• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Up-conversion detection of mid-infrared light carrying orbital angular momentum

    2022-10-26 09:50:00ZhengGe葛正ChenYang楊琛YinHaiLi李銀海YanLi李巖ShiKaiLiu劉世凱SuJianNiu牛素儉ZhiYuanZhou周志遠(yuǎn)andBaoSenShi史保森
    Chinese Physics B 2022年10期
    關(guān)鍵詞:李巖銀海志遠(yuǎn)

    Zheng Ge(葛正) Chen Yang(楊琛) Yin-Hai Li(李銀海) Yan Li(李巖)Shi-Kai Liu(劉世凱) Su-Jian Niu(牛素儉) Zhi-Yuan Zhou(周志遠(yuǎn)) and Bao-Sen Shi(史保森)

    1CAS Key Laboratory of Quantum Information,University of Science and Technology of China,Hefei 230026,China

    2CAS Center for Excellence in Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    Keywords: nonlinear optics,frequency up-conversion,mid-infrared detection

    1. Introduction

    The mid-infrared(MIR)band covers the absorption spectra of many molecules[1]and is closely related to the thermal radiation of objects, which has been used in many aspects, such as environmental monitoring,[2–4]geology for mineral identification,[5]stand-off detection,[6]and biomedical science.[7–10]Among them, the 3–5 μm band corresponds to one of the atmospheric communication windows,which is of potential importance in remote sensing[11]and communications.[12,13]On the other hand, light that carries orbital angular momentum (OAM) has stimulated considerable research interest in both the classical and quantum optical domains.[14–21]This particular beam with an azimuthal phase exp(ilφ) is well known as possessing an exact OAM oflˉhper photon,[22]wherelandφrefer to the topological charge (TC) and azimuthal angle, respectively. MIR light that carries OAM is of great value in many specific applications, such as enhancing the information channel capacity in communications[23–25]and helping the understanding and formation of chiral microstructures.[26,27]In contrast, the detection equipment in the MIR band is not mature at present, reflecting on the lower detection sensitivity, higher noise, and narrower bandwidth compared with its visible or near-infrared(NIR)counterpart. Consequently,it is more effective to detect MIR light after converting it into visible/NIR light, utilizing high-performance detectors based on wide bandgap materials like Si.[28]Due to the high effective nonlinear coefficient and elimination of the walk-off effect, the quasi-phase-matching(QPM)technique has been used extensively for frequency conversion of light carrying OAM in previous works.[29–31]Up to now,the effective up-conversion of MIR light has been realized by using a waveguide.[32,33]However, compared with traditional bulk crystals,the loss of spatial information makes waveguide-based up-conversion unable to meet a wider range of detection requirements. In addition, current waveguidebased nonlinear transformation is mainly in the single-mode case,while higher-order mode frequency conversion still faces some difficulties.Bulk crystals have been widely used in many practical applications of frequency conversion because they can keep the phase and spatial information during the nonlinear process.[34–40]In this case,however,the beam waist radius in the center of the crystal is larger than that in a waveguide,which requires a much higher pump power to improve the quantum conversion efficiency (QCE). In previous works on MIR up-conversion detection,cavity-enhanced[41,42]or pulsed light pumped[43–45]systems were employed, achieving satisfactory QCE. However, a systematic study of the frequency conversion of OAM modes in the MIR band has not been reported to date.

    In this work, the cascaded frequency conversion of light carrying OAM from 792 nm to 3100 nm and back to 792 nm was demonstrated, pumped by high power continuous-wave(CW) light. The laser light at 3100 nm was generated from a difference frequency generation (DFG) process, serving as the MIR source. Two identical MgO-doped periodically poled lithium niobate (MgO:PPLN from Covesion Ltd.) bulk crystals were utilized in the nonlinear processes above, each of which has a length of 40 mm and has nine poling periods ranging from 20.9 μm to 23.3 μm in steps of 0.3 μm. With the temperature of the crystals controlled, the nonlinear processes satisfied the type-0 QPM condition. Here we used a channel with a poled period of 20.6 μm and an aperture of 0.5 mm by 0.5 mm. For the convenience of discussion,in both three-wave mixing processes,the respective wavelengths were defined asλs=792 nm,λp=1063.8 nm,andλi=3100 nm,satisfying the relation 1/λs=1/λp+1/λi. Based on the nonlinear coupling equations, we proposed an analytical expression in the un-depleted approximation, which described the up-conversion efficiencies for various OAM values. Meanwhile, in the case of the depleted condition, the results given by numerical calculations were presented and compared with the experimental results. The final power efficiencies realized for conversion from MIR to visible are 133.1%, 40.7%,and 13.6% for TC ofl=0, 1, and 2, respectively, and the corresponding maximum QCEs are 34.0%,10.4%,and 3.5%.We also showed that the OAM is conserved in the conversion process. The high conversion efficiency and well-preserved phase information indicated that our primary study for MIR up-conversion is both reliable and useful, and will pave the way for further applications in remote sensing, high capacity optical communications,and image detection.

    2. Theoretical model

    The theoretical analysis for sum frequency generation(SFG), which is based on a second-order nonlinearity, is shown as follows. The nonlinear process involves the mixing of three waves, including a strong pump wave at frequencyωp, an idler wave to be converted at frequencyωi, and the up-converted beam at frequencyωs. In our experiment, the pump light is a normal Gaussian beam, while the idler light is in the OAM mode with a TC ofl. In the un-depleted pump approximation,the nonlinear coupled equations can be simplified as[46]

    wheredeffis the effective nonlinear efficiency of the crystal;ε0is the permittivity of a vacuum;nj(j=p,i,s) are the refractive indexes inside the crystal and the subscripts correspond to the pump, the idler, and the signal light, respectively;Δk=ks-ki-kp+2π/Λis the phase mismatch in the SFG process andΛis the poling period of the crystal;andAj(j=p,i,s)are the electrical fields of the pump, the idler and the signal beams,respectively,which can be expressed as[47]

    wherenj(j=p,i,s)are the refractive indexes of the pump,the idler, and the signal beams inside the crystal;ω0j(j=p,i,s)are the beam waists;Z0j=πnjω20j/λj(j= p,i,s) are the Rayleigh ranges of these beams;lrefers to the value of TC and is equal to zero in Gaussian mode; andφ=tan-1(y/x).We have directly omitted the term containing Gouy phase shift here, which can be ignored since the two input beams have approximately matching phases according to our experimental conditions. When considering the slowly varying amplitude approximation and the un-depleted pump approximation,an analytical expression of the SFG power can be obtained as follows:[48]

    whereLis the length of the crystal;Pj(j=p,i,s) are the pump,the idler,and the signal power of these beams,respectively;andh(l,ξ)is the focusing function defined as

    ξ=L/bpis defined as the focusing parameter of the pump beam, wherebp= 2Z0pis the confocal parameter;α=w20s/w20pandβ=bi/bpare determined by the waist ratio of the two beams; andσ= Δkbp/2 is the phase-mismatching parameter. Obviously, the loss of both pump light and input idler light is ignored when obtaining the analytical expressions,which may produce deviations in specific experiments.More discussion will be presented in the subsequent analysis of the experimental results. Therefore, numerical simulation was also conducted based on the coupled wave equations,utilizing a technique called the split-step Fourier method.[49,50]The basic assumption here is that spatial evolution and nonlinear effects can act separately for each small distance traveled by the light field during transmission. In this case,the transfer process fromztoz+dzcan be carried out in two steps. In the first step,only non-linear effects are considered in Eq.(1),which gives

    In the second step, there is only space evolution, and the Fourier transform term of the light field satisfies the following relation:

    With this method,we obtained a series of discrete points after setting the initial conditions, showing the intensity variations of the idler and signal light at different positions in the crystal for Gauss mode, as shown in Fig. 1. Obviously, the accuracy of the simulation depends on the choice of step size,which also affects the speed of the calculation. An important advantage of the split-step Fourier method is that it simulates the beam mode field evolution process,which is useful for analyzing the effect of beams overlapping on the non-linear efficiency. Taking the signal light in Gauss mode and OAM mode withl=2 as examples,we showed in Figs.1(b)and 1(c)the predicted normalized efficiency at different beam waists,helping to find the best focusing parameters for subsequent experiments.

    Fig. 1. (a) Dependence of the powers of the idler and signal beams on the propagation distance inside the nonlinear crystal. (b) and (c) Normalized efficiency with different beam waists for l=0 and 2.

    3. Experimental setup

    The schematic of the experimental setup is illustrated in Fig. 2. The signal beam for the down-conversion came from a diode laser (TOPTICA pro, Graefelfing); its spatial mode was later optimized by passing through a single-mode optical fiber. The pump beam was provided by an Yb-doped fiber laser working at 1064 nm, enhanced by a fiber amplifier, and then separated into two channels,pumping the DFG and SFG modules, respectively. Each laser beam was set to vertical polarization by the wave plates before the nonlinear crystal,satisfying the restriction of the phase-matching condition. A vortex phase plate(VPP)was placed before the focusing lens,imprinting OAM on the signal beam.

    Fig.2. Experimental setup. VPP:vortex phase plate;DM:dichromatic mirror;BPF:band-pass filter;PPLN:periodically poled lithium niobate crystal;HWP(QWP):half-wave plate(quarter-wave plate);PBS(BS):polarization beam splitter(beam splitter);CCD:charge-coupled device camera.

    In the first crystal, the waist sizes for the pump and the signal beams were 43 μm and 37 μm at the focus, respectively. The temperature of each crystal was controlled using a homemade semiconductor Peltier temperature cooler,the temperature stability of which is±2 mK.At the end of the DFG module,a long-pass filter removed the pump and signal beam,before the idler beam was measured by a mercury telluride detector(MCT).In the second frequency conversion process,the pump and idler beam overlapped after a dichromatic mirror,focused by the lens with beam waists of 65 μm and 110 μm,respectively. The filter after the SFG crystal removed all the off-target beams except the up-converted beam at 792 nm before it entered the interference module.The input light with an OAM state of|l〉was converted into the form of|l〉+eiφ|-l〉by a specially designed balanced interferometer, as discussed in our previous work.[51]The result of the interference presented a petal-like pattern and was captured by a chargecoupled device camera placed on the output side. The petals had a count of exactly 2l, which signified that the value of the TC carried by the generated beam can be found by simply analyzing the patterns.

    4. Results and discussion

    In the first DFG module, both the input beams we used had a power of 1 W, preparing a 3100 nm Gaussian beam with a power of 2.36 mW. For ease of comparison, the idler power was adjusted to 0.2 mW with an optical attenuator for different OAM. The final power of the wave to be converted was 0.118 mW at the incident face of the crystal, suffering a total loss of 41.1%during the transmitting procedure,which was mainly introduced by the dichromatic mirror because of the mismatch of the center wavelength. For varying up-conversion pump power (while the idler power was maintained at 0.118 mW), the results of the generated signal power for each OAM are illustrated in Fig. 3(a). Notice that the results given by the analytical calculations agree well with the experimental values initially, but gradually deviate as the pumping power increases. This deviation is not a surprise,as the small-signal approximation was used in obtaining the analytical expressions, which requires a low conversion efficiency. As the pump power increased, the consumption of MIR photons intensified and deviations between theoretical and experimental results were inevitable. The numerical calculation,on the other hand,avoided this problem and gave theoretical predictions that are relatively close to the experimental values. For both thel= 1 and 2 cases, there was some deviation between the theoretical and experimental values. Because the Gaussian light passing through the VPP was not in an exact Laguerre Gaussian mode,[52,53]aberration of the MIR beams carrying OAM generated by the DFG progress was unavoidable.Considering the 2.03%power loss caused by the subsequent filter,the power efficiencies of the SFG system determined usingηpower=P792/P3100were 133.1%, 40.7%,and 13.6% for TClvalues of 0, 1, and 2 respectively with a pump power of 37 W,and the corresponding QCEs defined byηquantum =ηpowerλ792/λ3100were 34.0%, 10.4%, and 3.5%.The conversion efficiency was satisfied in Gauss mode but reduced rapidly for increasing OAM orders. The main cause was different overlaps between the idler and the pump beams,as the OAM charge would affect the beam size and amplitude vividly. Consequently,in the up-conversion of structured beams with different OAM modes, the focusing parameters can be adjusted utilizing the same method shown in Figs.1(b)and 1(c),which would optimize the efficiency of SFG to some extent. To further eliminate the dependence of the conversion efficiency on the TC,modulation methods such as flat-top pump or imaging techniques can be considered.[54,55]

    Fig. 3. Experimental results and theoretical predictions of the up-conversion process. (a) Relationships between the pump power and the SFG output powers for l =0, 1, and 2. The dashed lines are the analytical projections based on Eq. (3), while the solid lines present the results of numerical simulation. (b)Experimental results and predictions from numerical simulations of up-conversion efficiency for different OAM indexes.

    During the two-step frequency transformation,the OAM should always be conserved as described in our previous study.Take the SFG process as an example,assuming that the two input beams carried TC ofl1andl2respectively, the generated SFG light would have OAM of(l1+l2)ˉh.[51]In the DFG process, one of the input light carried the OAM withl, so the resulting MIR and up-converted light should both carry OAM with the same TC. Based on the above theoretical analysis,the experiment result can be well explained now. The intensity distributions of the signal beam withl=1 and 2, shown in Figs. 4(a)and 4(c), were recorded by blocking one arm of the interferometer,and the output images of the interferometer in normal operation are shown in Figs. 4(b) and 4(d). Figures 4(e)–4(h) give the corresponding simulation results for Figs.4(a)–4(d), exhibiting the same characteristics as the experimental results. The petal-like interference pattern shows the mode indices of the generated beam, as discussed in the preceding presentation. The numbers of petals in our experimental results indicated that the TCs of the up-converted light were 1 and 2 respectively,equaling the TC of the original signal beam,which is in agreement with the theoretical prediction and numerical simulations.

    Fig.4. Experimental results of the up-converted images. (a)and(c)Intensity distributions of up-converted light for l=1 and 2. (b)and(d)Interference patterns for l=1 and 2. (e)–(h)Images of the corresponding simulation results for(a)–(d).

    The dependence of output power on the temperature of the crystal for the DFG and SFG processes is shown in Fig.5.The phase-matching temperatures were 55°C and 55.2°C,while the temperature bandwidths were 7.2°C and 6.9°C,respectively. The experimental results of the power of the generated 3100 nm and 792 nm waves with different temperatures are marked in the figure,and the measured data can be fitted by solving the coupled wave equations.[46]The insert in the upper right corner of Fig. 4 shows how the phase mismatch affects the efficiency of SFG by numerical simulation, displaying a half peak width of 140 m-1, while the same parameter given by the experimental conditions is 137 m-1.

    Fig.5. Output power of DFG and SFG depending on temperature.

    5. Conclusion

    Based on our present experimental conditions,the intensity profile of the MIR beam could not be obtained directly.The length of the crystals and the internal nonuniformity affected the quality of generated beams to a certain extent,such as the generation of distortions and vortex splitting caused by aberration. Besides,the relatively small aperture of the crystal puts a limit on the choice of the focusing parameter,especially for a beam at a long wavelength. For up-conversion of image or light carrying OAM with higher-order TC,a crystal with a larger intersecting surface would perform better.

    In summary, we have studied the frequency bridge between the visible and MIR bands for vortex light based on QPM crystals. We generated the MIR beams through a DFG process and then demonstrated OAM frequency up-conversion experimentally for different OAM modes. The maximum QCEs that were achieved for OAM modes with TCs of 0, 1,and 2 were 34.0%, 10.4%, and 3.5%, respectively. The experimental data were compared with the results of analytical expression and numerical simulation, proving the feasibility of theoretical prediction. We also verified the conservation of OAM in cascaded processes and studied the dependence of the output power on the temperature of the crystals. The present work provides a reliable solution for up-conversion detection of light carrying OAM in the MIR band, using a bulk crystal that preserves phase information well. By adjusting the crystal parameters and reducing the noise,this setup could potentially be extended to general image up-conversion detection and works at the single-photon level. This progress will be beneficial and encouraging for numerous applications that use MIR light as an information carrier and a means of detection,for example in the fields of biological detection,astronomical observation,[56]environmental monitoring, and remote sensing.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 92065101 and 11934013) and Anhui Initiative In Quantum Information Technologies(Grant No.AHY020200).

    猜你喜歡
    李巖銀海志遠(yuǎn)
    求MDS 碼權(quán)多項式的組合方法
    李巖國畫選
    蘇中少年英雄——周銀海
    Physical Therapy Modalities of Western Medicine and Traditional Chinese Medicine for Meibomian Gland Dysfunction
    Analysis of the Spleen and Stomach Thoughts in Treating Eyelids Diseases in Essential Subtleties on the Silver Sea (《銀海精微》)
    我最喜愛的玩具①
    Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis?
    銀海揚帆三十載
    商周刊(2018年25期)2019-01-08 03:31:12
    李巖繪畫作品選登
    那一夜(短篇小說)
    欧美亚洲日本最大视频资源| 欧美 亚洲 国产 日韩一| 亚洲成国产人片在线观看| 满18在线观看网站| 亚洲精品粉嫩美女一区| av欧美777| 亚洲 欧美 日韩 在线 免费| 国产成人精品久久二区二区免费| 欧美另类亚洲清纯唯美| 欧美成狂野欧美在线观看| 欧美日韩亚洲综合一区二区三区_| 1024香蕉在线观看| 亚洲国产精品999在线| 夜夜看夜夜爽夜夜摸 | 老司机深夜福利视频在线观看| 国内久久婷婷六月综合欲色啪| 黄色片一级片一级黄色片| 最近最新免费中文字幕在线| 久久人妻熟女aⅴ| 国产精品爽爽va在线观看网站 | av有码第一页| 99re在线观看精品视频| 乱人伦中国视频| 老汉色∧v一级毛片| 亚洲欧美精品综合一区二区三区| 久久国产亚洲av麻豆专区| 级片在线观看| 免费久久久久久久精品成人欧美视频| 国产极品粉嫩免费观看在线| 久久性视频一级片| 18禁裸乳无遮挡免费网站照片 | 男人操女人黄网站| 又大又爽又粗| 一级片免费观看大全| 中文字幕人妻丝袜制服| 88av欧美| 国产一区二区三区综合在线观看| 日本 av在线| 亚洲国产精品sss在线观看 | 亚洲av电影在线进入| 亚洲中文av在线| 人人妻人人爽人人添夜夜欢视频| 日韩欧美三级三区| avwww免费| 在线观看一区二区三区| 巨乳人妻的诱惑在线观看| 99久久人妻综合| 999久久久精品免费观看国产| 一本综合久久免费| 国产激情欧美一区二区| 国产99久久九九免费精品| 夫妻午夜视频| 国产精品永久免费网站| 精品久久蜜臀av无| 三级毛片av免费| 久久香蕉激情| 大香蕉久久成人网| 亚洲精品中文字幕一二三四区| 国产一区二区三区在线臀色熟女 | 成人国语在线视频| 精品国产一区二区久久| 男人操女人黄网站| 国产成人影院久久av| 人成视频在线观看免费观看| 在线看a的网站| 久久人妻熟女aⅴ| 国产精品自产拍在线观看55亚洲| 亚洲精品美女久久久久99蜜臀| 午夜免费观看网址| 亚洲第一av免费看| 久久人人精品亚洲av| 亚洲精品在线美女| 亚洲精品一卡2卡三卡4卡5卡| 老司机在亚洲福利影院| 久久久久国产精品人妻aⅴ院| 国产成+人综合+亚洲专区| 精品久久久精品久久久| 色综合婷婷激情| 国产伦一二天堂av在线观看| 老司机深夜福利视频在线观看| 久久精品国产综合久久久| 黄色毛片三级朝国网站| 窝窝影院91人妻| 97超级碰碰碰精品色视频在线观看| 国产精品一区二区三区四区久久 | 91av网站免费观看| 亚洲av日韩精品久久久久久密| 免费高清在线观看日韩| 露出奶头的视频| 美女高潮到喷水免费观看| 亚洲av成人av| 欧美黄色片欧美黄色片| 国产精品一区二区三区四区久久 | www.www免费av| 夜夜爽天天搞| 人成视频在线观看免费观看| www.www免费av| 制服诱惑二区| 午夜精品在线福利| 国产精华一区二区三区| 满18在线观看网站| 免费人成视频x8x8入口观看| 免费人成视频x8x8入口观看| 高清黄色对白视频在线免费看| 国产精品自产拍在线观看55亚洲| 日韩欧美免费精品| 香蕉丝袜av| 亚洲国产精品一区二区三区在线| 午夜福利免费观看在线| 欧美激情极品国产一区二区三区| 成年人免费黄色播放视频| 免费高清视频大片| av有码第一页| 久久久精品欧美日韩精品| 久久中文字幕人妻熟女| 满18在线观看网站| 日韩人妻精品一区2区三区| 18禁裸乳无遮挡免费网站照片 | 成人三级做爰电影| 国产97色在线日韩免费| 十分钟在线观看高清视频www| 狂野欧美激情性xxxx| 两人在一起打扑克的视频| 免费在线观看黄色视频的| 男人操女人黄网站| 久久性视频一级片| 两性夫妻黄色片| 久久九九热精品免费| 欧美色视频一区免费| 久久九九热精品免费| 精品久久久久久电影网| 黄色片一级片一级黄色片| 国产精品秋霞免费鲁丝片| 性少妇av在线| 久久久久国产一级毛片高清牌| 91麻豆av在线| 亚洲精品国产色婷婷电影| 99精品在免费线老司机午夜| 99国产精品99久久久久| 黑人操中国人逼视频| 欧美精品啪啪一区二区三区| 黄色成人免费大全| 色哟哟哟哟哟哟| 999久久久国产精品视频| 亚洲av成人不卡在线观看播放网| 好男人电影高清在线观看| 日本免费一区二区三区高清不卡 | 老熟妇乱子伦视频在线观看| 欧美国产精品va在线观看不卡| 欧美精品亚洲一区二区| 久热爱精品视频在线9| 麻豆成人av在线观看| 黄网站色视频无遮挡免费观看| 不卡一级毛片| 老熟妇仑乱视频hdxx| 久久欧美精品欧美久久欧美| 日韩精品青青久久久久久| 波多野结衣av一区二区av| 欧美亚洲日本最大视频资源| av网站在线播放免费| 亚洲成人精品中文字幕电影 | 一个人免费在线观看的高清视频| 男女高潮啪啪啪动态图| 美女扒开内裤让男人捅视频| 国产日韩一区二区三区精品不卡| 啦啦啦在线免费观看视频4| 亚洲专区字幕在线| 777久久人妻少妇嫩草av网站| 欧美亚洲日本最大视频资源| 精品人妻1区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 嫁个100分男人电影在线观看| 国产欧美日韩综合在线一区二区| 99国产精品99久久久久| 免费一级毛片在线播放高清视频 | 啦啦啦在线免费观看视频4| 男男h啪啪无遮挡| 757午夜福利合集在线观看| 亚洲国产精品合色在线| 夜夜看夜夜爽夜夜摸 | 91精品三级在线观看| 久久久久久久午夜电影 | 久久久久久久久中文| 国产成+人综合+亚洲专区| 又紧又爽又黄一区二区| 亚洲av成人不卡在线观看播放网| 日韩 欧美 亚洲 中文字幕| 亚洲熟妇中文字幕五十中出 | 中文字幕av电影在线播放| 亚洲人成网站在线播放欧美日韩| 波多野结衣高清无吗| 久久天堂一区二区三区四区| 90打野战视频偷拍视频| 日韩av在线大香蕉| 欧美乱妇无乱码| 在线av久久热| xxx96com| 高清欧美精品videossex| 一二三四在线观看免费中文在| 国产99白浆流出| 最好的美女福利视频网| 久久久国产成人免费| x7x7x7水蜜桃| 亚洲精品国产一区二区精华液| 日韩大尺度精品在线看网址 | 脱女人内裤的视频| 韩国av一区二区三区四区| 亚洲欧美激情在线| 亚洲少妇的诱惑av| 亚洲欧美日韩无卡精品| 欧美精品亚洲一区二区| 国产无遮挡羞羞视频在线观看| 国产精品影院久久| 亚洲国产看品久久| 午夜免费观看网址| 国产免费现黄频在线看| 老鸭窝网址在线观看| 中文字幕人妻熟女乱码| 人妻久久中文字幕网| xxx96com| 亚洲va日本ⅴa欧美va伊人久久| 国产乱人伦免费视频| www.自偷自拍.com| 国产又爽黄色视频| 午夜免费观看网址| 中文字幕另类日韩欧美亚洲嫩草| 国产精品 国内视频| 欧美日韩一级在线毛片| 可以免费在线观看a视频的电影网站| 欧美一级毛片孕妇| 久久午夜综合久久蜜桃| 香蕉久久夜色| 侵犯人妻中文字幕一二三四区| 欧美一区二区精品小视频在线| 国产精品久久久av美女十八| 午夜福利,免费看| 亚洲av第一区精品v没综合| 国产国语露脸激情在线看| 成熟少妇高潮喷水视频| 国产精品电影一区二区三区| 久久精品亚洲精品国产色婷小说| 中文亚洲av片在线观看爽| 女人高潮潮喷娇喘18禁视频| a级片在线免费高清观看视频| 久久久国产精品麻豆| 国产精品 国内视频| 免费在线观看黄色视频的| 伦理电影免费视频| 窝窝影院91人妻| 97人妻天天添夜夜摸| 欧美日本亚洲视频在线播放| 欧美激情 高清一区二区三区| 国产有黄有色有爽视频| 欧美精品一区二区免费开放| 久久草成人影院| 热re99久久国产66热| 色老头精品视频在线观看| 午夜精品国产一区二区电影| 亚洲片人在线观看| 国产一区二区三区在线臀色熟女 | 99国产精品99久久久久| 精品少妇一区二区三区视频日本电影| 男女午夜视频在线观看| 天堂动漫精品| 一级片免费观看大全| 日本vs欧美在线观看视频| 夜夜躁狠狠躁天天躁| a级毛片黄视频| 每晚都被弄得嗷嗷叫到高潮| 婷婷六月久久综合丁香| 国产精品av久久久久免费| 久久香蕉激情| 国产片内射在线| 国产亚洲精品一区二区www| 久久久久久人人人人人| 宅男免费午夜| 国产精品国产av在线观看| 成人亚洲精品一区在线观看| 两性夫妻黄色片| √禁漫天堂资源中文www| 高清欧美精品videossex| ponron亚洲| 国产精品免费一区二区三区在线| 交换朋友夫妻互换小说| 亚洲成a人片在线一区二区| 中文字幕高清在线视频| 一进一出抽搐gif免费好疼 | 免费av中文字幕在线| 在线十欧美十亚洲十日本专区| 免费看a级黄色片| 日韩三级视频一区二区三区| 成人手机av| 久久国产精品人妻蜜桃| 亚洲成人免费电影在线观看| 免费av毛片视频| a在线观看视频网站| 久久久久精品国产欧美久久久| 又黄又爽又免费观看的视频| 色在线成人网| 女性生殖器流出的白浆| 午夜精品在线福利| 精品国产乱子伦一区二区三区| 国产精品免费视频内射| 午夜a级毛片| 亚洲av第一区精品v没综合| 国产成人av教育| 国产1区2区3区精品| 国产精品综合久久久久久久免费 | 又紧又爽又黄一区二区| 午夜免费成人在线视频| 国产精品爽爽va在线观看网站 | 两个人看的免费小视频| 欧美日韩精品网址| 精品人妻在线不人妻| 久久99一区二区三区| 首页视频小说图片口味搜索| 色综合婷婷激情| 老汉色∧v一级毛片| 国产精品二区激情视频| 国产成人影院久久av| 黄色丝袜av网址大全| 国产精品一区二区精品视频观看| 国产真人三级小视频在线观看| 亚洲一码二码三码区别大吗| 久久久国产成人精品二区 | 日韩欧美三级三区| 99riav亚洲国产免费| 午夜成年电影在线免费观看| 咕卡用的链子| 国产精品综合久久久久久久免费 | 欧美国产精品va在线观看不卡| 99久久久亚洲精品蜜臀av| 午夜福利一区二区在线看| 国产伦人伦偷精品视频| 女人精品久久久久毛片| 国产亚洲精品一区二区www| 午夜影院日韩av| 久久中文字幕一级| 操美女的视频在线观看| 麻豆一二三区av精品| 身体一侧抽搐| 国产一区二区三区综合在线观看| a在线观看视频网站| 国产aⅴ精品一区二区三区波| 精品福利观看| 精品人妻在线不人妻| 中国美女看黄片| 国产高清videossex| 国产精品免费视频内射| 黄色女人牲交| 国产黄色免费在线视频| 高清在线国产一区| 亚洲欧美激情在线| 国产精品免费一区二区三区在线| 中国美女看黄片| www.熟女人妻精品国产| 黄网站色视频无遮挡免费观看| www.999成人在线观看| 一区在线观看完整版| 国产成人免费无遮挡视频| 国产高清视频在线播放一区| 亚洲熟妇熟女久久| 午夜精品久久久久久毛片777| 啦啦啦在线免费观看视频4| 午夜视频精品福利| 欧美激情极品国产一区二区三区| 在线观看日韩欧美| 一级毛片高清免费大全| 亚洲av成人不卡在线观看播放网| 美女高潮到喷水免费观看| 精品久久久久久电影网| 手机成人av网站| 亚洲精品一二三| 日韩有码中文字幕| 欧美最黄视频在线播放免费 | 嫩草影视91久久| 日韩视频一区二区在线观看| 成人国语在线视频| 色老头精品视频在线观看| 两个人免费观看高清视频| 超色免费av| xxxhd国产人妻xxx| 亚洲 国产 在线| 俄罗斯特黄特色一大片| 99久久综合精品五月天人人| 久久国产精品影院| 天堂√8在线中文| 精品无人区乱码1区二区| 咕卡用的链子| 男女做爰动态图高潮gif福利片 | 免费少妇av软件| 亚洲人成电影观看| 亚洲午夜理论影院| 亚洲国产精品999在线| 免费搜索国产男女视频| 人人妻人人添人人爽欧美一区卜| 亚洲专区中文字幕在线| 黄频高清免费视频| 淫妇啪啪啪对白视频| 亚洲成人久久性| 少妇裸体淫交视频免费看高清 | 中文字幕人妻丝袜制服| 夫妻午夜视频| 欧美一区二区精品小视频在线| 香蕉丝袜av| 欧美大码av| 18禁观看日本| 亚洲国产精品一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区三区视频了| 露出奶头的视频| 高清av免费在线| 精品一区二区三区视频在线观看免费 | 精品国产国语对白av| 日韩精品免费视频一区二区三区| 真人一进一出gif抽搐免费| 韩国av一区二区三区四区| 少妇被粗大的猛进出69影院| 欧美人与性动交α欧美精品济南到| 亚洲欧美一区二区三区久久| 在线观看免费视频网站a站| 中文欧美无线码| 午夜日韩欧美国产| 男女下面进入的视频免费午夜 | 首页视频小说图片口味搜索| 麻豆成人av在线观看| a级片在线免费高清观看视频| 三级毛片av免费| 欧美激情久久久久久爽电影 | 国产免费现黄频在线看| 欧美另类亚洲清纯唯美| 精品国产超薄肉色丝袜足j| 亚洲av日韩精品久久久久久密| 中文字幕色久视频| 亚洲人成网站在线播放欧美日韩| 国产午夜精品久久久久久| 夜夜夜夜夜久久久久| 超碰成人久久| 免费av毛片视频| 最新在线观看一区二区三区| 久久国产精品影院| 深夜精品福利| 日韩一卡2卡3卡4卡2021年| 一本大道久久a久久精品| 18禁国产床啪视频网站| 18禁黄网站禁片午夜丰满| 国产乱人伦免费视频| 99在线人妻在线中文字幕| 精品午夜福利视频在线观看一区| 国产成人欧美| 黄频高清免费视频| 91老司机精品| 无遮挡黄片免费观看| 欧美日韩福利视频一区二区| 久久久久久久久免费视频了| 婷婷精品国产亚洲av在线| 中亚洲国语对白在线视频| 一区二区三区国产精品乱码| 午夜福利欧美成人| 99久久国产精品久久久| 手机成人av网站| 亚洲中文av在线| 欧美中文综合在线视频| 身体一侧抽搐| 国产成人精品无人区| 中文字幕av电影在线播放| av欧美777| 国产极品粉嫩免费观看在线| 亚洲五月色婷婷综合| 俄罗斯特黄特色一大片| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美日韩无卡精品| 欧美日韩一级在线毛片| 久热爱精品视频在线9| 午夜亚洲福利在线播放| xxxhd国产人妻xxx| 日韩欧美一区视频在线观看| 精品无人区乱码1区二区| 黄网站色视频无遮挡免费观看| 亚洲人成77777在线视频| 丰满迷人的少妇在线观看| 成人三级黄色视频| 欧美人与性动交α欧美精品济南到| 免费日韩欧美在线观看| 国产一区二区在线av高清观看| 成人三级做爰电影| 日本五十路高清| 中国美女看黄片| 无限看片的www在线观看| 长腿黑丝高跟| 多毛熟女@视频| 在线观看一区二区三区激情| 国产极品粉嫩免费观看在线| 一级a爱视频在线免费观看| 午夜亚洲福利在线播放| 在线国产一区二区在线| 在线免费观看的www视频| 欧美黄色淫秽网站| 午夜视频精品福利| 视频在线观看一区二区三区| 国产精品乱码一区二三区的特点 | 欧美午夜高清在线| 久久久国产成人精品二区 | 真人一进一出gif抽搐免费| 美女国产高潮福利片在线看| 亚洲av电影在线进入| 黄色怎么调成土黄色| 精品人妻在线不人妻| 操美女的视频在线观看| 欧美日韩亚洲高清精品| 高清毛片免费观看视频网站 | 亚洲成人免费av在线播放| 无人区码免费观看不卡| 色哟哟哟哟哟哟| 国产黄色免费在线视频| 久久久久国产精品人妻aⅴ院| 淫秽高清视频在线观看| 可以在线观看毛片的网站| 深夜精品福利| 男女高潮啪啪啪动态图| 男女午夜视频在线观看| 中文欧美无线码| 久久久久久久久中文| 男人舔女人下体高潮全视频| 免费看十八禁软件| 夜夜躁狠狠躁天天躁| 午夜视频精品福利| 成在线人永久免费视频| 美女扒开内裤让男人捅视频| 国产无遮挡羞羞视频在线观看| 色综合站精品国产| 国产激情久久老熟女| 黄色 视频免费看| 老司机亚洲免费影院| 露出奶头的视频| 欧美最黄视频在线播放免费 | 午夜福利在线观看吧| 午夜91福利影院| 欧美日韩中文字幕国产精品一区二区三区 | 男女下面进入的视频免费午夜 | 超碰成人久久| 嫩草影院精品99| 啦啦啦在线免费观看视频4| 免费在线观看完整版高清| 天堂影院成人在线观看| 男人舔女人下体高潮全视频| av网站在线播放免费| 亚洲成人免费av在线播放| 十分钟在线观看高清视频www| 亚洲精品在线观看二区| 久久久国产成人免费| 国产无遮挡羞羞视频在线观看| 在线观看免费日韩欧美大片| 国产视频一区二区在线看| 啪啪无遮挡十八禁网站| 亚洲午夜精品一区,二区,三区| 大型av网站在线播放| 热99国产精品久久久久久7| 俄罗斯特黄特色一大片| 美国免费a级毛片| 亚洲九九香蕉| 国产亚洲精品一区二区www| 极品教师在线免费播放| 搡老熟女国产l中国老女人| 久久人妻福利社区极品人妻图片| 国产激情欧美一区二区| 国产午夜精品久久久久久| 脱女人内裤的视频| 国产黄a三级三级三级人| 国产成人av激情在线播放| 男女床上黄色一级片免费看| 黄片播放在线免费| 国产精品一区二区三区四区久久 | 精品国产亚洲在线| 成人手机av| 18禁观看日本| 欧美人与性动交α欧美精品济南到| 色哟哟哟哟哟哟| 视频区图区小说| 99久久人妻综合| e午夜精品久久久久久久| 久久欧美精品欧美久久欧美| 女警被强在线播放| 亚洲精品在线观看二区| 女人精品久久久久毛片| 日韩成人在线观看一区二区三区| 久久久国产成人精品二区 | 黄色片一级片一级黄色片| 亚洲情色 制服丝袜| 一a级毛片在线观看| 国产精品久久电影中文字幕| 国产蜜桃级精品一区二区三区| 精品久久久久久成人av| 丰满的人妻完整版| 国产日韩一区二区三区精品不卡| 国产一卡二卡三卡精品| 亚洲欧洲精品一区二区精品久久久| 80岁老熟妇乱子伦牲交| av天堂久久9| 亚洲精品美女久久久久99蜜臀| 看免费av毛片| 国产精品日韩av在线免费观看 | 丰满迷人的少妇在线观看| 亚洲,欧美精品.| 国产成人av激情在线播放| 欧美激情极品国产一区二区三区| 热re99久久国产66热| 黄色视频,在线免费观看| 又黄又粗又硬又大视频| 亚洲国产精品一区二区三区在线| 9热在线视频观看99| 亚洲精华国产精华精| 午夜两性在线视频| 如日韩欧美国产精品一区二区三区| 亚洲全国av大片|