• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films

    2022-10-26 09:52:02ChunliYao姚春麗TingnaShao邵婷娜MingruiLiu劉明睿ZitaoZhang張子濤WeiminJiang姜偉民QiangZhao趙強YujieQiao喬宇杰MeihuiChen陳美慧XingyuChen陳星宇RuifenDou竇瑞芬ChangminXiong熊昌民andJiacaiNie聶家財
    Chinese Physics B 2022年10期

    Chunli Yao(姚春麗) Tingna Shao(邵婷娜) Mingrui Liu(劉明睿) Zitao Zhang(張子濤)Weimin Jiang(姜偉民) Qiang Zhao(趙強) Yujie Qiao(喬宇杰) Meihui Chen(陳美慧)Xingyu Chen(陳星宇) Ruifen Dou(竇瑞芬) Changmin Xiong(熊昌民) and Jiacai Nie(聶家財)

    1Department of Physics,Beijing Normal University,Beijing 100875,China

    2State Key Laboratory of Luminescence and Applications,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China

    Keywords: Sr2CrWO6/SrTiO3,anisotropic magnetoresistance,sign reversal,resistivity

    1. Introduction

    Double perovskite is a large class of compounds discovered in the 1960s. Its chemical formula is A2BB′O6, where A is alkaline earth metal or rare earth metal ion,and B and B′are transition metal ions.[1,2]The double perovskite compound A2BB′O6takes transition-metal atoms B and B′as the center to form an oxygen octahedron ABO3and AB′O3, which alternately crystallizes in the rock salt structure along the three crystal axes. Double perovskite oxides usually have a very high Curie temperature (>400 K). High Curie temperature make double perovskite oxide a potential material for magnetoresistive devices and room temperature spintronics.[3]Febased double perovskite has been widely studied in the past few decades. High Curie temperatures in Sr2FeMoO6(TC=440 K)and Sr2FeReO6(TC=401 K)have been observed.[4,5]In 2000s, it was also discovered that the Cr-based double perovskite also has a large low-field magnetoresistance and a high Curie temperature.[6]Curie temperatures well above 600 K have been reported in the double perovskite Sr2CrReO6polycrystalline samples.[7,8]In the other Cr-based double perovskites, such as Sr2CrMoO6and Sr2CrWO6(SCWO),TCabove 450 K was observed.[9,10]

    SCWO is a typical A2BB′O6-type double-perovskite oxides, where Cr3+and W5+occupy the B and B′sites, alternatively. Band-structure calculations reveal that they are ferromagnetic half-metals with highly spin-polarized transport properties at the Fermi level.[3]The correspondingTCis~460 K.[10,11]In SCWO,there is antiferromagnetic exchange coupling between Cr and W, Cr3+(3d3,s=3/2) is antiferromagnetically coupled to W5+(5d1,s=1/2), giving a net spin of 2μBper formula unit(f.u.).[1]These spin states can be explained by the fact that,when the magnetic fieldHis dominant with its large positive or negative values, all spins are aligned parallel(+3/2,+1/2)or antiparallel(-3/2,-1/2)to thezdirection,respectively.[11]Moreover,W is a 5d transition metal,4d and 5d orbits have stronger ductility compared with 3d orbits,and Coulomb repulsive potential gradually weakens in 4d and 5d. Therefore, the research process has gradually moved from 3d to 4d/5d transition metal oxides. Since the spin–orbit coupling(SOC)is proportional to the fourth power of the atomic number,the SOC intensity of 5d transition metal oxides increases to a degree comparable to the Coulomb interaction, and richer physical phenomena arise.[12]The SOC caused by the double exchange interaction is also considered to be one of the possible explanations for the origin of thin film anisotropy of magnetoresistance (MR).[13–15]Due to the complex coupling between charge state,spin state,lattice state and orbital state, anisotropic magnetoresistance(AMR)characteristics can be used to explore physics. AMR increases the possibility of using devices such as magnetic field sensors and magnetoresistive random access memory. Therefore, AMR has attracted widespread attention.[16–18]

    In most cases,double-perovskite materials show negative MR, and only a few studies report the positive MR or even both the positive and negative MR.[19–21]Due to the parasitic phase,[21,22]the synthesis of single-phase, high-quality SCWO is very difficult. Therefore, only a few experimental works have been reported on SCWO.[6,10,21,22]Here,we report the successful fabrication of single-phase double-perovskite SCWO thin films by pulsed laser deposition(PLD).The conductivity, Hall effect, magnetization, MR, and AMR in the epitaxial SCWO thin films grown on SrTiO3(STO)(001)substrate is investigated.

    2. Experimental details

    Atomically flat single-crystal TiO2-terminated(001)STO substrates were obtained by chemical etching with NH4F buffered HF solution (pH=5.1), and subsequent were annealed at 930°C for 2 h in a pure oxygen atmosphere.[24,25]SCWO films were grown on the annealed substrates by PLD(KrF,λ=248 nm),using a polycrystalline pellet SCWO target.Before each deposition,the chamber is evacuated to a vacuum of 2×10-8Torr(1 Torr=1.33322×102Pa).During each deposition,the substrate temperature was kept at 750°C under oxygen partial pressures of 1.2×10-6Torr,the laser repetition rate was 2 Hz and the laser energy density was 1.5 J/cm2.[21]

    Atomic force microscope(AFM)was used to observe the surface morphology of thin films. The structural properties of the films were measured by using an x-ray diffractometer(Shimadzu XRD-6000). The electrical-transport and magnetization were carried out by using the standard four probe resistivity measurement and the vibrating sample magnetometer(VSM)module, respectively, in a physical property measurement system(PPMS,Quantum Design). Electrode contacts to the samples were bonded by ultrasonic wire bonding(Al wire of 25 μm diameter). The DC current for the normal state measurements was 10 μA.The temperature dependence of magnetization was also measured by using a SQUID-VSM(Quantum Design).

    3. Results and discussion

    It can be seen from Fig.1(a)that the surface of the SCWO films is atomically flat and shows steps from the processed STO substrate, indicating a two-dimensional (2D) nucleation and a step-flow growth mode.[26]Figure 1(b)shows the XRD pattern of a typical SCWO film deposited on a single-crystal STO(001) substrate. The film peaks appear at 22.72°and 46.40°, which are the characteristic peaks of SCWO, corresponding to (002) and (004) reflections, respectively (see Figs.1(b)and 1(c)). The correspondingc-axis lattice constant is about 7.821 ?A, which is well consistent with the previous report(7.82 ?A).[10]For the very thin films,the mean grain size(out-of-plane)dis well consistent with the film thickness. The full width at half maximum(FWHM)of the most intense XRD peak (004) of SCWO is routinely used to determinedusing the Scherrer formula,λd=0.9/(FWHM·cosθ), whereλis the wavelength of the filament used in the XRD machine,θis the incident angle of the same peak. The nominal thickness was usually determined by the number of laser shots and the calibrated growth rate. Four typical thin films with different thicknesses of 33.89 nm, 27.11 nm, 20.33 nm, and 13.56 nm were prepared,respectively.

    Fig. 1. (a) AFM image of a typical SCWO sample with thickness of 27.11 nm. (b) XRD pattern of the SCWO/STO (001) thin film in panel (a). (c) XRD-peak-differentiation analysis for SCWO (004) and STO(002)peaks.

    The temperature dependence of the resistivity was measured by the method of four probe without an external magnetic field,which is shown in Fig.2. SCWO films,deposited under low oxygen pressure (1.2×10-6Torr), show a semiconducting behavior in the whole temperature range, which is consistent with previous reports.[6,20]We did not show the properties of SCWO films at lower temperatures than that shown in Fig. 2, because the film resistance at low temperatures is too large and exceeds the measurement range of PPMS,so some film data at lower temperatures are discarded.To our surprise,at the same temperatures,the thinner the sample, the less resistivity it has. This is intuitively contrary to the properties exhibited by most film samples.[27,28]Ohtomoet al.[29]and Kalabukhovet al.[30]have reported an extrinsic mechanism of charge doping due to the dominance of oxygen vacancies at LaAlO3/STO interfaces grown at lower oxygen pressures. In 2012, Pavlenkoet al.[31]reported that oxygen vacancies at titanate interfaces induce a complex multi-orbital reconstruction. Inspired by this, we speculate through analysis that the extrinsic mechanism of charge doping caused by oxygen vacancies is dominant at the SCWO/STO interfaces grown under low oxygen pressure (~10-6Torr). Certainly,the intrinsic oxygen vacancies in the SCWO films may also play a role. At the SCWO/STO sample,the abnormal dependence between resistivity and thickness might be related to the oxygen vacancies and the disorder in the sample. The thicker the film,the larger the carrier concentration distribution range and the higher concentration gradient there is, and therefore the higher the degree of disorder.

    Fig. 2. Temperature dependence of resistivity of samples with different thicknesses. All films show semiconducting behavior in the whole temperature range. The thinner the sample,the better the conductivity.

    Fig.3. Hall resistance of the SCWO films at different temperatures with the applied magnetic field up to 9 T.The slope of the curve is negative,indicating that the conductive carriers are electrons.

    In order to confirm our conjecture,we performed the measurement of Hall transport(Fig.3). TheRxyshows a linear behavior up to 9 T,the negative slope of the curves indicates that the conductive carriers in SCWO are electrons. According to the formula,ns=-1/RHe,(eis the charge of an electron),the sheet carrier densitynsis obtained. The obtained sheet carrier densitynsof the films at different temperatures is shown in Fig.4(a). At the same temperatures, the sheet carrier densitynsdecreases with increase of the film thickness. It is noteworthy that in a low temperature range of 120 K–150 K,the magnitude order of sheet carrier density is the same for all films.Although this is confusing, it is speculated that this could be related to the recovery of oxygen vacancies with increase of the film thickness even under the same preparation conditions.According to the carrier mobility formula,μ=σ/nve(σis the conductivity,nvis the volume carrier density), the calculated Hall mobilityμof the films at different temperatures is shown in Fig.4(b). We can see that at the same temperatures,the thinnest sample(13.56 nm)has the largest carrier mobility.With the increase of sample thickness, the carrier mobilityμreduces significantly. From Fig.4,we can also see that for the same sample, the carrier density increases with the increase of temperature, while the carrier mobility decreases with increase of temperature. Altogether,the higher the temperature,the better the conductivity.

    Fig. 4. (a) Temperature dependence of the sheet carrier density ns for all the SCWO films. (b)Temperature dependence of the carrier mobility μ for all the SCWO films. We can see that the thicker the sample,the smaller the carrier density and mobility.

    The great difference of the thickness dependent resistivity is attributed not only to the carrier density, but also to the carrier mobility. It should be related to the specific scattering mechanism of carriers in SCWO films. The temperature dependence of resistivity of the films can be explained in terms of Mott’s variable range hopping(VRH)model.[32]According to this model,the resistivity can be expressed as

    where the VRH exponentγdetermines the dimensionality of the conducting medium by the relationγ=1/(1+d). For three-,two-,and one-dimensional systems,the possible values ofγare 1/4,1/3,and 1/2 respectively.ρ(0)is the resistivity at extremely high temperature,T0is the Mott characteristic temperature, which depends on the electronic structure, and the energy distribution of the localized states.T0can be written as[33,34]

    Fig. 5. (a) Resistivity data of SCWO films fitted by the VRH model. (b)Variation resistivity of SCWO films with temperature, fitted by the TA model. The solid lines represent the theoretical fitting.

    wherekBis the Boltzmann constant,N(EF) is the density of states at the Fermi level andξis the localization length,i.e.,the average distance between Cr and W ions. In Fig. 5(a),lnρ(T)versus T-1/3has been plotted for all the samples,which shows a linear temperature dependence in the high temperature range.Thus,a 2D charge transport mechanism is suitable for explaining the temperature dependence of resistivity of the investigated SCWO samples. In order to estimate the value ofN(EF),we have chosen a reasonable value of the localization lengthξas,~0.39 nm,and then calculatedN(EF)from the slope of the lines in Fig.5(a)using Eqs.(1)and(2),the results are shown in Table 1.where an electron moves from one localized state to another due to an exchange of energy between the charge carrier and phonon (the localization is not a consequence of interaction with a phonon,but could occur due to a random electric field or disordered arrangement of oxygen vacancies).In Eq.(3),Wis the thermal activation energy of the electron. The electrical resistivity of is replotted as lnρ(T)versus1/Tin Fig. 5(b).Since the data do not exhibit linear behavior throughout the temperature range,we conclude that equation(3)is an inadequate description. However, this equation can provide an estimate of thermal activation energies in high temperature regions where the data can be fitted(see the Fig.5(b)). As can be seen from Figs.5(a)and 5(b),both the models describe the transport behavior of all the samples well at high temperature region.

    Furthermore,the mean hopping distanceRh(T)and hopping energyEh(T) as a function of temperature are given below:[32,33]

    At 300 K, calculated values ofRh(T) andEh(T) for SCWO thin films are presented in Table 1. From it,both these parameters increase with increase of the film thickness. The thermal activation energyWalso increases with increase of the film thickness. While the density of states at the Fermi levelN(EF) decreases with increase of the film thickness. Hence it gives a clear indication of disorder in the system. That is,with increase of the film thickness, the extent of disorder in the lattice increases, so that the carriers are induced in delocalized states by severe potential fluctuation. This result is well consistent with the simple estimation for the disorder:1/τ=e/m*μ, wherem*is the electron effective mass, andτis the average scattering time. As shown in Fig. 4(b), the thicker the film,the lower carrier mobilityμand therefore the high disorder.

    Table 1. Physical parameters of SCWO films obtained from electrical measurements.

    Figure 6 shows theMRat various temperatures, defined byMR=[ρ(B)-ρ(B=0)]/ρ(B=0),as a function of magnetic field(B⊥interface).[36]It is found that SCWO films all exhibit negativeMRbehavior. When the external field is 9 T,theMRcan reach 13.43%at low temperature(20 K).Negative longitudinal reluctance often occurs in magnetic materials,associated with spin-flip related scattering. As we have mentioned in our previous introduction, Cr3+and W5+are magnetic elements, and the magnetic long-range order exists in SCWO films. Therefore,SCWO exhibits negative magnetoresistance behavior.

    Fig. 6. Out-of-plane negative MR as a function of the magnetic field H at various temperatures for the 13.56-nm-thick SCWO film.H is perpendicular to the current I and the interface.

    Fig. 7. Magnetization–magnetic field (M–H) curves of the typical SCWO film with thickness of 27.11 nm. All films show well-saturated M–H loops,indicating the ferromagnetic nature.

    Theoretically,the antiferromagnetic coupling between Cr(S=3/2) and W (S=1/2) makes the net magnetic moment of SCWO is 2μB/f.u. along thecaxis.[11]Therefore,we measured the in-plane and out-of-plane magnetization–magnetic field (M–H) curves through PPMS at 2 K and 90 K, respectively, with a magnetic field of 0 T–9 T and the results are plotted in Fig.7.As shown in Fig.7,out-of-planeM–Hcurves show a magnetization saturation of about 1.1 (0.3)μB/f.u.at 2 K (90 K) in the field higher than 2 T, which is a little smaller than the theoretical valuation due to the anti-site defects (between Cr and W) and/or the oxygen vacancies. InplaneM–Hcurves show a magnetization saturation of about 0.7 (0.4)μB/f.u. at 2 K (90 K) in the field higher than 2 T,which is well consistent with the magnetization-temperature measurements(see Fig.8(b)).

    Figure 8(a) showsAMRof the thin film as a function of the angleθfrom 0°to 360°. As is shown in the inset of Fig. 8(a),θis the angle between the out-of-plane magnetic field and the in-plane currentI.θ=0°corresponds to the configuration ofHperpendicular to the plane of the film (H⊥I),andθ=90°corresponds toHparallel to the plane of the film(H‖I)(see Fig.8(a)). Here,AMRis defined as

    Fig.8. (a)AMR for the 27.11-nm-thick SCWO/STO(001)film,in applied field of 9 T. AMR for thin films plotted in linear coordinates with angle θ swept forward and backward (0°–360°–0°). Inset: schematic diagram of AMR measurement,where θ =0° corresponds to the direction of magnetic field H is perpendicular to the interface and the angle θ between the magnetic field direction H and z axis is varied. (b) Out-of-plane and in-plane ZFC magnetizations as a function of temperature(T)in applied field of 7 T for the SCWO/STO thin film in panel(a).

    TheAMRchanges periodically with the angleθ, showing a two-fold cos2θdependence at high temperatures. Moreover, theAMRflips and changes sign as the temperature is lower than 90 K (see Fig. 8(b)). Such kind ofAMRsignal flip has never been reported in the SCWO system. This phenomenon indicates that there is a magnetic transition in the temperature between 80 K and 90 K. Therefore, we further used SQUID-VSM to measure the in-plane and out-of-plane magnetization–temperature(M–T)curves of the film at magnetic field of 7 T(maximum magnetic field in SQUID-VSM),the zero field cooling(ZFC)results are shown in the Fig.8(c).For the applied magnetic field of 7 T,Min-planeis found to be less thanMout-of-planeat temperatures belowTM~86 K.While aboveTM,theMin-planeis greater than theMout-of-plane.Therefore,we clearly observed the reversal behavior ofAMRatTM~86 K.With the decrease of temperature,the easy axis of magnetization reverses from in-plane forT >TMto out of plane forT <TM. At present,there is no clear understanding as to the reason for the change of the easy axis of magnetization. One possibility is the strain induced rotation of the magnetization easy axis. The strain originates from the difference in lattice constant between the film and the substrate.[18,37,38]SCWO/STO samples have an epitaxial strain of +0.128% in the plane of the film,since SCWO has an in-plane lattice constanta=3.91 ?A and STO substrate has a lattice constant of 3.905 ?A. There is another possibility that because the overall expansion ofcdecreases with increasing temperature, the reversal of the easy axis of magnetization is caused by the competition between the shape anisotropy and the inherent magneto-crystalline anisotropy.[39]

    4. Conclusion

    In summary, we have successfully prepared high-quality SCWO films by PLD under low oxygen pressure.All the samples show semiconducting behavior. With increase of the film thickness, a drastic resistivity increase is observed. The Hall measurements show that the thicker the film,the lower the volume carrier density. An extrinsic mechanism of charge doping due to the dominance of oxygen vacancies at SCWO/STO interfaces is proposed. The distribution and gradient of carrier concentration in SCWO films are considered to be related to this phenomenon. Resistivity behavior observed in these films is found to follow the VRH model. It is revealed that with increase of the film thickness, the extent of disorder in the lattice increases. The present study gives a clear evidence of disorder-induced localization charge carriers in these films.Magnetoresistance measurements show that there is a negative magnetoresistance in SCWO films,which is believed to be caused by the magnetic scattering of magnetic elements Cr3+and W5+. In addition, a sign reversal ofAMRin an SCWO film is observed for the first time,which is related to the direction transition of the easy axis of magnetization from out-ofplane to in-plane as the temperature increases. Our results are valuable for the application of oxide-spintronics.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China (Grant Nos. 92065110, 11974048, and 12074334).

    免费在线观看黄色视频的| 成年人免费黄色播放视频| 免费日韩欧美在线观看| 国产av国产精品国产| 亚洲精品乱久久久久久| 99精品久久久久人妻精品| 久久久久久久久久久久大奶| 狠狠婷婷综合久久久久久88av| 亚洲av美国av| 国产又爽黄色视频| av线在线观看网站| 国产成人欧美| 麻豆乱淫一区二区| 不卡av一区二区三区| 国产成人免费无遮挡视频| 亚洲欧洲日产国产| 女人精品久久久久毛片| 人人妻人人澡人人看| 久久性视频一级片| 成人免费观看视频高清| 久久久久精品人妻al黑| 在线精品无人区一区二区三| 亚洲,欧美,日韩| 男人舔女人的私密视频| 亚洲专区国产一区二区| 亚洲午夜精品一区,二区,三区| 国产精品熟女久久久久浪| 日韩免费高清中文字幕av| 少妇猛男粗大的猛烈进出视频| 国产不卡av网站在线观看| 五月天丁香电影| 婷婷色综合www| 日日摸夜夜添夜夜爱| 校园人妻丝袜中文字幕| 久久国产精品人妻蜜桃| 中国国产av一级| 亚洲欧洲精品一区二区精品久久久| 免费久久久久久久精品成人欧美视频| 国产精品人妻久久久影院| 一区二区av电影网| 免费在线观看黄色视频的| 女警被强在线播放| 一区二区av电影网| 99精品久久久久人妻精品| 国产成人影院久久av| 欧美精品一区二区大全| 人体艺术视频欧美日本| 亚洲欧美一区二区三区黑人| 男女下面插进去视频免费观看| 51午夜福利影视在线观看| 大话2 男鬼变身卡| 黄频高清免费视频| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久成人av| 美女国产高潮福利片在线看| 亚洲欧美一区二区三区国产| 一二三四在线观看免费中文在| a级毛片黄视频| 亚洲精品成人av观看孕妇| 超碰97精品在线观看| 丰满饥渴人妻一区二区三| 超碰97精品在线观看| 欧美日韩黄片免| 欧美 日韩 精品 国产| 纯流量卡能插随身wifi吗| 亚洲专区中文字幕在线| 丝袜喷水一区| 波多野结衣av一区二区av| 青春草视频在线免费观看| 欧美精品高潮呻吟av久久| 精品视频人人做人人爽| 午夜免费男女啪啪视频观看| 一级毛片我不卡| 高清欧美精品videossex| 欧美精品啪啪一区二区三区 | 啦啦啦 在线观看视频| 美女高潮到喷水免费观看| 国产三级黄色录像| 看十八女毛片水多多多| 美女脱内裤让男人舔精品视频| 最近中文字幕2019免费版| 欧美精品一区二区大全| 丝袜人妻中文字幕| 国产一区二区三区av在线| 亚洲av成人精品一二三区| 最黄视频免费看| 精品一区二区三区四区五区乱码 | av电影中文网址| 国产老妇伦熟女老妇高清| 欧美成人午夜精品| 国产片特级美女逼逼视频| 久久人人爽人人片av| 纯流量卡能插随身wifi吗| 精品人妻1区二区| 亚洲欧美色中文字幕在线| 午夜免费男女啪啪视频观看| 亚洲中文av在线| 黑丝袜美女国产一区| av网站免费在线观看视频| 亚洲人成电影观看| 又大又爽又粗| 日本午夜av视频| 女人精品久久久久毛片| 国产精品免费大片| 国产男女内射视频| 国产成人av激情在线播放| netflix在线观看网站| 国产精品一区二区精品视频观看| 久久久精品区二区三区| 精品亚洲成a人片在线观看| 欧美97在线视频| 亚洲国产精品999| 黑丝袜美女国产一区| 日韩人妻精品一区2区三区| 麻豆国产av国片精品| 一级片'在线观看视频| 国产成人免费观看mmmm| 国产麻豆69| 十分钟在线观看高清视频www| 午夜久久久在线观看| xxxhd国产人妻xxx| 亚洲欧美一区二区三区久久| 下体分泌物呈黄色| 亚洲男人天堂网一区| 亚洲国产日韩一区二区| 大香蕉久久网| 亚洲黑人精品在线| 99香蕉大伊视频| 亚洲成国产人片在线观看| 欧美国产精品一级二级三级| 午夜免费鲁丝| 中文字幕精品免费在线观看视频| 亚洲午夜精品一区,二区,三区| 久久精品久久久久久久性| 国产亚洲精品第一综合不卡| 青春草视频在线免费观看| 女人久久www免费人成看片| 满18在线观看网站| 亚洲熟女精品中文字幕| 男女边吃奶边做爰视频| 色视频在线一区二区三区| 久久精品亚洲熟妇少妇任你| 999精品在线视频| 国产又爽黄色视频| 精品少妇黑人巨大在线播放| 性色av乱码一区二区三区2| 亚洲熟女精品中文字幕| 爱豆传媒免费全集在线观看| www.熟女人妻精品国产| 亚洲 欧美一区二区三区| 日本欧美国产在线视频| 亚洲欧美精品综合一区二区三区| 好男人电影高清在线观看| 美女中出高潮动态图| 大香蕉久久网| 中国美女看黄片| 亚洲成国产人片在线观看| 日日爽夜夜爽网站| 老司机在亚洲福利影院| 日本五十路高清| 国产伦理片在线播放av一区| 丁香六月欧美| 咕卡用的链子| 亚洲三区欧美一区| 99久久人妻综合| 国产一卡二卡三卡精品| 黄频高清免费视频| 日韩伦理黄色片| 男女国产视频网站| 亚洲欧美一区二区三区久久| 亚洲熟女毛片儿| 一边摸一边做爽爽视频免费| 激情视频va一区二区三区| 无遮挡黄片免费观看| 午夜福利一区二区在线看| tube8黄色片| 亚洲人成网站在线观看播放| 在线观看免费视频网站a站| 在线天堂中文资源库| 91国产中文字幕| 国产成人欧美在线观看 | av国产精品久久久久影院| 国产黄色视频一区二区在线观看| 精品亚洲乱码少妇综合久久| 国产欧美日韩精品亚洲av| 国产成人精品久久久久久| bbb黄色大片| 国产片内射在线| 夜夜骑夜夜射夜夜干| 女人被躁到高潮嗷嗷叫费观| 日韩视频在线欧美| 国产精品一区二区在线观看99| 日韩一本色道免费dvd| 一本—道久久a久久精品蜜桃钙片| 精品一区二区三区av网在线观看 | 午夜免费男女啪啪视频观看| 性高湖久久久久久久久免费观看| 最新的欧美精品一区二区| 国产成人免费观看mmmm| 中文字幕av电影在线播放| 亚洲五月色婷婷综合| 亚洲成人免费av在线播放| 国产在线免费精品| 十八禁人妻一区二区| 精品久久久久久电影网| 50天的宝宝边吃奶边哭怎么回事| 丝袜脚勾引网站| 丁香六月天网| 在线天堂中文资源库| 久久天躁狠狠躁夜夜2o2o | 好男人电影高清在线观看| 在线观看免费视频网站a站| 国产伦人伦偷精品视频| 亚洲色图 男人天堂 中文字幕| 成人国语在线视频| 亚洲,一卡二卡三卡| 九色亚洲精品在线播放| 嫩草影视91久久| 欧美老熟妇乱子伦牲交| 精品免费久久久久久久清纯 | 久久精品国产亚洲av高清一级| 亚洲国产欧美一区二区综合| 超色免费av| 一本色道久久久久久精品综合| 久久国产亚洲av麻豆专区| 久久精品久久久久久久性| 日韩欧美一区视频在线观看| 成人亚洲欧美一区二区av| 香蕉国产在线看| 亚洲国产欧美在线一区| 在线天堂中文资源库| 欧美精品一区二区大全| 七月丁香在线播放| 黄色a级毛片大全视频| 国产精品一区二区精品视频观看| 99久久人妻综合| 国产在线视频一区二区| 日韩一本色道免费dvd| 少妇的丰满在线观看| 高清不卡的av网站| 一级a爱视频在线免费观看| 久久久国产欧美日韩av| 91精品三级在线观看| 久久天躁狠狠躁夜夜2o2o | 97人妻天天添夜夜摸| 亚洲 国产 在线| 深夜精品福利| av网站免费在线观看视频| 亚洲成国产人片在线观看| 高清不卡的av网站| 亚洲五月色婷婷综合| tube8黄色片| 大香蕉久久网| 91国产中文字幕| 一级毛片电影观看| 中文字幕精品免费在线观看视频| av线在线观看网站| 久久久欧美国产精品| 大话2 男鬼变身卡| 久久久国产一区二区| 亚洲精品久久午夜乱码| 国产精品久久久久成人av| 午夜福利视频在线观看免费| 精品久久久久久久毛片微露脸 | 国产不卡av网站在线观看| 少妇裸体淫交视频免费看高清 | 国产成人av激情在线播放| 亚洲专区国产一区二区| 两个人免费观看高清视频| av网站免费在线观看视频| 国产亚洲午夜精品一区二区久久| 2021少妇久久久久久久久久久| 日日爽夜夜爽网站| 性色av一级| 亚洲成av片中文字幕在线观看| 丝袜人妻中文字幕| 丰满人妻熟妇乱又伦精品不卡| 亚洲专区国产一区二区| 成人午夜精彩视频在线观看| 欧美精品人与动牲交sv欧美| 欧美日韩亚洲国产一区二区在线观看 | 国产日韩欧美视频二区| 国产精品国产av在线观看| 大型av网站在线播放| 大片电影免费在线观看免费| 欧美日韩av久久| 国产91精品成人一区二区三区 | 精品亚洲乱码少妇综合久久| 国产免费福利视频在线观看| 各种免费的搞黄视频| 国产1区2区3区精品| 又紧又爽又黄一区二区| 国产午夜精品一二区理论片| 国产精品 国内视频| 激情五月婷婷亚洲| 一二三四在线观看免费中文在| 午夜福利乱码中文字幕| 在线观看免费日韩欧美大片| 国产视频首页在线观看| 一区二区三区激情视频| 一本一本久久a久久精品综合妖精| 久久99精品国语久久久| 久久人人爽av亚洲精品天堂| 婷婷色av中文字幕| 看十八女毛片水多多多| 国产麻豆69| 日韩免费高清中文字幕av| 搡老岳熟女国产| 久久久久久久久久久久大奶| 欧美少妇被猛烈插入视频| 中文乱码字字幕精品一区二区三区| 午夜福利一区二区在线看| 波多野结衣一区麻豆| 日日摸夜夜添夜夜爱| 日本91视频免费播放| 国产精品一区二区在线观看99| 亚洲欧洲国产日韩| av在线播放精品| 18禁观看日本| 国产精品九九99| 亚洲国产av新网站| 91九色精品人成在线观看| tube8黄色片| 亚洲av欧美aⅴ国产| 大码成人一级视频| 黄色视频在线播放观看不卡| 国产精品国产av在线观看| 婷婷色麻豆天堂久久| 久久青草综合色| 97在线人人人人妻| 国产高清不卡午夜福利| 国产成人免费观看mmmm| 欧美 亚洲 国产 日韩一| 午夜福利乱码中文字幕| 后天国语完整版免费观看| 中文字幕av电影在线播放| 纯流量卡能插随身wifi吗| 欧美激情高清一区二区三区| 色婷婷av一区二区三区视频| 中文字幕av电影在线播放| 三上悠亚av全集在线观看| 国产成人精品在线电影| 七月丁香在线播放| 色婷婷久久久亚洲欧美| 考比视频在线观看| 国产成人精品久久二区二区91| 国产精品亚洲av一区麻豆| 欧美激情 高清一区二区三区| 欧美日韩成人在线一区二区| 国产免费视频播放在线视频| tube8黄色片| 在线看a的网站| 国产激情久久老熟女| 秋霞在线观看毛片| 国产伦理片在线播放av一区| 免费观看a级毛片全部| 9191精品国产免费久久| 女人高潮潮喷娇喘18禁视频| 性色av乱码一区二区三区2| 国产成人啪精品午夜网站| 国产视频一区二区在线看| 十八禁网站网址无遮挡| 免费人妻精品一区二区三区视频| 在线观看国产h片| 18禁观看日本| 成在线人永久免费视频| 又粗又硬又长又爽又黄的视频| 亚洲精品第二区| 亚洲中文av在线| 狂野欧美激情性xxxx| 亚洲欧美中文字幕日韩二区| 亚洲国产精品999| 操出白浆在线播放| 午夜91福利影院| av视频免费观看在线观看| 欧美精品一区二区免费开放| 亚洲中文日韩欧美视频| 在线观看一区二区三区激情| 高清黄色对白视频在线免费看| 国产高清国产精品国产三级| 欧美成人精品欧美一级黄| 免费高清在线观看日韩| 18禁裸乳无遮挡动漫免费视频| 亚洲精品一卡2卡三卡4卡5卡 | 欧美日韩av久久| 日本黄色日本黄色录像| 人人妻人人澡人人看| 女人爽到高潮嗷嗷叫在线视频| 男女无遮挡免费网站观看| 日韩大码丰满熟妇| 99国产精品99久久久久| 亚洲成人免费av在线播放| 天天操日日干夜夜撸| 亚洲精品久久午夜乱码| 涩涩av久久男人的天堂| 美女大奶头黄色视频| 亚洲情色 制服丝袜| 好男人电影高清在线观看| 免费女性裸体啪啪无遮挡网站| 国产成人啪精品午夜网站| 晚上一个人看的免费电影| 成在线人永久免费视频| 一级片'在线观看视频| 大片免费播放器 马上看| 另类精品久久| 久久亚洲精品不卡| tube8黄色片| 国产又爽黄色视频| www.999成人在线观看| 欧美精品一区二区大全| 黄色片一级片一级黄色片| 一级毛片电影观看| 在现免费观看毛片| videos熟女内射| 日本黄色日本黄色录像| 这个男人来自地球电影免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 少妇猛男粗大的猛烈进出视频| 黄网站色视频无遮挡免费观看| 女人高潮潮喷娇喘18禁视频| 免费在线观看完整版高清| 欧美在线一区亚洲| 亚洲免费av在线视频| 日本av手机在线免费观看| 欧美成人午夜精品| 国产淫语在线视频| 性色av乱码一区二区三区2| 七月丁香在线播放| 亚洲av片天天在线观看| 国产高清视频在线播放一区 | 又紧又爽又黄一区二区| 欧美黑人欧美精品刺激| 亚洲精品乱久久久久久| 老汉色∧v一级毛片| 男女免费视频国产| 啦啦啦中文免费视频观看日本| 美女午夜性视频免费| 亚洲熟女精品中文字幕| www日本在线高清视频| 亚洲精品美女久久av网站| 免费久久久久久久精品成人欧美视频| 蜜桃国产av成人99| 天天操日日干夜夜撸| 午夜福利视频精品| 国产欧美日韩一区二区三 | 精品国产一区二区三区久久久樱花| 精品第一国产精品| 免费黄频网站在线观看国产| 日本av免费视频播放| 亚洲一区中文字幕在线| 90打野战视频偷拍视频| 精品一区在线观看国产| av在线app专区| 亚洲国产av影院在线观看| 制服人妻中文乱码| 搡老岳熟女国产| 日本av免费视频播放| 在线 av 中文字幕| 岛国毛片在线播放| 久久ye,这里只有精品| 午夜视频精品福利| 1024视频免费在线观看| 久久天躁狠狠躁夜夜2o2o | 欧美激情 高清一区二区三区| 少妇的丰满在线观看| 飞空精品影院首页| 久久精品国产亚洲av高清一级| 免费在线观看日本一区| 一区二区日韩欧美中文字幕| 午夜老司机福利片| 一边摸一边做爽爽视频免费| 天天添夜夜摸| 久久青草综合色| 国产不卡av网站在线观看| 成人国语在线视频| 午夜视频精品福利| 天天操日日干夜夜撸| 亚洲国产欧美网| 亚洲成av片中文字幕在线观看| 国产精品免费大片| 99久久人妻综合| 国产熟女午夜一区二区三区| 国产黄色视频一区二区在线观看| 成人免费观看视频高清| 欧美另类一区| tube8黄色片| 国产极品粉嫩免费观看在线| 亚洲中文字幕日韩| 久久精品国产亚洲av高清一级| 丝袜美足系列| 午夜福利一区二区在线看| 久久久久视频综合| 国产高清视频在线播放一区 | 久久精品成人免费网站| 中文字幕精品免费在线观看视频| 国产三级黄色录像| 国产精品一区二区免费欧美 | 赤兔流量卡办理| 中文字幕色久视频| 黑人巨大精品欧美一区二区蜜桃| 久久性视频一级片| 99国产精品一区二区三区| 考比视频在线观看| 国产精品成人在线| 大片免费播放器 马上看| 丁香六月天网| 美女大奶头黄色视频| 两个人看的免费小视频| 999精品在线视频| videosex国产| 啦啦啦在线观看免费高清www| 精品少妇一区二区三区视频日本电影| 亚洲男人天堂网一区| 视频区图区小说| 国产精品熟女久久久久浪| 人妻 亚洲 视频| 精品熟女少妇八av免费久了| 国语对白做爰xxxⅹ性视频网站| 男女无遮挡免费网站观看| 国产精品偷伦视频观看了| 丁香六月欧美| 天天影视国产精品| 一区二区三区精品91| 免费一级毛片在线播放高清视频 | 日本vs欧美在线观看视频| www日本在线高清视频| 亚洲九九香蕉| 咕卡用的链子| 久久国产精品大桥未久av| 国产av国产精品国产| 成年人免费黄色播放视频| 天堂8中文在线网| 亚洲久久久国产精品| 亚洲情色 制服丝袜| 99国产精品免费福利视频| 国产成人啪精品午夜网站| av欧美777| 欧美少妇被猛烈插入视频| 两个人免费观看高清视频| 亚洲国产中文字幕在线视频| 久久狼人影院| √禁漫天堂资源中文www| 午夜免费观看性视频| 熟女少妇亚洲综合色aaa.| 国产精品久久久av美女十八| 七月丁香在线播放| 亚洲国产毛片av蜜桃av| 一本色道久久久久久精品综合| 丝袜喷水一区| 日韩中文字幕视频在线看片| 午夜影院在线不卡| 色综合欧美亚洲国产小说| 巨乳人妻的诱惑在线观看| 婷婷丁香在线五月| 精品人妻1区二区| 成人国语在线视频| 亚洲欧美色中文字幕在线| 首页视频小说图片口味搜索 | 日韩制服骚丝袜av| 精品亚洲成a人片在线观看| 在线av久久热| 美女中出高潮动态图| www.熟女人妻精品国产| 亚洲精品一二三| 欧美久久黑人一区二区| www.999成人在线观看| xxxhd国产人妻xxx| 国产欧美日韩精品亚洲av| 久久热在线av| 成年人免费黄色播放视频| 高清不卡的av网站| 看十八女毛片水多多多| 9191精品国产免费久久| 视频区欧美日本亚洲| 精品国产国语对白av| 丝袜美腿诱惑在线| 超碰成人久久| 亚洲av欧美aⅴ国产| 97精品久久久久久久久久精品| 1024视频免费在线观看| 在线观看www视频免费| 欧美日韩一级在线毛片| 人人妻,人人澡人人爽秒播 | 国产在视频线精品| 亚洲七黄色美女视频| 国产精品一区二区精品视频观看| 丝袜人妻中文字幕| 热re99久久精品国产66热6| 中文字幕人妻熟女乱码| 亚洲av成人不卡在线观看播放网 | 亚洲免费av在线视频| 青春草视频在线免费观看| 欧美另类一区| 免费在线观看完整版高清| 久久青草综合色| 亚洲成色77777| 日韩免费高清中文字幕av| 久久99一区二区三区| 国产日韩欧美视频二区| 久久九九热精品免费| 午夜精品国产一区二区电影| 精品国产一区二区久久| 国产亚洲av片在线观看秒播厂| 国产一区亚洲一区在线观看| 国产精品久久久人人做人人爽| 精品一区二区三区av网在线观看 | 99热全是精品| 亚洲人成电影观看| 晚上一个人看的免费电影| 老司机午夜十八禁免费视频| 免费少妇av软件| 黑人猛操日本美女一级片| 深夜精品福利| 亚洲中文日韩欧美视频| 最近最新中文字幕大全免费视频 |