• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures

    2022-10-26 09:46:48YitongLiu劉奕彤QiuyunWang王秋云LuyunJiang蔣陸昀AnminChen陳安民JianhuiHan韓建慧andMingxingJin金明星
    Chinese Physics B 2022年10期
    關(guān)鍵詞:安民明星

    Yitong Liu(劉奕彤) Qiuyun Wang(王秋云) Luyun Jiang(蔣陸昀) Anmin Chen(陳安民)Jianhui Han(韓建慧) and Mingxing Jin(金明星)

    1Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    2State Key Laboratory of Laser Propulsion&Application,Department of Aerospace Science and Technology,Space Engineering University,Beijing 101416,China

    Keywords: laser-induced breakdown spectroscopy,femtosecond pulse,laser-polarization,target temperature,plasma temperature,electron density

    1. Introduction

    Laser-induced breakdown spectroscopy(LIBS)is a good technique for detecting and analyzing material elements because it uses the interaction of lasers and substances. A highpower laser pulse is used as an energy source to cause the ablation of atoms from a sample surface. The sample surface in the laser radiation region quickly melts and vaporizes,generating a high-temperature and high-pressure plasma.The laser-induced plasma emits characteristic spectral lines or bands during continuous cooling. The spectra from the plasma are detected and analyzed to obtain useful information about the material elements that will be measured. LIBS has the advantages of low cost, easy operation, detection of samples in any physical state(including solids,liquids,gases,particles, and aerosols), and simultaneous detection of multiple elements.[1–9]Therefore, LIBS has a place in the field of material element detection and analysis. However, it is not a perfect detection technology; it still has many shortcomings that need to be improved, such as low detection sensitivity and accuracy. There have been many research results on enhancing the sensitivity and accuracy of LIBS, such as dual-pulse LIBS,[10–12]spatial confinement,[13]spark-assisted LIBS,[14–16]and resonance-enhanced LIBS.[17–19]In addition,heating is a feasible way to enhance the optical signal of LIBS.[20]Lednevet al.reported the effect of ablated material temperature on the detection capability of LIBS,[21]finding that higher material temperature produced higher atomic/ionic spectral emissions. Darbanet al.investigated the emission spectra and plasma parameters of metal alloys for different target temperatures,[22]finding that the spectral signal of LIBS improved when the temperature increased to 200°C.Gragossianet al.investigated the plasma emission spectra of aluminum alloy targets at different temperatures,[23]finding that the spectra increased significantly as the aluminum temperature increased; therefore, raising the aluminum’s temperature could improve the detection accuracy of LIBS.Liuet al.discussed the influence of the temperature of semiconductor material for optical signals in LIBS,[24]finding that the spectral signal increased significantly as the material’s temperature increased. Their discussion included the influence of semiconductor material temperature on plasma plumes, and their results showed that the plasma size increased significantly by imaging the plasma as the sample temperature. All the experiments mentioned above indicate that the temperature of the ablated material has a significant influence on the analytical capability of LIBS, and raising the temperature of the ablated material can significantly improve the analytical ability of LIBS. In addition, the experiments above were carried out using a nanosecond laser. Wanget al.considered that the nanosecond laser has “thermal ablation” and that increasing the target temperature helps the thermal ablation processes, enhancing the spectral intensity of LIBS.[25]Because the width of the femtosecond (fs) laser is short,[26,27]and it is a“cold ablation”,[28–30]the influence of the sample temperature on the optical signal of LIBS was studied using the fs laser.[25,31]The corresponding results indicated that the ablation depth of the fs laser increased when raising the sample temperature, and both the plasma spectra and spectral signalto-noise ratio increased.[25,31]

    Moreover,the signal of fs-LIBS may be improved by adjusting the pulse polarization. The change in polarization can be achieved by changing the angle of a quarter-wave plate(QWP). Furthermore, the spectral emission excited by the fs laser with circular polarization (CP) is stronger than the case with linear polarization (LP).[32]Many researchers have performed related studies. Lemoset al.investigated the plume expansion produced under CP and LP lasers,[33]finding that the plasma under the CP expanded faster than the one under the LP. Mitryukovskiyet al. found that the kinetic energy of electrons excited by the fs pulse under the LP was low when compared to under the CP.[34]Because the acceleration processes of free electrons are different for CP and LP, the LP laser alternately freely accelerates the electrons in each optical cycle, while the laser with CP can continuously accelerate electrons. These free electrons with higher kinetic energy have an increased probability of collision. Corkumet al.investigated the plasma under the CP and LP;[35]their results suggested that free electrons with CP obtained a higher kinetic energy and a higher plasma density than the case with the LP,and controlling the laser-polarization may control the excitation temperature. Mohideenet al.found that the plasma with the CP was hotter and more energetic by studying the energy spectra above threshold ionization with CP and LP lasers.[36]In summary,increasing target material temperature and changing laser-polarization can improve the plasma energy. Currently, there are few studies on the influence of fs pulse with different laser-polarization states for a LISB optical signal at high sample temperatures.

    This study experimentally investigated the influence of fs laser-polarization on the optical signal of LIBS at different sample temperatures. The combination of the two methods allows for a superimposed enhancement of the spectral intensity,which is far more effective than either of the two enhancement methods. This is a change from the previous single method to the present multiple enhancement methods. The paper selected a Cu target as the ablated material. Then, the detected spectral lines from fs-LIBS were Cu (I) 510.55 nm,515.32 nm,and 521.82 nm. We measured the variation of the lines with different laser polarizations for different Cu temperatures. Moreover, the plasma temperature (PT) and electron density(ED)with varying laser polarizations for different Cu temperatures were calculated.

    2. Experimental details

    Figure 1 shows the experimental setup of the fs-LIBS.The fs pulse system used was an 800-nm and 50-fs ultrafast Ti:sapphire amplifier (Coherence, Libra). The pulse energy was first set to the desired value using a polarizer and a halfwave plate, and then the angle of a QWP was adjusted to change the laser polarization. Finally,the fs laser was focused vertically on the sample surface by a lens with a 20 cm focal length. The laser spot diameter at the sample surface was approximately 100 μm,and the laser fluence was approximately 24.2 J/cm2.The target material(Cu)was attached to a thermostatic heating table(consisting of a heating resistor and a thermocouple). The heating element heats the sample from room temperature to 150°C.During laser irradiation,the target and heating table were fixed on a 3D motorized translation stage(Thorlabs,PT3/M-Z8). A lens with a 75-mm focal length and 50-mm diameter collected optical signals from a laser-induced plasma.It focused the collected light to a fiber,which was coupled to a spectrometer (SP500i, PIActon, 1200 grooves/mm)equipped with an ICCD camera (PIMAX4, Princeton Instruments, 1024×1024 pixels)with 0.1-μs gate delay and 10-μs gate width.Each spectral data was a sum of 10 laser shots,and the measurement was performed in the air.

    Fig.1. Experimental details for fs-LIBS of Cu.

    3. Results and discussion

    Figure 2 compares the intensity of an fs laser-ablated Cu plasma spectra with CP and LP for the sample temperatures of 25°C and 150°C.From the figure,the circularly polarized laser-induced Cu plasma emission is higher than the plasma emission with LP at the same Cu temperature(25°C)for the same polarization(CP).As the Cu temperature(25°C)rises to 150°C,the three Cu atomic lines become stronger compared to the case with the circular polarization and the 25°C sample temperature.

    Fig.2. Comparison of line emissions from fs-LIBS with CP and LP at 25 °C and 150 °C.The laser pulse energy is 1.9 mJ.

    To know the influence of fs laser-polarization on the Cu atomic lines, we followed the variation of the peak emission of 521.82-nm atomic emissions with the angle of the QWP for the Cu temperatures of 25°C and 150°C presented in Fig. 3. The 521.82 nm line intensity of the Cu changes with the change in the angle of the QWP. As the QWP angle is 45°+n×90°(n=0,1,2,3),the fs laser is circularly polarized,and the line intensity is maximized. When the angle isn×90°(n=0,1,2,3),the fs laser is linearly polarized,and the line intensity is minimized. For the remaining angles,the fs laser is elliptically polarized,and the line emission is between CP and LP.The acceleration mechanisms of pulsed lasers with CP and LP are different for free electrons.The fs laser field with LP alternately accelerates and decelerates free electrons in the laser field, and the two processes are periodic. Unlike the fs laser field with LP, the fs laser with CP continuously accelerates free electrons in the laser field;[32]these electrons can achieve greater velocities and kinetic energy under the laser field with CP. Figure 3 proves that changing fs laser-polarization may control the line intensity of fs-LIBS.

    Figure 4 displays the intensities of the Cu 521.82 nm atomic emission as functions of the angle of the QWP for four Cu temperatures. In Fig.4,the higher the Cu temperature,the higher the Cu atomic line emission. Increasing the Cu temperature can significantly enhance the energy coupling between the laser and samples.[23,37]Therefore,the higher the Cu temperature,the higher the absorbed laser energy. Increasing the temperature of the sample reduces the reflectivity of the sample so that the Cu target can absorb more energy, generating stronger plasma emissions.To observe the phenomena clearly,we presented the peak intensities of Cu lines as functions of the Cu temperature in Fig.5.

    Fig. 3. Variation of Cu (I) 521.82 nm spectral line with laser-polariztion at the Cu temperature of 25 °C and 150 °C.The laser pulse energy is 1.9 mJ.

    Fig.4. Variation of spectral intensity of Cu(I)521.82 nm with the angle of QWP at different Cu temperatures.

    Figure 5 compares the peak emission intensities of Cu atomic lines with CP and LP fs lasers as functions of the Cu temperature. The line emission with CP is always stronger than that with LP as the Cu temperature increases, and the line emission intensities with CP and LP show an increasing trend. The experimental results show that changing LP to CP and increasing the Cu temperature can improve the line emission of fs-LIBS.The fs pulse with CP gives free electrons produced more kinetic energy after excitation than LP.[38]The probability of electron collisions with atoms is greater,and the thermal motion of microscopic particles is stronger,leading to higher-temperature plasma. Therefore, for the interaction between electrons and lasers, an fs laser with CP continuously accelerates electrons. Electrons excited by a circularly polarized laser have high energies compared to those excited with LP. Then, electrons transfer these energies to the lattice by electron-lattice relaxation,and the lattice rises to a higher temperature, forming higher temperature plasma. Subsequently,the plasma temperature was obtained.

    Fig. 5. Comparison of the peak intensities of Cu (I) 510.55 nm (a) and 521.82 nm (b) with CP and LP fs lasers, respectively, as functions of Cu temperature.

    Under local thermodynamic equilibrium,[39]the PT is calculated by Boltzmann plot with the following equation:[40,41]

    whereλkiis the central wavelength,Ikiis the integrated intensity,gkis the statistical weight,Akiis the transition probability,kBis the Boltzmann constant,Teis the PT, andCis the intercept. The Cu atomic lines at 510.55 nm, 515.32 nm,and 521.82 nm can guarantee the calculation results.[42,43]The parameters involved in Eq.(1)can be found in Table 1.[44–46]Next,the ED is also calculated. The relationship between the ED and spectral width can be used for calculating the ED:[47]

    where Δλ1/2is the full width at half maximum (FWHM),ωis the collision coefficient, andNeis the ED. The Cu (I)521.82 nm is the strongest among the three spectral lines measured above;hence,we chose Cu(I)521.82 nm to calculate theNe.ωis weakly dependent on the temperature[48]and taken as 0.22 nm.[49].

    Table 1. Spectral parameters.

    Fig.6. Variation of Te (a)and Ne (b)with the angle of QWP at different Cu temperatures.

    Figure 6 presents the distribution of theTeandNeby rotating the QWP and raising the Cu temperature. The trends of theTeandNeare consistent with the trends of the line emission intensities when turning the QWP. TheTeandNewith CP are higher than those with LP. TheTeandNeunder elliptically polarized pulses are between those of circularly and linearly polarized pulses. During the interaction between femtosecond laser and metal,the optical absorption mechanism is the inverse bremsstrahlung.[50]Free electrons within the metal mainly absorb the femtosecond laser energy. In addition,electron energy within the metal can be affected by the laser polarization. A significant difference between CP and LP in the fs laser field is the kinetic energy of free electrons remaining after laser irradiation. With an LP pulse, free electrons are left with low kinetic energy because they experience alternative acceleration and deceleration by the laser field during each pulse’s optical cycle. In contrast, electrons are always accelerated with a CP laser and obtain more kinetic energy.[32]When the fs laser with CP irradiated the copper,the laser field could continuously accelerate free electrons within the copper. The electrons obtained higher energy compared to the case under LP. Therefore, the laser with CP could produce a higher-temperature plasma than LP. Figure 6 shows that theTeincreases and theNedecreases as the Cu temperature increases. To observe the phenomena clearly,we plotted theTeandNeas functions of the Cu temperature for different laser polarizations.

    Fig.7. The Te (a)and Ne (b)with CP and LP as functions of Cu temperature.

    Figure 7 presents theTeandNeof the CP and LP fs laserinduced plasmas. From Fig. 7(a), theTeincreases with increasing Cu temperature; that is, increasing the temperature can increase theTe. The increase of theTeincreases the number of particles at the upper levels of the plasma. Firstly, as the temperature increases, the damage threshold of the material surface decreases,while the original internal energy of the material increases. More mass is excited from the material for the same laser pulse energy.[51]Hence,theTeincreases. Secondly, increasing the sample temperature leads to a decrease in the surface reflectivity,which can absorb more laser energy and eject a denser plasma to enhance the thermal motion of the particles and increase the plasma temperature.[52]Thirdly,increasing the sample temperature increases the initial energy of the particles, resulting in a rapid expansion of the excited plasma and an increased probability of internal particle collisions. Thus, the high-temperature plasma is produced by heating the sample. However, the higher the Cu temperature,the lower theNe. Eschlb¨ock-Fuchset al.discussed the effect of material temperature on plasma expansion.[53]The plume area increased with increasing sample temperature, while the mean plume intensity decreased slightly. This trend indicated that the plasma density should decrease with the increase of the sample temperature. Sambriet al.reported the heating influence on plume expansion.[54]At high temperatures, the first stages of the plasma presented an arrow expansion,which became spherical at a longer time due to the breaking of the ambient gas. Moreover,at larger delay times,the plasma was progressively longer for a higher temperature than for room temperature, revealing a decrease in the resistance from the background gas when raising the temperature. Thus, the decrease in theNeis due to the rapid expansion of the plasma at higher Cu temperatures. In the current experiment, the measurements are performed in air. Heating the sample warms the air. From the ideal gas law, we know that the temperature in the atmospheric environment is inversely proportional to the density of air;[55]the air density around the sample at 150°C is roughly 70% that at 25°C. Therefore, as the Cu temperature increases,the air density around the Cu sample decreases.The reduction in the air density decreases the resistance of the plasma expansion, enhancing the plasma expansion velocity.The plasma will rush to fill this low-density gas environment,lowering the plasma density. Therefore, theNein the plasma also decreases as the Cu temperature increases.

    4. Conclusion

    We investigated the influence of laser-polarization on the emission spectra of fs-LIBS of Cu for different target temperatures. The experiment indicated that increasing the Cu temperature enhanced the emission of fs-LIBS significantly.The laser-polarization played a crucial role in improving the spectral emission intensity. Compared to the fs laser with LP, the fs laser with CP excited a stronger spectral emission.Since the circularly polarized laser pulse could excite electrons with high kinetic energy, the electrons had a high probability of collision with Cu atoms within the plasma, enhancing the plasma emission intensity.We combined the two enhancement methods of increasing the target temperature and adjusting the laser-polarization. The results showed that the enhancement effect of the combination of raising the target temperature and changing the laser-polarization was much stronger than that of increasing the target temperature or changing the laser-polarization alone.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307701)and the National Natural Science Foundation of China(Grant Nos.11974138,11674128,and 11674124).

    猜你喜歡
    安民明星
    THE EXISTENCE AND NON-EXISTENCE OFSIGN-CHANGING SOLUTIONS TO BI-HARMONIC EQUATIONS WITH A p-LAPLACIAN*
    打羽毛球
    明星猝死背后
    南方周末(2019-11-28)2019-11-28 08:37:59
    易安民聲
    易安民聲
    交通安全小明星
    幼兒園(2017年23期)2018-02-07 15:26:54
    明星們愛用什么健身APP
    Coco薇(2017年2期)2017-04-25 03:02:27
    扒一扒明星們的
    Coco薇(2016年10期)2016-11-29 16:59:54
    龔遂治亂安民的“高招”
    誰是大明星
    性色av乱码一区二区三区2| 成年人黄色毛片网站| 日韩精品免费视频一区二区三区| 女人被狂操c到高潮| 99国产综合亚洲精品| 国产免费av片在线观看野外av| 欧美+亚洲+日韩+国产| 9191精品国产免费久久| 婷婷丁香在线五月| 国产精品久久视频播放| 19禁男女啪啪无遮挡网站| 午夜a级毛片| 亚洲成人久久性| 又黄又爽又免费观看的视频| 看免费av毛片| 精品国产一区二区久久| 交换朋友夫妻互换小说| 少妇被粗大的猛进出69影院| 欧美成人午夜精品| xxx96com| 波多野结衣一区麻豆| 自线自在国产av| 老熟妇乱子伦视频在线观看| 亚洲色图综合在线观看| 美女 人体艺术 gogo| 18禁美女被吸乳视频| 精品国产亚洲在线| 亚洲精品av麻豆狂野| 免费人成视频x8x8入口观看| 精品国产一区二区三区四区第35| 久久久久国产精品人妻aⅴ院| 叶爱在线成人免费视频播放| 嫩草影视91久久| 好看av亚洲va欧美ⅴa在| 人人澡人人妻人| 丰满人妻熟妇乱又伦精品不卡| 波多野结衣一区麻豆| 色精品久久人妻99蜜桃| 老汉色av国产亚洲站长工具| 亚洲精品在线观看二区| 水蜜桃什么品种好| 怎么达到女性高潮| 久久精品国产99精品国产亚洲性色 | 亚洲精品一二三| 久久欧美精品欧美久久欧美| 黄色成人免费大全| 国产精品久久久久成人av| 久久青草综合色| 一级片'在线观看视频| 国产欧美日韩一区二区精品| 大陆偷拍与自拍| 精品乱码久久久久久99久播| 午夜精品国产一区二区电影| 老司机亚洲免费影院| 欧美黄色淫秽网站| 最近最新免费中文字幕在线| 一区福利在线观看| 欧洲精品卡2卡3卡4卡5卡区| 大陆偷拍与自拍| 午夜免费观看网址| 成年人免费黄色播放视频| 91成年电影在线观看| 欧美国产精品va在线观看不卡| 亚洲av片天天在线观看| 精品卡一卡二卡四卡免费| 国产伦一二天堂av在线观看| 国产免费男女视频| 欧美日韩瑟瑟在线播放| 久久国产亚洲av麻豆专区| 免费在线观看视频国产中文字幕亚洲| 热99国产精品久久久久久7| 亚洲熟女毛片儿| 97碰自拍视频| 日韩欧美一区二区三区在线观看| 在线天堂中文资源库| av在线天堂中文字幕 | 少妇裸体淫交视频免费看高清 | 亚洲av美国av| 欧美黄色片欧美黄色片| 中文字幕人妻熟女乱码| 色婷婷久久久亚洲欧美| 国产精品一区二区三区四区久久 | 亚洲精品中文字幕在线视频| 亚洲成人免费电影在线观看| 97碰自拍视频| 男女下面进入的视频免费午夜 | 国产欧美日韩综合在线一区二区| 精品一区二区三区四区五区乱码| e午夜精品久久久久久久| 免费久久久久久久精品成人欧美视频| 9色porny在线观看| 成人精品一区二区免费| 精品国产国语对白av| 国产精品98久久久久久宅男小说| 老司机靠b影院| 99久久人妻综合| 午夜a级毛片| 亚洲精品美女久久av网站| 久久中文字幕人妻熟女| 一个人观看的视频www高清免费观看 | 亚洲五月天丁香| 又大又爽又粗| 久9热在线精品视频| 欧美一级毛片孕妇| 级片在线观看| 精品高清国产在线一区| 精品国产国语对白av| 欧美不卡视频在线免费观看 | 十八禁网站免费在线| 俄罗斯特黄特色一大片| 男人的好看免费观看在线视频 | 欧美中文综合在线视频| 9色porny在线观看| 久久国产亚洲av麻豆专区| 久久国产精品影院| 最好的美女福利视频网| 亚洲精品一二三| 深夜精品福利| 久久人妻福利社区极品人妻图片| 国产精品爽爽va在线观看网站 | 老鸭窝网址在线观看| 日韩有码中文字幕| 国产成人影院久久av| 99riav亚洲国产免费| 午夜老司机福利片| 国产麻豆69| 自拍欧美九色日韩亚洲蝌蚪91| 久久午夜综合久久蜜桃| 久久人人爽av亚洲精品天堂| 亚洲欧美日韩高清在线视频| 黄色毛片三级朝国网站| 亚洲欧美日韩高清在线视频| 成人精品一区二区免费| 国产精品久久久久成人av| 一区二区三区激情视频| 国产99白浆流出| 日韩欧美国产一区二区入口| 一级a爱片免费观看的视频| 精品乱码久久久久久99久播| 极品教师在线免费播放| 大型av网站在线播放| 中亚洲国语对白在线视频| 亚洲人成电影免费在线| 欧美黄色淫秽网站| www.熟女人妻精品国产| 欧美中文综合在线视频| 精品一区二区三区av网在线观看| 国产成人精品久久二区二区免费| 男男h啪啪无遮挡| 手机成人av网站| 制服人妻中文乱码| 性欧美人与动物交配| 中出人妻视频一区二区| 亚洲欧美日韩高清在线视频| 高清欧美精品videossex| 一二三四在线观看免费中文在| 欧美亚洲日本最大视频资源| 精品久久久久久,| 99在线人妻在线中文字幕| 大型av网站在线播放| 99香蕉大伊视频| 一级片'在线观看视频| 成人精品一区二区免费| 亚洲欧美激情在线| 无遮挡黄片免费观看| 免费在线观看完整版高清| 丝袜美腿诱惑在线| 麻豆国产av国片精品| 女人被狂操c到高潮| 免费一级毛片在线播放高清视频 | 国产精品野战在线观看 | 国产成人精品在线电影| 国产黄色免费在线视频| 热99re8久久精品国产| 丰满人妻熟妇乱又伦精品不卡| 韩国av一区二区三区四区| 丝袜在线中文字幕| 丰满的人妻完整版| 国产免费现黄频在线看| 久久精品成人免费网站| 精品无人区乱码1区二区| 正在播放国产对白刺激| www日本在线高清视频| 乱人伦中国视频| 19禁男女啪啪无遮挡网站| 在线观看免费日韩欧美大片| 女人精品久久久久毛片| 国产高清videossex| 欧美性长视频在线观看| 自线自在国产av| 美女高潮喷水抽搐中文字幕| 人成视频在线观看免费观看| 国产97色在线日韩免费| 国产1区2区3区精品| 一级黄色大片毛片| 国产真人三级小视频在线观看| 久久久水蜜桃国产精品网| 亚洲av熟女| 亚洲成国产人片在线观看| 亚洲 欧美一区二区三区| 中文亚洲av片在线观看爽| 亚洲国产精品999在线| 亚洲狠狠婷婷综合久久图片| 99精品久久久久人妻精品| 亚洲精品久久午夜乱码| 一二三四在线观看免费中文在| 国产精品香港三级国产av潘金莲| 俄罗斯特黄特色一大片| 99久久精品国产亚洲精品| 精品久久久精品久久久| 亚洲精品中文字幕在线视频| 亚洲,欧美精品.| 久久精品成人免费网站| 高清av免费在线| 久久久久精品国产欧美久久久| 美国免费a级毛片| 午夜免费成人在线视频| 亚洲性夜色夜夜综合| 性少妇av在线| 精品久久久精品久久久| 亚洲精品在线观看二区| 女性生殖器流出的白浆| 欧美色视频一区免费| 制服人妻中文乱码| 国产亚洲精品综合一区在线观看 | 免费在线观看影片大全网站| 久久人人精品亚洲av| 欧美激情极品国产一区二区三区| 成人手机av| 夜夜躁狠狠躁天天躁| 超碰97精品在线观看| 男女床上黄色一级片免费看| 久久天躁狠狠躁夜夜2o2o| 亚洲avbb在线观看| 欧美性长视频在线观看| 97碰自拍视频| 日韩三级视频一区二区三区| 午夜精品在线福利| 少妇裸体淫交视频免费看高清 | 国产极品粉嫩免费观看在线| 亚洲精品国产色婷婷电影| 黄色成人免费大全| 男人舔女人下体高潮全视频| 日韩av在线大香蕉| 欧美中文综合在线视频| 国产亚洲精品久久久久久毛片| 黄色女人牲交| 又大又爽又粗| 夫妻午夜视频| 神马国产精品三级电影在线观看 | 丁香欧美五月| 黄色视频,在线免费观看| 人人妻人人澡人人看| 高潮久久久久久久久久久不卡| 热re99久久精品国产66热6| 国产精品二区激情视频| 久久精品成人免费网站| 人妻丰满熟妇av一区二区三区| 欧美一区二区精品小视频在线| 亚洲性夜色夜夜综合| 久久精品国产99精品国产亚洲性色 | 欧美日韩乱码在线| 欧美中文日本在线观看视频| 又黄又粗又硬又大视频| 免费看a级黄色片| 高清黄色对白视频在线免费看| 夫妻午夜视频| av免费在线观看网站| 国产欧美日韩精品亚洲av| 中文字幕人妻熟女乱码| 久久久久久久久免费视频了| 老司机亚洲免费影院| 精品国产一区二区三区四区第35| 夜夜爽天天搞| 夜夜躁狠狠躁天天躁| 18禁观看日本| 黑丝袜美女国产一区| 久久久国产成人精品二区 | 国产有黄有色有爽视频| 法律面前人人平等表现在哪些方面| 久久精品亚洲精品国产色婷小说| 日韩欧美一区视频在线观看| 久9热在线精品视频| 91在线观看av| 欧美在线黄色| 国产黄色免费在线视频| 久久久久久久久免费视频了| 午夜精品国产一区二区电影| 久久久国产精品麻豆| 久久久国产成人精品二区 | 亚洲国产精品一区二区三区在线| 国产成人啪精品午夜网站| 精品少妇一区二区三区视频日本电影| 99国产精品免费福利视频| 人人妻人人澡人人看| 色婷婷久久久亚洲欧美| 在线观看免费视频网站a站| 18禁裸乳无遮挡免费网站照片 | 国产男靠女视频免费网站| 俄罗斯特黄特色一大片| 欧美一级毛片孕妇| 一级黄色大片毛片| 亚洲久久久国产精品| 久9热在线精品视频| 国产1区2区3区精品| 亚洲自拍偷在线| av超薄肉色丝袜交足视频| 国产日韩一区二区三区精品不卡| 亚洲精品国产区一区二| 琪琪午夜伦伦电影理论片6080| 97超级碰碰碰精品色视频在线观看| 欧美人与性动交α欧美软件| 国产免费av片在线观看野外av| 国产一区二区三区在线臀色熟女 | 亚洲精品一区av在线观看| 欧美在线一区亚洲| 黄色怎么调成土黄色| 亚洲美女黄片视频| 视频在线观看一区二区三区| 制服人妻中文乱码| 波多野结衣高清无吗| 日本a在线网址| svipshipincom国产片| 黄色 视频免费看| 免费在线观看完整版高清| 亚洲人成伊人成综合网2020| 欧美日韩瑟瑟在线播放| 国产精品久久久人人做人人爽| 真人一进一出gif抽搐免费| 9191精品国产免费久久| 国产精品香港三级国产av潘金莲| 国产色视频综合| 好看av亚洲va欧美ⅴa在| 男女做爰动态图高潮gif福利片 | 嫩草影院精品99| 亚洲精品国产一区二区精华液| 亚洲国产欧美日韩在线播放| 丝袜美腿诱惑在线| 男女高潮啪啪啪动态图| 午夜视频精品福利| 黄频高清免费视频| 国产aⅴ精品一区二区三区波| 天天躁夜夜躁狠狠躁躁| 69av精品久久久久久| 怎么达到女性高潮| 久久国产乱子伦精品免费另类| 99riav亚洲国产免费| 麻豆一二三区av精品| 欧美av亚洲av综合av国产av| 一级,二级,三级黄色视频| 亚洲欧美日韩高清在线视频| 91成人精品电影| 这个男人来自地球电影免费观看| 色综合婷婷激情| 亚洲国产毛片av蜜桃av| 十八禁人妻一区二区| 一区二区三区国产精品乱码| 亚洲国产看品久久| 久久午夜亚洲精品久久| 欧美乱码精品一区二区三区| 一进一出好大好爽视频| 精品国产一区二区久久| 女性被躁到高潮视频| 亚洲精品美女久久久久99蜜臀| 亚洲第一欧美日韩一区二区三区| 动漫黄色视频在线观看| 露出奶头的视频| 中文字幕最新亚洲高清| 亚洲伊人色综图| 一级片免费观看大全| 人人妻人人添人人爽欧美一区卜| 国产三级在线视频| 超色免费av| 午夜福利影视在线免费观看| 国产91精品成人一区二区三区| 久久这里只有精品19| 中文亚洲av片在线观看爽| 在线免费观看的www视频| 97超级碰碰碰精品色视频在线观看| 一二三四在线观看免费中文在| 免费高清在线观看日韩| 丰满迷人的少妇在线观看| 久久久国产欧美日韩av| 最近最新免费中文字幕在线| 男男h啪啪无遮挡| a级片在线免费高清观看视频| 一进一出抽搐动态| 国产精品国产高清国产av| 久久精品影院6| 亚洲精品国产一区二区精华液| 亚洲一区二区三区色噜噜 | 大码成人一级视频| 身体一侧抽搐| 亚洲黑人精品在线| 91精品国产国语对白视频| 在线观看免费视频网站a站| 久久这里只有精品19| 亚洲中文字幕日韩| 亚洲aⅴ乱码一区二区在线播放 | 九色亚洲精品在线播放| 久久久精品欧美日韩精品| 国产aⅴ精品一区二区三区波| 99国产极品粉嫩在线观看| 日韩人妻精品一区2区三区| 精品高清国产在线一区| 国产精品免费一区二区三区在线| 女警被强在线播放| 久热爱精品视频在线9| 黄色视频,在线免费观看| 制服人妻中文乱码| 丁香欧美五月| 免费在线观看黄色视频的| 美女国产高潮福利片在线看| 日本黄色日本黄色录像| 婷婷丁香在线五月| 老司机靠b影院| 免费人成视频x8x8入口观看| 一级毛片精品| 丰满的人妻完整版| 在线av久久热| 国产99白浆流出| 母亲3免费完整高清在线观看| 黑人操中国人逼视频| 99精品欧美一区二区三区四区| 精品午夜福利视频在线观看一区| 国产精品综合久久久久久久免费 | 男女做爰动态图高潮gif福利片 | 欧美成人性av电影在线观看| 免费在线观看日本一区| 一a级毛片在线观看| 国产麻豆69| 身体一侧抽搐| 色精品久久人妻99蜜桃| 午夜日韩欧美国产| 亚洲,欧美精品.| 精品久久久久久成人av| 亚洲全国av大片| 免费看十八禁软件| 午夜福利,免费看| 亚洲狠狠婷婷综合久久图片| 国产日韩一区二区三区精品不卡| 国产男靠女视频免费网站| 久久香蕉激情| 欧美精品亚洲一区二区| 国产精品av久久久久免费| 久久热在线av| 久久亚洲精品不卡| 老司机午夜十八禁免费视频| 黄网站色视频无遮挡免费观看| 欧美成人性av电影在线观看| 亚洲国产欧美网| 中文字幕人妻丝袜一区二区| 多毛熟女@视频| 久久久久亚洲av毛片大全| 18禁黄网站禁片午夜丰满| 999久久久精品免费观看国产| 中国美女看黄片| 欧美精品亚洲一区二区| 亚洲一码二码三码区别大吗| 好看av亚洲va欧美ⅴa在| 人人妻人人爽人人添夜夜欢视频| 多毛熟女@视频| 亚洲精品一区av在线观看| 三级毛片av免费| 丝袜在线中文字幕| 中文欧美无线码| 亚洲欧美激情在线| 亚洲国产欧美一区二区综合| 免费日韩欧美在线观看| 久久久精品欧美日韩精品| 99国产精品99久久久久| 在线免费观看的www视频| 91大片在线观看| 91麻豆精品激情在线观看国产 | 欧美在线黄色| 久久精品国产99精品国产亚洲性色 | 可以免费在线观看a视频的电影网站| 亚洲 国产 在线| 69精品国产乱码久久久| 亚洲精品在线美女| 久久精品成人免费网站| 水蜜桃什么品种好| cao死你这个sao货| 老司机亚洲免费影院| 欧美激情高清一区二区三区| 国产激情欧美一区二区| av视频免费观看在线观看| 国产亚洲欧美精品永久| 天天躁狠狠躁夜夜躁狠狠躁| 97超级碰碰碰精品色视频在线观看| 男人舔女人的私密视频| 在线观看日韩欧美| 每晚都被弄得嗷嗷叫到高潮| 91国产中文字幕| 久久久久久免费高清国产稀缺| 一区二区三区精品91| 亚洲欧美激情在线| 日韩高清综合在线| 亚洲欧美激情在线| 丝袜人妻中文字幕| 水蜜桃什么品种好| 日韩人妻精品一区2区三区| 曰老女人黄片| 久久久久久久精品吃奶| 免费在线观看视频国产中文字幕亚洲| 国产有黄有色有爽视频| 精品久久久精品久久久| 日韩视频一区二区在线观看| 国产亚洲精品综合一区在线观看 | 久久精品成人免费网站| 激情在线观看视频在线高清| 天堂中文最新版在线下载| 美国免费a级毛片| 99精国产麻豆久久婷婷| 亚洲国产欧美网| 日韩视频一区二区在线观看| 在线国产一区二区在线| 亚洲中文av在线| 美女福利国产在线| 久久久国产精品麻豆| 中文字幕高清在线视频| 国产午夜精品久久久久久| 日日摸夜夜添夜夜添小说| 日韩三级视频一区二区三区| 中文字幕av电影在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩乱码在线| 老司机亚洲免费影院| 亚洲av熟女| 97人妻天天添夜夜摸| 这个男人来自地球电影免费观看| 国产亚洲av高清不卡| 日韩高清综合在线| 动漫黄色视频在线观看| 男人的好看免费观看在线视频 | 亚洲精品一二三| 国产人伦9x9x在线观看| 99热只有精品国产| 高潮久久久久久久久久久不卡| 欧美日本中文国产一区发布| 中文字幕av电影在线播放| 色综合站精品国产| 丝袜美足系列| 国产三级黄色录像| 窝窝影院91人妻| 视频区欧美日本亚洲| 久久精品国产综合久久久| 露出奶头的视频| 9191精品国产免费久久| 日本免费a在线| 欧美性长视频在线观看| 欧美成人性av电影在线观看| 亚洲午夜精品一区,二区,三区| 人成视频在线观看免费观看| 亚洲色图av天堂| 久久久久国内视频| 亚洲欧美激情在线| 国产av又大| 精品电影一区二区在线| 日本vs欧美在线观看视频| 午夜精品国产一区二区电影| 精品无人区乱码1区二区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美精品综合久久99| 国产蜜桃级精品一区二区三区| 国内久久婷婷六月综合欲色啪| 亚洲视频免费观看视频| 成人影院久久| 亚洲av美国av| 精品国产乱子伦一区二区三区| 亚洲精品粉嫩美女一区| 亚洲国产欧美网| 久久人妻熟女aⅴ| 日韩精品中文字幕看吧| 交换朋友夫妻互换小说| 久久香蕉精品热| 欧美精品一区二区免费开放| 老熟妇仑乱视频hdxx| 国产成人av教育| 91成人精品电影| 国产亚洲欧美精品永久| 久久天堂一区二区三区四区| 亚洲欧美日韩高清在线视频| 亚洲人成77777在线视频| 不卡av一区二区三区| 老鸭窝网址在线观看| 欧美成人午夜精品| 国产熟女午夜一区二区三区| 人人妻,人人澡人人爽秒播| 91麻豆av在线| 黄片小视频在线播放| 亚洲 欧美一区二区三区| 亚洲av电影在线进入| 国产精品国产高清国产av| 免费看十八禁软件| 老司机靠b影院| 免费不卡黄色视频| 午夜福利欧美成人| 久久午夜综合久久蜜桃| 国产黄a三级三级三级人| 中文字幕精品免费在线观看视频| 免费人成视频x8x8入口观看| 国产精品亚洲一级av第二区| 久99久视频精品免费| 天天躁狠狠躁夜夜躁狠狠躁| 国产片内射在线| 亚洲精品美女久久av网站| 搡老熟女国产l中国老女人| 69av精品久久久久久| 不卡一级毛片| 99久久精品国产亚洲精品| av在线播放免费不卡| 人人澡人人妻人| 午夜福利免费观看在线| 亚洲国产精品合色在线|