• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An efficient approach to solving fractional Van der Pol–Duffing jerk oscillator

    2022-11-10 12:15:06YusryElDib
    Communications in Theoretical Physics 2022年10期

    Yusry O El-Dib

    Department of Mathematics,Faculty of Education,Ain Shams University,Roxy,Cairo,Egypt

    Abstract The motive behind the current work is to perform the solution of the Van der Pol–Duffing jerk oscillator,involving fractional-order by the simplest method.An effective procedure has been introduced for executing the fractional-order by utilizing a new method without the perturbative approach.The approach depends on converting the fractional nonlinear oscillator to a linear oscillator with an integer order.A detailed solving process is given for the obtained oscillator with the traditional system.

    Keywords:Van der Pol oscillator,Duffing jerk oscillator,fractional oscillator,non-perturbative approach,numerical simulation

    1.Introduction

    In the preceding few decades,non-integer order differential equations became an area of interest for researchers owing to their accuracy and applicability in various fields of physics,science,and technology.Many physical,dynamical,biological,and chemical phenomena are represented in a highly effective style by using differential equations having a noninteger rather than integer-order.Being a more accurate approach is the major reason for attracting the attention of researchers.Differential equations having fractional order are suitable for mathematicians,engineers,and physicists.The fractional-order differential equations have a large number of applications in several fields of science and technology,for example,porous media,rheology,optics,electromagnetism,electrochemistry,bio-science,bioengineering,medicine,geology,probability,statistics,etc.The fractional-order differential equations are also applicable in control theory,control of power electrons,tomography,polymer physics,polymer science,and neural networks.Furthermore,it has various applications in the modeling of other phenomena,such as the absorption of drugs in the bloodstream,seepage flow,traffic modeling of fluid dynamics,porous media,image processing,mathematical biology,genetic properties,and nonlinear oscillations resulting from earthquakes.These equations are also used for the calculations of genetically and chemically acquired properties of different materials and phenomena,(see for details[1–7]).

    Several physical phenomena are modeled using systems of nonlinear fractional differential equations,which are more accurate for practical applications.Several real phenomena emerging in engineering and science fields can be successfully modeled by developing models which are more accurate than the integer ones[8–10].The essential quality of fractional-order differential equations is that it yields accurate and stable results.Some of these equations are time-fractional heat equations,time-fractional heat-like equations,time-fractional wave equations,time-fractional telegraphic equations,fractional-order oscillators such as the Van der Pol equation,and so on.These physical equations are performed as linear or nonlinear formulations;and since they have several employments in the field of applied engineering and science,then the analysis of solving such equations is very important.As these equations are generally strenuous to solve,many alternative and powerful methods have been expanded over the last few years.The main advantage of fractional order differential equations is that they produce accurate and stable results.Therefore,these equations represent a significant class of differential equations[11–18].

    Fractional calculus(FC)represents a field of mathematics that discusses the non-integer order differentiation and integration and their implications on different physical systems.Generally,the physical situation might predicate its present state and its historical status,which can be confidently modeled by using the technology of FC tools[19,20].Accordingly,many analytic methods are derived to deduce exact,explicit,and numerical techniques for nonlinear fractional partial differential equations[21–25].A lot of fractional-order definitions;while Grunwald–Letnikov,Riemann–Liouville,and Caputo definitions are the majority used in FC research[26].

    Schot[27]presented the definition of a jerk as referring to the rate of variation of acceleration.A jerk equation has vast applications in physics and daily life.It has been set to have numerous applications in various areas of science,such as laser physics electrical circuits,acoustics,dynamical processes,and mechanics[28–32].Jerk is also organized to be governed the flow of a thin-film viscous fluid with a free surface where the surface tension effects play a role typically leading to a third-order equation governing the form of the free surface of the fluid.Jerk also plays a mighty role in the physiological balancing of the human body.

    Another employment of jerk is in the accelerated charged particle which sends off radiation,which is correlated to the jerk[33,34].In most cases,it is totally hard to find the exact solutions to nonlinear problems,where estimated solutions to the fractional nonlinear problems are considered.

    Over the last two decades,there was significant progress in the area of fractional differential equations.Many efforts have been done to the existence of solutions to fractional differential equations[35].Since the fractional nonlinear operators have a vital role in differential equations,the investigation to find a simple approach alternative to the mathematical hard work is urgent use.One of the several significant operators used to simplify the procedure of nonlinear differential equations is the equivalent linearized method which leads to obtaining the solution easily.A considerable number of valuable research articles can be obtained in the literature regarding this topic,(see for detail[36–38]).

    The fractional Van der Pol–Duffing jerk vibration is investigated to give a more perfect description and shed more light on the dynamics of the suggested oscillator.Although the suggested oscillator is simple,it improves complex and noticeable phenomena such as symmetry-breaking bifurcation,bistability,reverses period-doubling,symmetry-restoring crisis,and coexisting attractors[39].In the present proposal,the linearized equivalent method has been derived or developed to be consistent with solving the fractional jerk oscillator.Afterward,the proposed method is applied to obtain an analytical solution to different cases of the fractional Van der Pol–Duffing jerk oscillator.The technique consists of obtaining the equivalent linearized form with an integer order employing the principle of minimum mean-square error.Then the solution will be available.

    2.The methodology

    The present section describes the purpose of the fractional jerk oscillator and explains how to find the solution most simply.The simple effective approach is adopted herein utilizing the equivalent linearization technique to solve the fractional Duffing jerk oscillation of the form

    3.The case of the Duffing jerk oscillator with the fractional damping forces

    3.1.Solution utilizing the modified HPM coupling with He’s frequency formula

    4.The case of the Van der Pol–Duffing jerk oscillator in its fractional-order form

    It is noted that asε→0 into(54)and(55)the results reduce to those obtained before in(31)and(32).

    Thirdly,the case of the full fractional orders form is discussed in the next section:

    5.Van der Pol–Duffing jerk in full fractional order

    In this section,an important cause of the nonlinear jerk oscillation with the full fractional order is considered in the form

    Because of the approximate relations(21)–(23)and by utilizing He’s frequency formula,the above equation can be sought in the equivalent linearized form as

    The solution of the linear jerk oscillator(57)is still given by the solution(28)except that the frequency Ω and the parameterφhave been replaced by

    The above equation(60)is the fractional frequency-amplitude formula of the full fractional Duffing jerk oscillator.

    6.The equivalent linearized approach to reducing the rank of the jerk oscillator

    In this section,the effort in converting the third-order oscillator into an equivalent linear second-order oscillator is interesting.This aim is done for the first time,and the linear equivalence method can be used to reduce the rank of the oscillation.The new approach will be applied to the oscillator given in(4).To illustrate the procedure,equation(4)can be arranged in the form As mentioned before the total frequency is selected to be Ω.The application of the equivalent linearized technique transforms the above equation to

    whereω3is the He’s frequency formula as given in(27),while the coefficientceqis estimated as

    At this stage,equation(63)can be solved as a second-order linear equation that has solution arises in the form

    where the frequency Ω is given by

    This can be read as

    It is noted that this approach can be used when the coefficientηhas a larger value than the other parameters of the oscillator(56).

    7.Numerical simulation

    To have a clear and proper understanding of the properties of the present approach,an illustrative numerical interpolation is done.The comparison of the obtained results in this paper with the numerical solution obtained by the Mathematica software is investigated.The comparison of the quasi-exact solution performed in(28)and the homotopy perturbation solution given by(46)with the numerical solution of the traditional integer-order is studied herein for the case of(i.e.equation(4)),to illustrate how the equivalent method of the fractional-order is close to the numerically exact solution.Two systems of the numerical values of the given coefficients are considered.One of them produces a growing behavior in the time-history profile,while the other deals with the damping behavior in the time-history description.The comparison of the behavior of the influence of0<α<1 is between the quasi-exact solution and the solution obtained by HPM.

    In figure 1,the numerical solution of equation(4),the analytical solution(46)with HPM,and the quasi-exact solution(28)are plotted together,for the case ofε= 0,in one graph for the system ofη=μ=Q =ω0=A =α=1.The numerical solution is plotted by the solid red line;the solution of HPM is drawn by the green dashed line;the quasiexact solution is displayed by the blue dotted line.This graph shows that there is an excellent agreement among the three different solutions for a system producing a growing behavior.When the system is selected to produce a damping behavior,the same conclusion is found as found in figure 2.The system used to produce the graph in figure 2 isη=μ= 1.3,ε= 0,Q =ω0= A =α=1.The variation in the fractional-orderαof the solution(28)has been collected together in figure 3,for the same system given in figure 2.It is observed from the investigation of this graph that the damping behavior for the caseα= 1 still occurs with an increase in its amplitude due to a small decrease in the values ofα.Continue in decreasing ofαleads to a dramatic change in the damping behavior for the oscillation.In which the growing behavior in the oscillation amplitude is observed.

    It is worth noting that the forgoing graphs are plotted for the solution(28)in the case ofε= 0.In figures 4–6,the calculations should deal with the case ofε>0.Figure 4 is plotted using the same system given in the graph of figure 1 except thatε= 1.The comparison between the two graphs of figures 1 and 4 shows that replacingε= 0 byε= 1 leads to an increase in the displacement scale of the growth behavior.Figure 5 is plotted for the same system given in figure 2 but withε= 1.The comparison between these figures shows a dramatic change occurs.The time-history curve starts as damping behavior and then changes to behave as a growing behavior.The examination of the variation inεhas been demonstrated in figure 6.In this graph,the solution(28)is plotted for the same system considered in figure 2 with different valuesεto illustrate the influence ofε.It is worthwhile to note that the system is given in figure 6 starts with damping behavior atε= 0.It is observed that the amplitude of the damping influence has increased with the increase inε.Atε= 0.5,the oscillation becomes with constant amplitude and there is no damping oscillation as shown in figure 7.Whenεbecomesε= 0.5,the oscillation behaves with the same amplitude as a non-damped behavior.After this state ofε= 0.5,the growing behavior in the amplitude of the oscillation will be increased.This behavior should be increased more rapidly for more increase inε.This means that there are three cases observed for the variation ofε,namely,the damping behavior in the interval ofno damped at,and growing behavior in the interval of

    Figure 1.Comparison of the quasi-exact solution(28)(Blue-dashing curve)with the numerical solution of equation(4),for the system ofη = μ =Q = ω 0 =A = α=1.

    Figure 2.Comparison of the quasi-exact solution(28)with the numerical solution for the system ofη = 1.2,μ = 1.3,ε=0,Q= ω 0 =A = α=1.

    Figure 3.The variation of the parameter α in the profile of the timehistory for the same system is considered in figure 2.

    Figure 4.The comparison of two solutions as given in figure 1 except thatε = 1.

    Figure 5.The comparison of the two solutions as given in figure 2 except thatε = 1.

    Figure 6.Influence of the variationε on the time-history profile for the same system of figure 2.

    Figure 7.Influence ofε = 0.5 on the time-history profile for the same system of figure 2.

    Figure 8.Comparison of the numerical solution of equation(56)versus its quasi-exact solution(28)for the same system of figure 2 with the variation in the parameter α withε = 0.5.

    Figure 9.Comparison of the numerical solution of equation(4)versus its reduced equation(63)for the system ofη = 10,μ =ω0= Q = A=1.

    Figure 8 is plotted to examine the solution of equation(56)with the variation in the parameterα.The comparison with its numerical solution is done for the case ofα= 1 withε= 0.5.The remaining parameters are as given in figure 2.This graph shows that the decrease inαhas a contribution to the damping influence of the jerk oscillator.

    Figure 9 is graphed to clarify the new feature that reduces the rank of the jerk oscillator from the third rank to the second rank.The numerical solution of the original third-order equation(4)was compared with the new analytical solution(65)of the second-order equation(63),taking into account thatThis graph shows that the solution of the reduced equation(63)becomes an excellent equivalent to the original equation(4).

    8.Conclusion

    A qualitative study of the efficiency of the simplest analysis of the differential equations based on fractional-order has been considered in the present proposal.The solution of the fractional nonlinear oscillator is obtained by converting it to the linear ordinary differential equation of integer order.This aim is accomplished using the linearized equivalent approach.In the reduced equations,the solution is obtained easily.It has been utilized for the time-fractional Van der Pol–Duffing jerk oscillator.The validation of the proposed technique is emulated with the numerical simulation of the oscillator with integer orders.The obtained solutions might be of huge importance in several areas of applied mathematics in elucidating some physical phenomena.Furthermore,the present approach can be used to reduce the rank of the jerk oscillator under certain conditions.The simplicity of the present approach provides extra advantages for fractional-order solutions.

    Competing interests

    The author declares that there are no competing interests regarding the publication of the present paper.

    ORCID iDs

    嫩草影院精品99| 久久久久免费精品人妻一区二区 | 欧美性猛交╳xxx乱大交人| 丝袜人妻中文字幕| 一进一出抽搐gif免费好疼| 日韩 欧美 亚洲 中文字幕| 久久久久久国产a免费观看| 一本久久中文字幕| 日韩欧美国产在线观看| 欧美精品亚洲一区二区| 色综合亚洲欧美另类图片| 日本免费a在线| 麻豆成人午夜福利视频| 久久 成人 亚洲| 亚洲精品中文字幕在线视频| 啦啦啦 在线观看视频| 黄片大片在线免费观看| 高潮久久久久久久久久久不卡| 又紧又爽又黄一区二区| 亚洲第一青青草原| 亚洲色图 男人天堂 中文字幕| 久久久久精品国产欧美久久久| 色老头精品视频在线观看| 免费看a级黄色片| 久久香蕉国产精品| 别揉我奶头~嗯~啊~动态视频| 欧美大码av| 国语自产精品视频在线第100页| 丁香欧美五月| 欧美黑人巨大hd| 特大巨黑吊av在线直播 | 欧美zozozo另类| 成年女人毛片免费观看观看9| 国产熟女xx| 亚洲精品在线观看二区| 免费女性裸体啪啪无遮挡网站| 久久这里只有精品19| 成人欧美大片| 国产av在哪里看| a级毛片a级免费在线| bbb黄色大片| 成人欧美大片| 国产野战对白在线观看| 狠狠狠狠99中文字幕| 中文字幕精品亚洲无线码一区 | 欧美乱色亚洲激情| 亚洲电影在线观看av| 黄片小视频在线播放| 久久久久久久精品吃奶| 亚洲国产欧美一区二区综合| 国产精品久久电影中文字幕| 777久久人妻少妇嫩草av网站| 少妇粗大呻吟视频| 久久久久久久久久黄片| 18禁黄网站禁片午夜丰满| 丁香六月欧美| 91成人精品电影| 欧美性猛交╳xxx乱大交人| aaaaa片日本免费| 中文资源天堂在线| 一级a爱片免费观看的视频| 国产黄色小视频在线观看| 性欧美人与动物交配| 亚洲专区字幕在线| 婷婷六月久久综合丁香| 99riav亚洲国产免费| 黄色丝袜av网址大全| 少妇 在线观看| 18禁国产床啪视频网站| 中文字幕人妻熟女乱码| 免费一级毛片在线播放高清视频| 久久久国产欧美日韩av| 男女视频在线观看网站免费 | 曰老女人黄片| 宅男免费午夜| 人人妻人人澡人人看| 波多野结衣巨乳人妻| 成人国产一区最新在线观看| 18禁美女被吸乳视频| 老司机福利观看| 婷婷精品国产亚洲av| 国产av一区二区精品久久| 中亚洲国语对白在线视频| 高清在线国产一区| 老司机靠b影院| 亚洲精品国产精品久久久不卡| 可以在线观看的亚洲视频| 中文字幕高清在线视频| 午夜福利在线在线| 日日干狠狠操夜夜爽| 精品欧美一区二区三区在线| av电影中文网址| 最好的美女福利视频网| 日本免费a在线| 久久久久久亚洲精品国产蜜桃av| 午夜激情av网站| 黄色女人牲交| 老鸭窝网址在线观看| 成人18禁在线播放| 日韩欧美 国产精品| 美女高潮到喷水免费观看| 三级毛片av免费| 韩国av一区二区三区四区| 欧美av亚洲av综合av国产av| 国产成人精品无人区| 99热这里只有精品一区 | 国产日本99.免费观看| 看黄色毛片网站| 午夜免费成人在线视频| a级毛片在线看网站| 国产aⅴ精品一区二区三区波| 不卡一级毛片| 久久人妻福利社区极品人妻图片| 欧洲精品卡2卡3卡4卡5卡区| 成人特级黄色片久久久久久久| 亚洲熟妇中文字幕五十中出| 国产视频内射| 侵犯人妻中文字幕一二三四区| 免费电影在线观看免费观看| 99热6这里只有精品| 好看av亚洲va欧美ⅴa在| 国产一区在线观看成人免费| 给我免费播放毛片高清在线观看| 91在线观看av| 久久99热这里只有精品18| 午夜免费激情av| 啦啦啦韩国在线观看视频| 婷婷精品国产亚洲av在线| 午夜亚洲福利在线播放| 91大片在线观看| 国产成人欧美| 狠狠狠狠99中文字幕| 日韩欧美国产在线观看| 亚洲真实伦在线观看| 亚洲av第一区精品v没综合| √禁漫天堂资源中文www| 国产午夜福利久久久久久| 一区二区三区激情视频| videosex国产| svipshipincom国产片| 熟女电影av网| 黑丝袜美女国产一区| 美女扒开内裤让男人捅视频| 午夜视频精品福利| 最近最新中文字幕大全免费视频| 久久久久久久久免费视频了| 亚洲精品一区av在线观看| 变态另类丝袜制服| 香蕉国产在线看| 脱女人内裤的视频| 婷婷精品国产亚洲av| 18禁国产床啪视频网站| xxxwww97欧美| 亚洲 欧美 日韩 在线 免费| 视频区欧美日本亚洲| 精品久久蜜臀av无| 悠悠久久av| 91av网站免费观看| 99热6这里只有精品| 欧美一级a爱片免费观看看 | 听说在线观看完整版免费高清| 国产v大片淫在线免费观看| 日本成人三级电影网站| 国产一区二区在线av高清观看| 日本撒尿小便嘘嘘汇集6| 亚洲av五月六月丁香网| 免费电影在线观看免费观看| 18禁黄网站禁片午夜丰满| 天天一区二区日本电影三级| 久久久水蜜桃国产精品网| 欧美中文日本在线观看视频| 熟女电影av网| 精品免费久久久久久久清纯| 国产99久久九九免费精品| 色在线成人网| 精品欧美国产一区二区三| 亚洲午夜理论影院| 亚洲av美国av| 人妻久久中文字幕网| 一区二区三区激情视频| 午夜亚洲福利在线播放| 精品国内亚洲2022精品成人| 一区福利在线观看| 亚洲人成伊人成综合网2020| 999久久久精品免费观看国产| 国产精品自产拍在线观看55亚洲| 精品久久久久久久久久免费视频| 欧美av亚洲av综合av国产av| 男人操女人黄网站| 国产精品98久久久久久宅男小说| 国产一区二区激情短视频| 可以免费在线观看a视频的电影网站| 国产亚洲av高清不卡| 亚洲无线在线观看| 国产又黄又爽又无遮挡在线| 婷婷精品国产亚洲av在线| 亚洲精华国产精华精| 一级毛片精品| 精品国产美女av久久久久小说| 女警被强在线播放| 一区二区三区激情视频| 亚洲aⅴ乱码一区二区在线播放 | 人人妻人人澡欧美一区二区| 欧美成人一区二区免费高清观看 | 中文字幕久久专区| 日本 av在线| 欧美色视频一区免费| 不卡av一区二区三区| 亚洲,欧美精品.| 精品一区二区三区四区五区乱码| 成人特级黄色片久久久久久久| 亚洲狠狠婷婷综合久久图片| 中文字幕最新亚洲高清| 国产又爽黄色视频| 一进一出抽搐动态| 欧美日韩精品网址| 欧美性猛交黑人性爽| 久久伊人香网站| 97碰自拍视频| 日本 欧美在线| 国产成人精品久久二区二区免费| 久久精品国产清高在天天线| 特大巨黑吊av在线直播 | 两人在一起打扑克的视频| 黑人巨大精品欧美一区二区mp4| 淫秽高清视频在线观看| svipshipincom国产片| 欧美又色又爽又黄视频| 亚洲五月婷婷丁香| 老司机在亚洲福利影院| 日韩视频一区二区在线观看| 怎么达到女性高潮| 宅男免费午夜| 欧洲精品卡2卡3卡4卡5卡区| 在线视频色国产色| 国产极品粉嫩免费观看在线| 黄网站色视频无遮挡免费观看| 日韩欧美免费精品| 国产激情欧美一区二区| 一进一出抽搐gif免费好疼| 亚洲成av片中文字幕在线观看| 亚洲精品一卡2卡三卡4卡5卡| 女人高潮潮喷娇喘18禁视频| 亚洲va日本ⅴa欧美va伊人久久| 一二三四在线观看免费中文在| 天堂√8在线中文| 精品一区二区三区四区五区乱码| 国产精品 欧美亚洲| 亚洲午夜精品一区,二区,三区| 久久欧美精品欧美久久欧美| 99在线人妻在线中文字幕| 一本一本综合久久| 最新美女视频免费是黄的| 国产视频一区二区在线看| 精品国产美女av久久久久小说| 老鸭窝网址在线观看| 国产亚洲欧美精品永久| 韩国av一区二区三区四区| 亚洲精品一区av在线观看| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区四区五区乱码| 日日夜夜操网爽| www.自偷自拍.com| 香蕉丝袜av| 亚洲avbb在线观看| 午夜两性在线视频| 哪里可以看免费的av片| 亚洲第一电影网av| 亚洲欧美日韩无卡精品| 99久久精品国产亚洲精品| 久久久久久免费高清国产稀缺| 人成视频在线观看免费观看| 欧美 亚洲 国产 日韩一| 久久精品影院6| 黄色丝袜av网址大全| 亚洲自拍偷在线| 麻豆成人午夜福利视频| 身体一侧抽搐| 一区二区三区精品91| 亚洲av五月六月丁香网| 两个人视频免费观看高清| 麻豆一二三区av精品| 欧美激情 高清一区二区三区| 欧美成人免费av一区二区三区| 97碰自拍视频| 国产精品野战在线观看| 午夜福利一区二区在线看| 欧美丝袜亚洲另类 | xxx96com| 久久中文看片网| 精品午夜福利视频在线观看一区| 在线视频色国产色| 久久久久久亚洲精品国产蜜桃av| 女人高潮潮喷娇喘18禁视频| 亚洲成人久久爱视频| 日本黄色视频三级网站网址| 久久久久国内视频| 婷婷精品国产亚洲av| 亚洲成av片中文字幕在线观看| 两性夫妻黄色片| 精品国内亚洲2022精品成人| 国产精品免费视频内射| 久久狼人影院| 99久久无色码亚洲精品果冻| 成人18禁在线播放| 国内少妇人妻偷人精品xxx网站 | 午夜两性在线视频| 国产精品日韩av在线免费观看| 在线看三级毛片| 婷婷亚洲欧美| 亚洲成av片中文字幕在线观看| 免费在线观看成人毛片| 欧美性长视频在线观看| 免费av毛片视频| 国产精品美女特级片免费视频播放器 | 国产高清有码在线观看视频 | 亚洲专区国产一区二区| 久久亚洲真实| 亚洲av五月六月丁香网| 国产精品久久久久久人妻精品电影| 色综合婷婷激情| 国产一区二区在线av高清观看| 男女那种视频在线观看| 日韩欧美一区二区三区在线观看| 成熟少妇高潮喷水视频| www日本黄色视频网| 首页视频小说图片口味搜索| 欧美日本亚洲视频在线播放| 日本一区二区免费在线视频| 此物有八面人人有两片| 午夜老司机福利片| 亚洲真实伦在线观看| 黄色片一级片一级黄色片| 亚洲精品国产区一区二| 国产亚洲av嫩草精品影院| 侵犯人妻中文字幕一二三四区| 免费搜索国产男女视频| 亚洲av五月六月丁香网| 老鸭窝网址在线观看| 曰老女人黄片| 一级片免费观看大全| 少妇熟女aⅴ在线视频| 国产精品精品国产色婷婷| 亚洲av中文字字幕乱码综合 | 搞女人的毛片| 国产黄色小视频在线观看| 搡老熟女国产l中国老女人| 午夜福利免费观看在线| 人人妻人人看人人澡| 美女高潮到喷水免费观看| 亚洲 欧美一区二区三区| www.999成人在线观看| 久久人妻av系列| 亚洲激情在线av| www.熟女人妻精品国产| 精品乱码久久久久久99久播| 日本一本二区三区精品| 变态另类丝袜制服| 麻豆一二三区av精品| 琪琪午夜伦伦电影理论片6080| 国产99久久九九免费精品| 亚洲成av片中文字幕在线观看| 国产在线精品亚洲第一网站| 亚洲男人天堂网一区| 成人18禁高潮啪啪吃奶动态图| 精品国产美女av久久久久小说| 在线播放国产精品三级| 国产精品,欧美在线| 日韩欧美国产在线观看| 99精品欧美一区二区三区四区| 久久热在线av| 国产av不卡久久| 日韩大尺度精品在线看网址| 19禁男女啪啪无遮挡网站| 免费在线观看日本一区| 成人免费观看视频高清| netflix在线观看网站| 免费高清在线观看日韩| 国产亚洲精品一区二区www| 成在线人永久免费视频| 天天一区二区日本电影三级| 夜夜爽天天搞| 成人特级黄色片久久久久久久| a在线观看视频网站| 国产视频一区二区在线看| a在线观看视频网站| 欧美三级亚洲精品| 久久久国产成人免费| 身体一侧抽搐| 99久久国产精品久久久| 亚洲欧美日韩无卡精品| 熟女少妇亚洲综合色aaa.| 日韩欧美一区视频在线观看| 国产片内射在线| 国产91精品成人一区二区三区| 欧美久久黑人一区二区| 啦啦啦 在线观看视频| 精品久久久久久久人妻蜜臀av| 视频区欧美日本亚洲| 在线观看舔阴道视频| 久久中文字幕一级| 白带黄色成豆腐渣| 又大又爽又粗| 每晚都被弄得嗷嗷叫到高潮| 三级毛片av免费| 人人妻人人澡欧美一区二区| 精品日产1卡2卡| 亚洲国产看品久久| 天堂影院成人在线观看| 天堂动漫精品| 亚洲中文日韩欧美视频| 国产黄色小视频在线观看| 激情在线观看视频在线高清| 在线观看午夜福利视频| 少妇粗大呻吟视频| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品第一综合不卡| 色av中文字幕| 国产一卡二卡三卡精品| 脱女人内裤的视频| 俄罗斯特黄特色一大片| 亚洲av五月六月丁香网| 青草久久国产| 欧美+亚洲+日韩+国产| 国产亚洲欧美98| 亚洲第一av免费看| 国产高清videossex| 88av欧美| 国产成人精品久久二区二区免费| 黄频高清免费视频| 亚洲五月色婷婷综合| 成年人黄色毛片网站| 男人舔女人的私密视频| 亚洲成国产人片在线观看| 国内揄拍国产精品人妻在线 | 99re在线观看精品视频| 亚洲天堂国产精品一区在线| 国产三级黄色录像| 中文字幕精品免费在线观看视频| a级毛片在线看网站| 在线观看www视频免费| 亚洲成人久久爱视频| 免费看a级黄色片| 午夜福利成人在线免费观看| 国产私拍福利视频在线观看| 丁香六月欧美| 国产黄色小视频在线观看| 婷婷精品国产亚洲av| 两性夫妻黄色片| 好男人电影高清在线观看| 亚洲成a人片在线一区二区| 国产真人三级小视频在线观看| 精品一区二区三区四区五区乱码| 午夜影院日韩av| 成人三级做爰电影| 岛国视频午夜一区免费看| 一级毛片高清免费大全| 欧美成人性av电影在线观看| 亚洲中文字幕日韩| 亚洲人成伊人成综合网2020| 男人舔女人下体高潮全视频| 我的亚洲天堂| 久久精品aⅴ一区二区三区四区| 亚洲天堂国产精品一区在线| 琪琪午夜伦伦电影理论片6080| 中文字幕精品免费在线观看视频| 1024视频免费在线观看| 日本免费一区二区三区高清不卡| 桃色一区二区三区在线观看| 在线永久观看黄色视频| 亚洲 欧美一区二区三区| 听说在线观看完整版免费高清| 国产精品国产高清国产av| 高清毛片免费观看视频网站| 天天躁夜夜躁狠狠躁躁| 成人三级做爰电影| 国产成年人精品一区二区| 久久久久久久久中文| 国产伦人伦偷精品视频| 亚洲人成网站在线播放欧美日韩| 无人区码免费观看不卡| 日韩 欧美 亚洲 中文字幕| 欧美大码av| 久久天堂一区二区三区四区| 国产精品永久免费网站| 国产一区在线观看成人免费| 欧美日韩一级在线毛片| 色哟哟哟哟哟哟| 久久久久国内视频| 婷婷精品国产亚洲av| 免费搜索国产男女视频| 婷婷亚洲欧美| 久久亚洲真实| 曰老女人黄片| 欧美在线一区亚洲| 日本熟妇午夜| 丝袜美腿诱惑在线| 欧美日本视频| 成在线人永久免费视频| 色播在线永久视频| 久久久久久大精品| 精品高清国产在线一区| 久久久国产精品麻豆| 中文字幕高清在线视频| 美女高潮到喷水免费观看| 国产激情偷乱视频一区二区| 亚洲熟妇中文字幕五十中出| 看免费av毛片| 变态另类丝袜制服| 看黄色毛片网站| 91成年电影在线观看| 欧美日本视频| 免费看十八禁软件| 此物有八面人人有两片| 国产av一区在线观看免费| 国产亚洲欧美在线一区二区| 亚洲国产精品合色在线| 国产熟女午夜一区二区三区| 99re在线观看精品视频| 免费在线观看日本一区| 久久久久久久精品吃奶| 国内少妇人妻偷人精品xxx网站 | 美女 人体艺术 gogo| 国产一区在线观看成人免费| 一级毛片女人18水好多| 欧美成人性av电影在线观看| 国产成人欧美| 熟女少妇亚洲综合色aaa.| 19禁男女啪啪无遮挡网站| 又黄又粗又硬又大视频| 两性夫妻黄色片| 美女大奶头视频| 男女那种视频在线观看| 国产伦人伦偷精品视频| 亚洲精品中文字幕在线视频| 特大巨黑吊av在线直播 | 搞女人的毛片| 一本一本综合久久| 欧美在线黄色| 中文字幕av电影在线播放| 亚洲aⅴ乱码一区二区在线播放 | 嫩草影院精品99| 精品不卡国产一区二区三区| xxxwww97欧美| 日韩欧美三级三区| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看日韩欧美| av欧美777| 亚洲av中文字字幕乱码综合 | 亚洲专区中文字幕在线| 午夜久久久在线观看| 国产一区二区在线av高清观看| 白带黄色成豆腐渣| 无人区码免费观看不卡| 欧美午夜高清在线| 搡老熟女国产l中国老女人| 大香蕉久久成人网| 国产成人系列免费观看| 亚洲 欧美一区二区三区| 久久亚洲真实| 午夜福利在线在线| 黑人欧美特级aaaaaa片| 18禁美女被吸乳视频| 日韩欧美 国产精品| 法律面前人人平等表现在哪些方面| 国产亚洲欧美在线一区二区| 一级黄色大片毛片| 国产97色在线日韩免费| 国产欧美日韩精品亚洲av| 国产精品国产高清国产av| 99久久国产精品久久久| 亚洲成人国产一区在线观看| 欧美绝顶高潮抽搐喷水| 亚洲人成电影免费在线| 午夜福利一区二区在线看| 欧美乱码精品一区二区三区| 成人手机av| 一a级毛片在线观看| 国产1区2区3区精品| 久久精品成人免费网站| 色在线成人网| 亚洲 欧美一区二区三区| 最近最新免费中文字幕在线| 婷婷精品国产亚洲av在线| 国产在线精品亚洲第一网站| а√天堂www在线а√下载| 亚洲全国av大片| 中文在线观看免费www的网站 | 成人亚洲精品av一区二区| 女性生殖器流出的白浆| 国产视频一区二区在线看| 精品久久蜜臀av无| 女性生殖器流出的白浆| 国产亚洲精品久久久久久毛片| 精品欧美一区二区三区在线| 琪琪午夜伦伦电影理论片6080| 熟女电影av网| 99久久综合精品五月天人人| 欧美性猛交黑人性爽| 成人特级黄色片久久久久久久| 精品日产1卡2卡| 国产精品爽爽va在线观看网站 | 亚洲国产精品成人综合色| 神马国产精品三级电影在线观看 | 身体一侧抽搐| 国产精品 欧美亚洲| 少妇裸体淫交视频免费看高清 | 国产真人三级小视频在线观看| 真人做人爱边吃奶动态| 高清毛片免费观看视频网站| 中文字幕人成人乱码亚洲影| 色综合婷婷激情| 好男人在线观看高清免费视频 | 99国产精品99久久久久| 男人的好看免费观看在线视频 |