• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Up-conversion detection of mid-infrared light carrying orbital angular momentum

    2022-10-26 09:50:00ZhengGe葛正ChenYang楊琛YinHaiLi李銀海YanLi李巖ShiKaiLiu劉世凱SuJianNiu牛素儉ZhiYuanZhou周志遠(yuǎn)andBaoSenShi史保森
    Chinese Physics B 2022年10期
    關(guān)鍵詞:李巖銀海志遠(yuǎn)

    Zheng Ge(葛正) Chen Yang(楊琛) Yin-Hai Li(李銀海) Yan Li(李巖)Shi-Kai Liu(劉世凱) Su-Jian Niu(牛素儉) Zhi-Yuan Zhou(周志遠(yuǎn)) and Bao-Sen Shi(史保森)

    1CAS Key Laboratory of Quantum Information,University of Science and Technology of China,Hefei 230026,China

    2CAS Center for Excellence in Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    Keywords: nonlinear optics,frequency up-conversion,mid-infrared detection

    1. Introduction

    The mid-infrared(MIR)band covers the absorption spectra of many molecules[1]and is closely related to the thermal radiation of objects, which has been used in many aspects, such as environmental monitoring,[2–4]geology for mineral identification,[5]stand-off detection,[6]and biomedical science.[7–10]Among them, the 3–5 μm band corresponds to one of the atmospheric communication windows,which is of potential importance in remote sensing[11]and communications.[12,13]On the other hand, light that carries orbital angular momentum (OAM) has stimulated considerable research interest in both the classical and quantum optical domains.[14–21]This particular beam with an azimuthal phase exp(ilφ) is well known as possessing an exact OAM oflˉhper photon,[22]wherelandφrefer to the topological charge (TC) and azimuthal angle, respectively. MIR light that carries OAM is of great value in many specific applications, such as enhancing the information channel capacity in communications[23–25]and helping the understanding and formation of chiral microstructures.[26,27]In contrast, the detection equipment in the MIR band is not mature at present, reflecting on the lower detection sensitivity, higher noise, and narrower bandwidth compared with its visible or near-infrared(NIR)counterpart. Consequently,it is more effective to detect MIR light after converting it into visible/NIR light, utilizing high-performance detectors based on wide bandgap materials like Si.[28]Due to the high effective nonlinear coefficient and elimination of the walk-off effect, the quasi-phase-matching(QPM)technique has been used extensively for frequency conversion of light carrying OAM in previous works.[29–31]Up to now,the effective up-conversion of MIR light has been realized by using a waveguide.[32,33]However, compared with traditional bulk crystals,the loss of spatial information makes waveguide-based up-conversion unable to meet a wider range of detection requirements. In addition, current waveguidebased nonlinear transformation is mainly in the single-mode case,while higher-order mode frequency conversion still faces some difficulties.Bulk crystals have been widely used in many practical applications of frequency conversion because they can keep the phase and spatial information during the nonlinear process.[34–40]In this case,however,the beam waist radius in the center of the crystal is larger than that in a waveguide,which requires a much higher pump power to improve the quantum conversion efficiency (QCE). In previous works on MIR up-conversion detection,cavity-enhanced[41,42]or pulsed light pumped[43–45]systems were employed, achieving satisfactory QCE. However, a systematic study of the frequency conversion of OAM modes in the MIR band has not been reported to date.

    In this work, the cascaded frequency conversion of light carrying OAM from 792 nm to 3100 nm and back to 792 nm was demonstrated, pumped by high power continuous-wave(CW) light. The laser light at 3100 nm was generated from a difference frequency generation (DFG) process, serving as the MIR source. Two identical MgO-doped periodically poled lithium niobate (MgO:PPLN from Covesion Ltd.) bulk crystals were utilized in the nonlinear processes above, each of which has a length of 40 mm and has nine poling periods ranging from 20.9 μm to 23.3 μm in steps of 0.3 μm. With the temperature of the crystals controlled, the nonlinear processes satisfied the type-0 QPM condition. Here we used a channel with a poled period of 20.6 μm and an aperture of 0.5 mm by 0.5 mm. For the convenience of discussion,in both three-wave mixing processes,the respective wavelengths were defined asλs=792 nm,λp=1063.8 nm,andλi=3100 nm,satisfying the relation 1/λs=1/λp+1/λi. Based on the nonlinear coupling equations, we proposed an analytical expression in the un-depleted approximation, which described the up-conversion efficiencies for various OAM values. Meanwhile, in the case of the depleted condition, the results given by numerical calculations were presented and compared with the experimental results. The final power efficiencies realized for conversion from MIR to visible are 133.1%, 40.7%,and 13.6% for TC ofl=0, 1, and 2, respectively, and the corresponding maximum QCEs are 34.0%,10.4%,and 3.5%.We also showed that the OAM is conserved in the conversion process. The high conversion efficiency and well-preserved phase information indicated that our primary study for MIR up-conversion is both reliable and useful, and will pave the way for further applications in remote sensing, high capacity optical communications,and image detection.

    2. Theoretical model

    The theoretical analysis for sum frequency generation(SFG), which is based on a second-order nonlinearity, is shown as follows. The nonlinear process involves the mixing of three waves, including a strong pump wave at frequencyωp, an idler wave to be converted at frequencyωi, and the up-converted beam at frequencyωs. In our experiment, the pump light is a normal Gaussian beam, while the idler light is in the OAM mode with a TC ofl. In the un-depleted pump approximation,the nonlinear coupled equations can be simplified as[46]

    wheredeffis the effective nonlinear efficiency of the crystal;ε0is the permittivity of a vacuum;nj(j=p,i,s) are the refractive indexes inside the crystal and the subscripts correspond to the pump, the idler, and the signal light, respectively;Δk=ks-ki-kp+2π/Λis the phase mismatch in the SFG process andΛis the poling period of the crystal;andAj(j=p,i,s)are the electrical fields of the pump, the idler and the signal beams,respectively,which can be expressed as[47]

    wherenj(j=p,i,s)are the refractive indexes of the pump,the idler, and the signal beams inside the crystal;ω0j(j=p,i,s)are the beam waists;Z0j=πnjω20j/λj(j= p,i,s) are the Rayleigh ranges of these beams;lrefers to the value of TC and is equal to zero in Gaussian mode; andφ=tan-1(y/x).We have directly omitted the term containing Gouy phase shift here, which can be ignored since the two input beams have approximately matching phases according to our experimental conditions. When considering the slowly varying amplitude approximation and the un-depleted pump approximation,an analytical expression of the SFG power can be obtained as follows:[48]

    whereLis the length of the crystal;Pj(j=p,i,s) are the pump,the idler,and the signal power of these beams,respectively;andh(l,ξ)is the focusing function defined as

    ξ=L/bpis defined as the focusing parameter of the pump beam, wherebp= 2Z0pis the confocal parameter;α=w20s/w20pandβ=bi/bpare determined by the waist ratio of the two beams; andσ= Δkbp/2 is the phase-mismatching parameter. Obviously, the loss of both pump light and input idler light is ignored when obtaining the analytical expressions,which may produce deviations in specific experiments.More discussion will be presented in the subsequent analysis of the experimental results. Therefore, numerical simulation was also conducted based on the coupled wave equations,utilizing a technique called the split-step Fourier method.[49,50]The basic assumption here is that spatial evolution and nonlinear effects can act separately for each small distance traveled by the light field during transmission. In this case,the transfer process fromztoz+dzcan be carried out in two steps. In the first step,only non-linear effects are considered in Eq.(1),which gives

    In the second step, there is only space evolution, and the Fourier transform term of the light field satisfies the following relation:

    With this method,we obtained a series of discrete points after setting the initial conditions, showing the intensity variations of the idler and signal light at different positions in the crystal for Gauss mode, as shown in Fig. 1. Obviously, the accuracy of the simulation depends on the choice of step size,which also affects the speed of the calculation. An important advantage of the split-step Fourier method is that it simulates the beam mode field evolution process,which is useful for analyzing the effect of beams overlapping on the non-linear efficiency. Taking the signal light in Gauss mode and OAM mode withl=2 as examples,we showed in Figs.1(b)and 1(c)the predicted normalized efficiency at different beam waists,helping to find the best focusing parameters for subsequent experiments.

    Fig. 1. (a) Dependence of the powers of the idler and signal beams on the propagation distance inside the nonlinear crystal. (b) and (c) Normalized efficiency with different beam waists for l=0 and 2.

    3. Experimental setup

    The schematic of the experimental setup is illustrated in Fig. 2. The signal beam for the down-conversion came from a diode laser (TOPTICA pro, Graefelfing); its spatial mode was later optimized by passing through a single-mode optical fiber. The pump beam was provided by an Yb-doped fiber laser working at 1064 nm, enhanced by a fiber amplifier, and then separated into two channels,pumping the DFG and SFG modules, respectively. Each laser beam was set to vertical polarization by the wave plates before the nonlinear crystal,satisfying the restriction of the phase-matching condition. A vortex phase plate(VPP)was placed before the focusing lens,imprinting OAM on the signal beam.

    Fig.2. Experimental setup. VPP:vortex phase plate;DM:dichromatic mirror;BPF:band-pass filter;PPLN:periodically poled lithium niobate crystal;HWP(QWP):half-wave plate(quarter-wave plate);PBS(BS):polarization beam splitter(beam splitter);CCD:charge-coupled device camera.

    In the first crystal, the waist sizes for the pump and the signal beams were 43 μm and 37 μm at the focus, respectively. The temperature of each crystal was controlled using a homemade semiconductor Peltier temperature cooler,the temperature stability of which is±2 mK.At the end of the DFG module,a long-pass filter removed the pump and signal beam,before the idler beam was measured by a mercury telluride detector(MCT).In the second frequency conversion process,the pump and idler beam overlapped after a dichromatic mirror,focused by the lens with beam waists of 65 μm and 110 μm,respectively. The filter after the SFG crystal removed all the off-target beams except the up-converted beam at 792 nm before it entered the interference module.The input light with an OAM state of|l〉was converted into the form of|l〉+eiφ|-l〉by a specially designed balanced interferometer, as discussed in our previous work.[51]The result of the interference presented a petal-like pattern and was captured by a chargecoupled device camera placed on the output side. The petals had a count of exactly 2l, which signified that the value of the TC carried by the generated beam can be found by simply analyzing the patterns.

    4. Results and discussion

    In the first DFG module, both the input beams we used had a power of 1 W, preparing a 3100 nm Gaussian beam with a power of 2.36 mW. For ease of comparison, the idler power was adjusted to 0.2 mW with an optical attenuator for different OAM. The final power of the wave to be converted was 0.118 mW at the incident face of the crystal, suffering a total loss of 41.1%during the transmitting procedure,which was mainly introduced by the dichromatic mirror because of the mismatch of the center wavelength. For varying up-conversion pump power (while the idler power was maintained at 0.118 mW), the results of the generated signal power for each OAM are illustrated in Fig. 3(a). Notice that the results given by the analytical calculations agree well with the experimental values initially, but gradually deviate as the pumping power increases. This deviation is not a surprise,as the small-signal approximation was used in obtaining the analytical expressions, which requires a low conversion efficiency. As the pump power increased, the consumption of MIR photons intensified and deviations between theoretical and experimental results were inevitable. The numerical calculation,on the other hand,avoided this problem and gave theoretical predictions that are relatively close to the experimental values. For both thel= 1 and 2 cases, there was some deviation between the theoretical and experimental values. Because the Gaussian light passing through the VPP was not in an exact Laguerre Gaussian mode,[52,53]aberration of the MIR beams carrying OAM generated by the DFG progress was unavoidable.Considering the 2.03%power loss caused by the subsequent filter,the power efficiencies of the SFG system determined usingηpower=P792/P3100were 133.1%, 40.7%,and 13.6% for TClvalues of 0, 1, and 2 respectively with a pump power of 37 W,and the corresponding QCEs defined byηquantum =ηpowerλ792/λ3100were 34.0%, 10.4%, and 3.5%.The conversion efficiency was satisfied in Gauss mode but reduced rapidly for increasing OAM orders. The main cause was different overlaps between the idler and the pump beams,as the OAM charge would affect the beam size and amplitude vividly. Consequently,in the up-conversion of structured beams with different OAM modes, the focusing parameters can be adjusted utilizing the same method shown in Figs.1(b)and 1(c),which would optimize the efficiency of SFG to some extent. To further eliminate the dependence of the conversion efficiency on the TC,modulation methods such as flat-top pump or imaging techniques can be considered.[54,55]

    Fig. 3. Experimental results and theoretical predictions of the up-conversion process. (a) Relationships between the pump power and the SFG output powers for l =0, 1, and 2. The dashed lines are the analytical projections based on Eq. (3), while the solid lines present the results of numerical simulation. (b)Experimental results and predictions from numerical simulations of up-conversion efficiency for different OAM indexes.

    During the two-step frequency transformation,the OAM should always be conserved as described in our previous study.Take the SFG process as an example,assuming that the two input beams carried TC ofl1andl2respectively, the generated SFG light would have OAM of(l1+l2)ˉh.[51]In the DFG process, one of the input light carried the OAM withl, so the resulting MIR and up-converted light should both carry OAM with the same TC. Based on the above theoretical analysis,the experiment result can be well explained now. The intensity distributions of the signal beam withl=1 and 2, shown in Figs. 4(a)and 4(c), were recorded by blocking one arm of the interferometer,and the output images of the interferometer in normal operation are shown in Figs. 4(b) and 4(d). Figures 4(e)–4(h) give the corresponding simulation results for Figs.4(a)–4(d), exhibiting the same characteristics as the experimental results. The petal-like interference pattern shows the mode indices of the generated beam, as discussed in the preceding presentation. The numbers of petals in our experimental results indicated that the TCs of the up-converted light were 1 and 2 respectively,equaling the TC of the original signal beam,which is in agreement with the theoretical prediction and numerical simulations.

    Fig.4. Experimental results of the up-converted images. (a)and(c)Intensity distributions of up-converted light for l=1 and 2. (b)and(d)Interference patterns for l=1 and 2. (e)–(h)Images of the corresponding simulation results for(a)–(d).

    The dependence of output power on the temperature of the crystal for the DFG and SFG processes is shown in Fig.5.The phase-matching temperatures were 55°C and 55.2°C,while the temperature bandwidths were 7.2°C and 6.9°C,respectively. The experimental results of the power of the generated 3100 nm and 792 nm waves with different temperatures are marked in the figure,and the measured data can be fitted by solving the coupled wave equations.[46]The insert in the upper right corner of Fig. 4 shows how the phase mismatch affects the efficiency of SFG by numerical simulation, displaying a half peak width of 140 m-1, while the same parameter given by the experimental conditions is 137 m-1.

    Fig.5. Output power of DFG and SFG depending on temperature.

    5. Conclusion

    Based on our present experimental conditions,the intensity profile of the MIR beam could not be obtained directly.The length of the crystals and the internal nonuniformity affected the quality of generated beams to a certain extent,such as the generation of distortions and vortex splitting caused by aberration. Besides,the relatively small aperture of the crystal puts a limit on the choice of the focusing parameter,especially for a beam at a long wavelength. For up-conversion of image or light carrying OAM with higher-order TC,a crystal with a larger intersecting surface would perform better.

    In summary, we have studied the frequency bridge between the visible and MIR bands for vortex light based on QPM crystals. We generated the MIR beams through a DFG process and then demonstrated OAM frequency up-conversion experimentally for different OAM modes. The maximum QCEs that were achieved for OAM modes with TCs of 0, 1,and 2 were 34.0%, 10.4%, and 3.5%, respectively. The experimental data were compared with the results of analytical expression and numerical simulation, proving the feasibility of theoretical prediction. We also verified the conservation of OAM in cascaded processes and studied the dependence of the output power on the temperature of the crystals. The present work provides a reliable solution for up-conversion detection of light carrying OAM in the MIR band, using a bulk crystal that preserves phase information well. By adjusting the crystal parameters and reducing the noise,this setup could potentially be extended to general image up-conversion detection and works at the single-photon level. This progress will be beneficial and encouraging for numerous applications that use MIR light as an information carrier and a means of detection,for example in the fields of biological detection,astronomical observation,[56]environmental monitoring, and remote sensing.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 92065101 and 11934013) and Anhui Initiative In Quantum Information Technologies(Grant No.AHY020200).

    猜你喜歡
    李巖銀海志遠(yuǎn)
    求MDS 碼權(quán)多項式的組合方法
    李巖國畫選
    蘇中少年英雄——周銀海
    Physical Therapy Modalities of Western Medicine and Traditional Chinese Medicine for Meibomian Gland Dysfunction
    Analysis of the Spleen and Stomach Thoughts in Treating Eyelids Diseases in Essential Subtleties on the Silver Sea (《銀海精微》)
    我最喜愛的玩具①
    Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis?
    銀海揚帆三十載
    商周刊(2018年25期)2019-01-08 03:31:12
    李巖繪畫作品選登
    那一夜(短篇小說)
    av免费在线观看网站| 18在线观看网站| 国产欧美日韩一区二区精品| 男女国产视频网站| 免费日韩欧美在线观看| 99热网站在线观看| av福利片在线| 菩萨蛮人人尽说江南好唐韦庄| 男女国产视频网站| 亚洲va日本ⅴa欧美va伊人久久 | 国产又爽黄色视频| 亚洲av日韩精品久久久久久密| 亚洲av日韩在线播放| 精品久久久久久电影网| 窝窝影院91人妻| 精品少妇一区二区三区视频日本电影| 人妻 亚洲 视频| 亚洲一码二码三码区别大吗| 中文精品一卡2卡3卡4更新| 女人爽到高潮嗷嗷叫在线视频| 久久久久久人人人人人| 亚洲久久久国产精品| 母亲3免费完整高清在线观看| 国产成人欧美在线观看 | 久久影院123| 色老头精品视频在线观看| 亚洲精品一区蜜桃| 国产亚洲欧美在线一区二区| 黄色片一级片一级黄色片| 久久热在线av| 啦啦啦啦在线视频资源| 一区二区日韩欧美中文字幕| 久久天躁狠狠躁夜夜2o2o| 午夜激情久久久久久久| 超碰成人久久| 日韩 欧美 亚洲 中文字幕| 国产在线免费精品| 久久毛片免费看一区二区三区| 国产在线免费精品| 免费在线观看黄色视频的| 丰满迷人的少妇在线观看| 一级黄色大片毛片| 另类亚洲欧美激情| 母亲3免费完整高清在线观看| 高清av免费在线| 亚洲专区字幕在线| 伊人久久大香线蕉亚洲五| 国产在线免费精品| 亚洲人成电影免费在线| 精品国内亚洲2022精品成人 | 欧美久久黑人一区二区| 亚洲熟女毛片儿| 午夜福利乱码中文字幕| 黑丝袜美女国产一区| 视频区图区小说| 国产99久久九九免费精品| 亚洲精品在线美女| 久久精品aⅴ一区二区三区四区| 狠狠狠狠99中文字幕| 三级毛片av免费| 啦啦啦在线免费观看视频4| 少妇粗大呻吟视频| 捣出白浆h1v1| 免费观看a级毛片全部| 人人妻人人添人人爽欧美一区卜| 久久久久久久大尺度免费视频| 精品人妻熟女毛片av久久网站| 日本av免费视频播放| 国产高清videossex| 国产精品免费视频内射| 国产免费av片在线观看野外av| 亚洲精华国产精华精| 亚洲国产中文字幕在线视频| 老熟妇乱子伦视频在线观看 | av片东京热男人的天堂| 99久久99久久久精品蜜桃| 亚洲欧美日韩另类电影网站| 午夜免费成人在线视频| 极品少妇高潮喷水抽搐| 热re99久久精品国产66热6| 亚洲专区国产一区二区| 丰满饥渴人妻一区二区三| 欧美日韩黄片免| 国产精品影院久久| 日韩欧美一区二区三区在线观看 | 后天国语完整版免费观看| 国产国语露脸激情在线看| 国产av又大| 中文字幕人妻熟女乱码| 国产成人一区二区三区免费视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 搡老乐熟女国产| 久久国产亚洲av麻豆专区| 99国产精品一区二区三区| 亚洲成人免费电影在线观看| 国产一级毛片在线| 午夜免费成人在线视频| 久久精品aⅴ一区二区三区四区| 十八禁网站免费在线| 欧美激情高清一区二区三区| 嫁个100分男人电影在线观看| 精品一区在线观看国产| 丰满饥渴人妻一区二区三| 十八禁网站免费在线| 在线观看免费午夜福利视频| 一本综合久久免费| 天天影视国产精品| 一级,二级,三级黄色视频| 搡老乐熟女国产| 另类精品久久| 国产一区二区三区在线臀色熟女 | 免费黄频网站在线观看国产| 纵有疾风起免费观看全集完整版| 亚洲欧洲精品一区二区精品久久久| 国产精品一区二区精品视频观看| 日韩精品免费视频一区二区三区| 桃红色精品国产亚洲av| 我的亚洲天堂| 十八禁高潮呻吟视频| 免费高清在线观看日韩| 成年女人毛片免费观看观看9 | 多毛熟女@视频| 欧美精品亚洲一区二区| 精品人妻在线不人妻| 亚洲精品久久久久久婷婷小说| 青春草亚洲视频在线观看| 不卡一级毛片| 成在线人永久免费视频| 国产男人的电影天堂91| 狂野欧美激情性bbbbbb| 午夜福利,免费看| 成年人黄色毛片网站| 免费在线观看日本一区| 伊人久久大香线蕉亚洲五| 少妇裸体淫交视频免费看高清 | 老熟妇仑乱视频hdxx| 精品少妇黑人巨大在线播放| 在线观看免费午夜福利视频| 99国产精品一区二区三区| 久久精品aⅴ一区二区三区四区| 18在线观看网站| 免费在线观看日本一区| 午夜免费成人在线视频| 69av精品久久久久久 | 亚洲欧美精品综合一区二区三区| 日韩,欧美,国产一区二区三区| 一区二区av电影网| 中国国产av一级| 国产成人免费无遮挡视频| tocl精华| 少妇的丰满在线观看| 窝窝影院91人妻| 一区福利在线观看| 十八禁网站网址无遮挡| 日韩欧美免费精品| 男女边摸边吃奶| 精品国产一区二区久久| 中国国产av一级| 日韩免费高清中文字幕av| 国产精品国产三级国产专区5o| 天天躁夜夜躁狠狠躁躁| 国产成人系列免费观看| 亚洲成av片中文字幕在线观看| 欧美日韩亚洲综合一区二区三区_| 两性夫妻黄色片| 大片电影免费在线观看免费| 中文字幕最新亚洲高清| 久久99热这里只频精品6学生| 国产99久久九九免费精品| 在线观看免费高清a一片| 老司机影院成人| 亚洲精品中文字幕在线视频| 日韩欧美一区二区三区在线观看 | 高潮久久久久久久久久久不卡| 久久久久久久精品精品| 国产成人a∨麻豆精品| 国产成人a∨麻豆精品| 国产成+人综合+亚洲专区| 少妇 在线观看| 午夜免费成人在线视频| 久久久欧美国产精品| 国产一区二区三区在线臀色熟女 | 亚洲中文字幕日韩| 男女午夜视频在线观看| 欧美激情 高清一区二区三区| 亚洲一码二码三码区别大吗| 中文字幕色久视频| 黑人欧美特级aaaaaa片| 成年人午夜在线观看视频| 成人av一区二区三区在线看 | 热99re8久久精品国产| 中文字幕最新亚洲高清| 天天躁日日躁夜夜躁夜夜| 日韩中文字幕欧美一区二区| 国产亚洲av片在线观看秒播厂| 日韩欧美一区二区三区在线观看 | 中文字幕最新亚洲高清| 不卡av一区二区三区| 妹子高潮喷水视频| 精品人妻在线不人妻| 国产伦人伦偷精品视频| 汤姆久久久久久久影院中文字幕| 日韩制服骚丝袜av| 欧美少妇被猛烈插入视频| 99九九在线精品视频| 亚洲国产欧美日韩在线播放| tube8黄色片| av有码第一页| 桃红色精品国产亚洲av| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩国产mv在线观看视频| 热re99久久精品国产66热6| 久热这里只有精品99| 国产有黄有色有爽视频| 热99re8久久精品国产| 99久久综合免费| 一个人免费看片子| 日韩大码丰满熟妇| 搡老乐熟女国产| 亚洲五月色婷婷综合| 亚洲第一av免费看| 正在播放国产对白刺激| 亚洲精品成人av观看孕妇| 另类亚洲欧美激情| 免费观看av网站的网址| 99精品久久久久人妻精品| av在线播放精品| 久久久久久久大尺度免费视频| 国产一卡二卡三卡精品| 18在线观看网站| 国产精品欧美亚洲77777| 一本大道久久a久久精品| 亚洲专区中文字幕在线| 成年人免费黄色播放视频| 欧美日韩视频精品一区| 两个人看的免费小视频| 丰满少妇做爰视频| 在线观看www视频免费| 两个人免费观看高清视频| 中文字幕另类日韩欧美亚洲嫩草| 三级毛片av免费| 啦啦啦视频在线资源免费观看| 婷婷成人精品国产| kizo精华| 日韩大码丰满熟妇| 国产人伦9x9x在线观看| 亚洲欧美日韩另类电影网站| 亚洲成av片中文字幕在线观看| tocl精华| 亚洲欧美日韩高清在线视频 | 搡老熟女国产l中国老女人| 国产欧美日韩一区二区三区在线| 亚洲国产日韩一区二区| 一进一出抽搐动态| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产区一区二| 国产伦理片在线播放av一区| 久久免费观看电影| 国产亚洲午夜精品一区二区久久| 亚洲精品一卡2卡三卡4卡5卡 | 国产成人影院久久av| 亚洲中文字幕日韩| 国产一区二区三区综合在线观看| 99热网站在线观看| 欧美日韩精品网址| www.999成人在线观看| 亚洲国产av影院在线观看| 高清欧美精品videossex| 亚洲精品久久成人aⅴ小说| 在线观看免费日韩欧美大片| 日日爽夜夜爽网站| 巨乳人妻的诱惑在线观看| 视频在线观看一区二区三区| 丁香六月欧美| 亚洲欧美色中文字幕在线| 午夜福利在线观看吧| 青青草视频在线视频观看| 亚洲熟女毛片儿| 国产精品二区激情视频| tocl精华| 91精品伊人久久大香线蕉| 男人舔女人的私密视频| 啦啦啦 在线观看视频| 18禁黄网站禁片午夜丰满| 9热在线视频观看99| 99re6热这里在线精品视频| 国产国语露脸激情在线看| 18禁裸乳无遮挡动漫免费视频| 国产成人av教育| 高清欧美精品videossex| 久久久久精品国产欧美久久久 | 精品亚洲成a人片在线观看| 久久99一区二区三区| 亚洲av电影在线观看一区二区三区| 亚洲精品国产av蜜桃| 岛国毛片在线播放| 777米奇影视久久| 性色av一级| 日韩欧美免费精品| 国产亚洲欧美精品永久| 丰满少妇做爰视频| 国产亚洲一区二区精品| 国产三级黄色录像| 99热网站在线观看| 午夜两性在线视频| 久久国产精品大桥未久av| 可以免费在线观看a视频的电影网站| av免费在线观看网站| 成人亚洲精品一区在线观看| 久久久久国产一级毛片高清牌| 亚洲欧美精品综合一区二区三区| 国产精品二区激情视频| 大码成人一级视频| 蜜桃国产av成人99| 国产一区二区三区在线臀色熟女 | 无限看片的www在线观看| 伊人久久大香线蕉亚洲五| 国产成人精品无人区| 91老司机精品| 每晚都被弄得嗷嗷叫到高潮| 啦啦啦 在线观看视频| 欧美日韩福利视频一区二区| 精品少妇内射三级| 国产一区有黄有色的免费视频| 亚洲七黄色美女视频| 亚洲综合色网址| 精品久久久精品久久久| 国产淫语在线视频| 精品福利永久在线观看| 亚洲精品乱久久久久久| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美色中文字幕在线| 交换朋友夫妻互换小说| 丰满迷人的少妇在线观看| 亚洲国产欧美日韩在线播放| 久久人妻福利社区极品人妻图片| 狂野欧美激情性xxxx| av不卡在线播放| 成年动漫av网址| 国产精品偷伦视频观看了| 午夜福利视频精品| 国产精品麻豆人妻色哟哟久久| 国产成人影院久久av| 黄色毛片三级朝国网站| 免费黄频网站在线观看国产| 青草久久国产| 搡老熟女国产l中国老女人| 亚洲第一青青草原| 国产成人av教育| 亚洲午夜精品一区,二区,三区| 另类亚洲欧美激情| 国产精品秋霞免费鲁丝片| 五月天丁香电影| 91麻豆精品激情在线观看国产 | 大型av网站在线播放| 青春草亚洲视频在线观看| av天堂在线播放| 亚洲国产精品一区二区三区在线| 精品一区二区三区av网在线观看 | 欧美国产精品va在线观看不卡| 国产主播在线观看一区二区| 久久久久国内视频| 久久99热这里只频精品6学生| 啦啦啦免费观看视频1| 99久久国产精品久久久| 亚洲欧美精品综合一区二区三区| 精品国产一区二区三区久久久樱花| 国产成人av激情在线播放| 国产在线观看jvid| 精品国产一区二区久久| 97精品久久久久久久久久精品| 最近中文字幕2019免费版| 久久久久久久久免费视频了| 国产xxxxx性猛交| 久久久国产成人免费| 国产免费一区二区三区四区乱码| kizo精华| 十分钟在线观看高清视频www| 欧美亚洲日本最大视频资源| 久久精品国产亚洲av高清一级| 久久青草综合色| 搡老岳熟女国产| 久久久国产成人免费| 九色亚洲精品在线播放| 深夜精品福利| 午夜激情久久久久久久| 老汉色∧v一级毛片| 国产成人精品在线电影| 国产成人欧美在线观看 | 深夜精品福利| 欧美日韩成人在线一区二区| 91大片在线观看| 老司机靠b影院| 亚洲精品中文字幕一二三四区 | 黑人猛操日本美女一级片| 999精品在线视频| 亚洲av欧美aⅴ国产| 亚洲精品av麻豆狂野| 国产亚洲精品第一综合不卡| 又大又爽又粗| av国产精品久久久久影院| 男人添女人高潮全过程视频| 久9热在线精品视频| 国产精品久久久久久精品电影小说| 亚洲九九香蕉| 日韩免费高清中文字幕av| 成年美女黄网站色视频大全免费| 久久久久网色| 午夜福利在线观看吧| 国产日韩欧美视频二区| 成人黄色视频免费在线看| 国产高清视频在线播放一区 | 在线观看人妻少妇| 大片电影免费在线观看免费| 国产又色又爽无遮挡免| 黑人欧美特级aaaaaa片| 欧美黑人欧美精品刺激| 精品国内亚洲2022精品成人 | 久久精品国产a三级三级三级| 性少妇av在线| 精品亚洲乱码少妇综合久久| 91麻豆av在线| 亚洲精品一二三| 黑人欧美特级aaaaaa片| 女性生殖器流出的白浆| 中文字幕精品免费在线观看视频| 日韩人妻精品一区2区三区| 久久久久国产精品人妻一区二区| 欧美成狂野欧美在线观看| 国产高清视频在线播放一区 | 两个人免费观看高清视频| 精品一区在线观看国产| 国产欧美日韩精品亚洲av| 日日爽夜夜爽网站| 欧美日韩亚洲综合一区二区三区_| 两性午夜刺激爽爽歪歪视频在线观看 | 久久中文字幕一级| 一边摸一边抽搐一进一出视频| 亚洲精品日韩在线中文字幕| 美女视频免费永久观看网站| 国产成人av教育| 国产亚洲av片在线观看秒播厂| 法律面前人人平等表现在哪些方面 | 欧美大码av| 精品一品国产午夜福利视频| 人妻久久中文字幕网| 日韩视频在线欧美| 精品久久蜜臀av无| 巨乳人妻的诱惑在线观看| 99久久国产精品久久久| 在线观看www视频免费| 在线看a的网站| 黑人操中国人逼视频| 午夜福利在线免费观看网站| 国产av国产精品国产| 国产主播在线观看一区二区| e午夜精品久久久久久久| 国产成人欧美| 啪啪无遮挡十八禁网站| 亚洲欧美清纯卡通| 国产一区二区三区综合在线观看| 亚洲精品乱久久久久久| av天堂在线播放| 69精品国产乱码久久久| 久久久久久久国产电影| e午夜精品久久久久久久| 青春草视频在线免费观看| av天堂久久9| 亚洲av美国av| 国产激情久久老熟女| 欧美 日韩 精品 国产| 久久人人97超碰香蕉20202| 成年人黄色毛片网站| 秋霞在线观看毛片| 天天操日日干夜夜撸| 美国免费a级毛片| 日韩,欧美,国产一区二区三区| 欧美久久黑人一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 在线av久久热| 丁香六月天网| bbb黄色大片| 另类精品久久| 青草久久国产| 免费在线观看视频国产中文字幕亚洲 | 日韩欧美国产一区二区入口| 久久国产精品大桥未久av| 18禁裸乳无遮挡动漫免费视频| 12—13女人毛片做爰片一| 国产欧美日韩一区二区三 | 亚洲精品国产区一区二| 国产一区二区三区av在线| 国产一级毛片在线| 色精品久久人妻99蜜桃| 又黄又粗又硬又大视频| 久久人妻福利社区极品人妻图片| 咕卡用的链子| 国产精品自产拍在线观看55亚洲 | avwww免费| 极品人妻少妇av视频| 男人舔女人的私密视频| 美女主播在线视频| 亚洲va日本ⅴa欧美va伊人久久 | 大香蕉久久成人网| 久久精品国产综合久久久| 午夜影院在线不卡| 精品一区在线观看国产| 视频区欧美日本亚洲| a级毛片黄视频| 亚洲美女黄色视频免费看| 十八禁高潮呻吟视频| 国产精品欧美亚洲77777| 十八禁网站网址无遮挡| 亚洲欧美一区二区三区久久| 亚洲黑人精品在线| 欧美日韩黄片免| 少妇人妻久久综合中文| 在线永久观看黄色视频| 啦啦啦视频在线资源免费观看| 国产av精品麻豆| 亚洲国产欧美网| 人人妻人人澡人人爽人人夜夜| www日本在线高清视频| 黄色视频,在线免费观看| 白带黄色成豆腐渣| 好男人在线观看高清免费视频| 人人妻人人澡欧美一区二区| 日本在线视频免费播放| 国产欧美日韩精品亚洲av| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久人妻精品电影| 国产午夜福利久久久久久| 免费在线观看成人毛片| 他把我摸到了高潮在线观看| 波多野结衣巨乳人妻| 18禁美女被吸乳视频| 日本成人三级电影网站| 无人区码免费观看不卡| 一区福利在线观看| 啦啦啦韩国在线观看视频| 一个人免费在线观看电影 | 色噜噜av男人的天堂激情| 99热这里只有是精品50| 国产精品精品国产色婷婷| 757午夜福利合集在线观看| 后天国语完整版免费观看| 亚洲自拍偷在线| 中文在线观看免费www的网站 | 日韩国内少妇激情av| 老司机午夜福利在线观看视频| 99精品欧美一区二区三区四区| 特级一级黄色大片| 亚洲五月婷婷丁香| 久久人人精品亚洲av| 午夜久久久久精精品| 九九热线精品视视频播放| 黄色成人免费大全| 成人av在线播放网站| 欧美在线黄色| 50天的宝宝边吃奶边哭怎么回事| 91av网站免费观看| 国产亚洲av高清不卡| 18禁裸乳无遮挡免费网站照片| 日韩免费av在线播放| √禁漫天堂资源中文www| 午夜福利免费观看在线| 又紧又爽又黄一区二区| 国产97色在线日韩免费| 午夜免费观看网址| 日日夜夜操网爽| 日本 欧美在线| 神马国产精品三级电影在线观看 | 91成年电影在线观看| 亚洲人成网站在线播放欧美日韩| 又爽又黄无遮挡网站| 九色成人免费人妻av| 国产精品一区二区精品视频观看| 老司机午夜十八禁免费视频| 88av欧美| 亚洲av五月六月丁香网| 欧美色欧美亚洲另类二区| 国产成年人精品一区二区| 国内精品一区二区在线观看| 禁无遮挡网站| 午夜福利欧美成人| 在线国产一区二区在线| 禁无遮挡网站| 国产不卡一卡二| 亚洲av中文字字幕乱码综合| 18禁裸乳无遮挡免费网站照片| 日韩成人在线观看一区二区三区| 亚洲 欧美一区二区三区| 国产精品久久久久久人妻精品电影| 神马国产精品三级电影在线观看 | 亚洲九九香蕉| 免费在线观看影片大全网站| 久久伊人香网站| 香蕉丝袜av| 国产爱豆传媒在线观看 | 午夜福利免费观看在线| 夜夜看夜夜爽夜夜摸| 欧美成人免费av一区二区三区| 久久久国产精品麻豆| 亚洲国产高清在线一区二区三| 成人三级做爰电影| 亚洲av电影在线进入| 日本黄大片高清| 亚洲国产精品久久男人天堂| 国产精品自产拍在线观看55亚洲| 身体一侧抽搐| www.熟女人妻精品国产| 黄频高清免费视频| 男人舔女人的私密视频| xxx96com| 老鸭窝网址在线观看|