刺激| 日本撒尿小便嘘嘘汇集6| 日韩 亚洲 欧美在线| 亚洲中文av在线| 国产成人啪精品午夜网站| 在线亚洲精品国产二区图片欧美| 亚洲欧美精品自产自拍| 91大片在线观看| 人人妻,人人澡人人爽秒播| 日韩大码丰满熟妇| 精品国产国语对白av| 黄片小视频在线播放| 日韩中文字幕视频在线看片| 12—13女人毛片做爰片一| 亚洲av日韩在线播放| 精品第一国产精品| 欧美变态另类bdsm刘玥| 夫妻午夜视频| 国产91精品成人一区二区三区 | 久久久久久久精品精品| 日韩三级视频一区二区三区| 午夜福利视频精品| 大陆偷拍与自拍| 在线观看舔阴道视频| 91成年电影在线观看| 国产成人精品久久二区二区免费| 99精国产麻豆久久婷婷| 两性午夜刺激爽爽歪歪视频在线观看 | 国产麻豆69| 日韩欧美国产一区二区入口| 性少妇av在线| 国产一区有黄有色的免费视频| 狂野欧美激情性xxxx| 波多野结衣av一区二区av| 亚洲成国产人片在线观看| 国产野战对白在线观看| 国产男人的电影天堂91| 亚洲精品久久成人aⅴ小说| 多毛熟女@视频| 日韩欧美一区二区三区在线观看 | 天天操日日干夜夜撸| 欧美日韩av久久| 最近最新免费中文字幕在线| 亚洲欧美激情在线| 国产欧美日韩一区二区精品| 18禁观看日本| 国产区一区二久久| 在线观看一区二区三区激情| 高清av免费在线| 久久久精品免费免费高清| 中文字幕最新亚洲高清| 99精品欧美一区二区三区四区| 我的亚洲天堂| 成人亚洲精品一区在线观看| 中文字幕精品免费在线观看视频| 51午夜福利影视在线观看| a级毛片黄视频| 母亲3免费完整高清在线观看| 一二三四在线观看免费中文在| 日韩大码丰满熟妇| 欧美 日韩 精品 国产| bbb黄色大片| www.自偷自拍.com| 久久久久久亚洲精品国产蜜桃av| 天天影视国产精品| 欧美少妇被猛烈插入视频| 宅男免费午夜| 日日爽夜夜爽网站| 丝袜美腿诱惑在线| 一边摸一边抽搐一进一出视频| 天天操日日干夜夜撸| 少妇 在线观看| 国产精品偷伦视频观看了| 亚洲国产欧美日韩在线播放| 亚洲欧美成人综合另类久久久| 女人高潮潮喷娇喘18禁视频| 久久久精品94久久精品| 日韩欧美国产一区二区入口| 少妇的丰满在线观看| 国产精品香港三级国产av潘金莲| 久久久久精品国产欧美久久久 | 欧美一级毛片孕妇| 另类亚洲欧美激情| 亚洲精品久久午夜乱码| 天天添夜夜摸| 亚洲国产精品成人久久小说| 18在线观看网站| 丝袜在线中文字幕| 两人在一起打扑克的视频| 亚洲国产毛片av蜜桃av| 一级毛片电影观看| 日本黄色日本黄色录像| 亚洲成人手机| 99国产精品一区二区蜜桃av | 天天躁日日躁夜夜躁夜夜| 国产免费福利视频在线观看| 一二三四在线观看免费中文在| 青草久久国产| 欧美+亚洲+日韩+国产| 国产精品亚洲av一区麻豆| 欧美在线黄色| 成人影院久久| 国产精品.久久久| 一本大道久久a久久精品| 母亲3免费完整高清在线观看| 久久久精品区二区三区| 日韩制服骚丝袜av| 日韩视频在线欧美| av天堂久久9| 在线天堂中文资源库| 天天躁日日躁夜夜躁夜夜| 永久免费av网站大全| 亚洲成人免费电影在线观看| 人人妻人人澡人人看| 国产在线观看jvid| av天堂久久9| 国产一区二区激情短视频 | 视频在线观看一区二区三区| 亚洲国产成人一精品久久久| 成年女人毛片免费观看观看9 | a级毛片黄视频| 欧美亚洲 丝袜 人妻 在线| 少妇粗大呻吟视频| 久久久久视频综合| 国产精品国产av在线观看| 看免费av毛片| 免费女性裸体啪啪无遮挡网站| 一二三四在线观看免费中文在| 男人操女人黄网站| av在线老鸭窝| 亚洲精品国产色婷婷电影| 欧美激情极品国产一区二区三区| 99国产精品一区二区三区| 一级,二级,三级黄色视频| 亚洲精品国产区一区二| 亚洲免费av在线视频| 中文精品一卡2卡3卡4更新| 午夜福利一区二区在线看| 看免费av毛片| 成年美女黄网站色视频大全免费| 亚洲五月色婷婷综合| 99热国产这里只有精品6| 国产日韩欧美在线精品| 亚洲情色 制服丝袜| 久久国产精品大桥未久av| 欧美日韩精品网址| 亚洲天堂av无毛| 精品亚洲成国产av| 制服人妻中文乱码| 国产精品自产拍在线观看55亚洲 | 日日摸夜夜添夜夜添小说| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美精品综合一区二区三区| 操出白浆在线播放| 精品视频人人做人人爽| av在线播放精品| 亚洲七黄色美女视频| 国产日韩欧美视频二区| 日本vs欧美在线观看视频| 国产主播在线观看一区二区| 一级毛片精品| 男女免费视频国产| 国产成人欧美| 久久久久视频综合| 亚洲成av片中文字幕在线观看| 欧美乱码精品一区二区三区| 丝袜人妻中文字幕| 女人高潮潮喷娇喘18禁视频| 久久ye,这里只有精品| 国产成人精品在线电影| 少妇 在线观看| 久久久精品国产亚洲av高清涩受| 久久精品aⅴ一区二区三区四区| 亚洲精品av麻豆狂野| 亚洲欧美一区二区三区黑人| 亚洲精品国产区一区二| 亚洲第一欧美日韩一区二区三区 | 成人免费观看视频高清| 欧美精品啪啪一区二区三区 | 欧美日韩av久久| 精品国产乱码久久久久久小说| 亚洲第一av免费看| 国产99久久九九免费精品| 亚洲av日韩在线播放| 亚洲国产欧美日韩在线播放| 午夜激情久久久久久久| 十八禁网站免费在线| 欧美国产精品va在线观看不卡| 后天国语完整版免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 淫妇啪啪啪对白视频 | 啦啦啦视频在线资源免费观看| 亚洲欧美精品自产自拍| 飞空精品影院首页| 亚洲国产中文字幕在线视频| 国产亚洲欧美在线一区二区| 一边摸一边抽搐一进一出视频| 亚洲人成电影免费在线| 欧美黑人精品巨大| 午夜日韩欧美国产| 国产黄色免费在线视频| av天堂在线播放| 国产人伦9x9x在线观看| 国产有黄有色有爽视频| 啦啦啦啦在线视频资源| 777米奇影视久久| 日韩三级视频一区二区三区| 欧美日韩精品网址| 日韩制服骚丝袜av| 黄片小视频在线播放| 老司机深夜福利视频在线观看 | 日本91视频免费播放| 久久综合国产亚洲精品| 亚洲国产精品一区二区三区在线| 中文字幕制服av| 久久久精品94久久精品| 叶爱在线成人免费视频播放| 妹子高潮喷水视频| 午夜激情久久久久久久| videosex国产| 一边摸一边做爽爽视频免费| 成人国产av品久久久| videosex国产| 国产视频一区二区在线看| 99热网站在线观看| 亚洲男人天堂网一区| 五月天丁香电影| 黄色片一级片一级黄色片| 欧美午夜高清在线| 一本久久精品| 一区在线观看完整版| 一区二区日韩欧美中文字幕| 亚洲成人手机| 久久性视频一级片| 搡老岳熟女国产| 久久久久久久精品精品| 久久久久久久久久久久大奶| 久久精品国产a三级三级三级| 精品第一国产精品| 久久99一区二区三区| 国产深夜福利视频在线观看| 欧美精品av麻豆av| 亚洲欧美精品自产自拍|