• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and superconductivity in yttrium superhydrides under high pressure

    2022-10-26 09:47:10YingyingWang王瑩瑩KuiWang王奎YaoSun孫堯LiangMa馬良YanchaoWang王彥超BoZou鄒勃GuangtaoLiu劉廣韜MiZhou周密andHongboWang王洪波
    Chinese Physics B 2022年10期
    關鍵詞:周密馬良

    Yingying Wang(王瑩瑩) Kui Wang(王奎) Yao Sun(孫堯) Liang Ma(馬良) Yanchao Wang(王彥超)Bo Zou(鄒勃) Guangtao Liu(劉廣韜) Mi Zhou(周密) and Hongbo Wang(王洪波)

    1State Key Laboratory of Superhard Materials,College of Physics,Jilin University,Changchun 130012,China

    2International Center of Computational Method&Software,College of Physics,Jilin University,Changchun 130012,China 3International Center of Future Science,Jilin University,Changchun 130012,China

    Keywords: high pressure,superhydride,superconductivity

    1. Introduction

    The search for high-temperature superconductors (HTS)with superconducting transition temperature(Tc)above liquidnitrogen temperature has long been recognized as an intriguing topic since the discovery of Hg withTc=4.2 K.[1]According to the Bardeen–Cooper–Schrieffer theory,[2]metallic hydrogen (MH) is one of the best candidates for achieving HTS; however, the quest for MH has proven extremely challenging due to the requirements of ultrahigh pressure conditions. Satterthwaiteet al.discovered~8 K superconductivity in thorium hydride in 1970,implying that hydrogen-rich metal hydrides would be HTS.[3]Then, Gilman[4]and Ashcroft[5]further proposed that MH could be achieved in hydrogenrich compounds at lower pressures because the heavier atoms played a chemical precompression role in hydrogen,ushering in a new era of HTS research in hydrogen-rich compounds at high pressures. However, despite significant efforts, there were no experimental breakthroughs for a long time until the observation of 203 K superconductivity at 155 GPa in covalent H3S,[6]which further inspired the search for HTS in conventional phonon-mediated hydride superconductors.

    In contrast to covalent superhydrides such as H3S, ionic metal hydrides offer more options for finding HTS. Wangetal.(2012) predicted the first CaH6clathrate hydride with a very highTcof 235 K at 150 GPa.[7]Following this study, a long list of clathrate REH6,REH9,and REH10superhydrides(RE: rare earth metal) were predicted to have highTcvalues close to or even above room temperature.[8–10]Stimulated by these predictions,a series of clathrate superhydrides,such as CaH6,[11]LaH10,[12,13]CeH9,CeH10,[14]ThH9,ThH10,[15](La,Y)H10,[16]were successfully synthesized withTcranging from 57 K–260 K.Among ionic superhydrides,yttrium superhydrides piqued the interest of researchers due to their abundant stoichiometries, they are predicted to have highTc, e.g.,84 K–95 K at 120 GPa in YH4,[10,17]251 K–264 K at 120 GPa in YH6,[10]21.5 K–43 K at 165 GPa in YH7,[18]253 K–276 K at 150 GPa in YH9,[8]and 305 K–326 K at 250 GPa in YH10.[9]Recently,Konget al.[19]successfully synthesized YH4and clathrate structured YH6and YH9with observedTcs of 220 K at 183 GPa and 243 K at 201 GPa for the last two yttrium superhydrides,respectively. Meanwhile,Troyanet al.also independently synthesized a clathrate YH6,[18]with an observedTcof 224 K at 166 GPa. Following that, Snideret al.synthesized YH9with aTcof up to 262 K using catalytic hydrogenation at about 182 GPa.[20]Furthermore, recent research has successfully observed 88 K superconductivity of YH4at 155 GPa.[21]

    Besides binary yttrium superhydrides, yttrium-bearing ternary hydrides, where the introduction of a third element other than hydrogen considerably expands the phase space,have attracted extensive attention. Lianget al.[22]and Xieet al.[23]predicted a clathrate CaYH12with an estimatedTcof 258 K at 200 GPa and 230 K at 180 GPa,respectively. Then,Lianget al.predicted a ternary YSH6with aTcof 91 K at 210 GPa.[24](La, Y)H6and (La, Y)H10[16]were synthesized experimentally at high pressures withTcs of 237 K and 253 K,respectively.

    Previous research has primarily concentrated on HTS(Tc>200 K),even though more superhydrides have been synthesized. Thus far, there has been a dearth of efforts to systematically investigate the superconductivity of all experimentally reported unconventional superhydrides. In this work,we first conducted detailed structure and superconductivity studies of YH4, which was chosen as an example due to its rare previous investigation. X-ray diffraction measurements revealed the successful synthesis of predictedI4/mmm-YH4at about 167 GPa and 1600 K,and its measuredTcof 82 K was evidenced by a sharp drop in resistance and a characteristic decrease in superconducting transition under a magnetic field up to 8.5 T. Further electrical transport measurements revealed a series of additional superconducting transitions at 29 K (162 GPa), 218 K (165 GPa), and 230 K (300 GPa),which arise from YH7and clathrate structured YH6,and YH9,respectively,inferred fromTcs consistency with previous studies.

    2. Experimental methods

    According to the different target pressures, symmetric diamond anvil cells (DACs) outfitted diamond anvils with a culet size of~30 μm–60 μm beveled at 8.5°to a diameter of~250 μm. The composite gasket was composed of rhenium outer annulus and a mixture of epoxy resin and Al2O3powder. The insulating gasket was pre-indented to a thickness of 10 μm,and the corresponding sample chamber with a diameter of 20 μm–30 μm was drilled using a laser drilling system.Commercially available yttrium ingot(Alfa Aesar,99.9%purity) and NH3BH3(AB) powder (Sigma-Aldrich, 97%) were loaded into the sample chamber inside a glovebox filled with Ar atmosphere with O2and H2O contents of<0.01 ppm. The Y foil and Au electrodes with thicknesses of 2 μm and 1 μm,respectively, were sandwiched between the AB layers. The application of Au electrodes can effectively avoid the chemical reaction[25]between the electrodes and hydrogen, which can result in the formation of undesirable superconductors,as well as help to maintain a hydrogen-rich environment. AB serves as a hydrogen source while also acting as thermal insulation layers. Subsequently, the samples were compressed to the required synthesis pressure. The pressure in the sample chamber was calibrated using the high-frequency edge of the diamond Raman line.[26]The laser heating of the sample was performed using a pulsed YAG infrared laser,and the temperature was determined using the black-body radiation fit within the Planck function.In situhigh-pressure angle-dispersive x-ray diffraction (ADXRD) experiments were performed at the Shanghai Synchrotron Radiation Facility’s BL15U1 beamline(5 μm×12 μm)with a monochromatic beam wavelength of 0.6199 ?A and an average acquisition time of 120 s. Before the experiment, the relevant geometric parameters were calibrated using a CeO2standard. Diffraction patterns were collected using a Mar165 CCD detector and analyzed using DIOPTAS software, yielding one-dimension profiles.[27]The Le Bail profile matching refinements were performed using the GSAS+EXPGUI programs.[28]Based on the four-probe van der Pauw method,[29]the resistance measurements were performed with currents of 10-6–10-4A(Keithley 2182A nanovoltmeter and 6221 AC and DC source)and the selected data were warming cycles with a controlled rate of approximately 1 K·min-1. Furthermore, non-magnetic DACs made of Be–Cu alloy were used for resistance measurements in an external magnetic field of up to 8.5 T.

    3. Results and discussion

    In this work, we prepared 11 samples, labeled as samples 1 through sample 11,to synthesize yttrium superhydrides from a mixture of Y and AB, and explore their superconductivity. Previous excellent results have shown AB to be a reliable H2source.[11,13,18,19,21]At high temperatures, AB would decompose into H2plus c-BN, the latter avoiding the problem of poor contact between the synthesized product and electrodes. The diagram of the assembly used for synthesis and four-probe electrical resistance measurements is shown in Fig. 1(a). In sample 1, the reactants were compressed to 167 GPa[Fig.S1(a)]before being heated to about 1600 K.The clear H–H vibration from H2molecular [Fig. S1(b)] demonstrates a hydrogen-rich environment. The sample turned black after laser heating,indicating that a chemical reaction occurred[inset in Fig. 1(b)]. Representative electrical resistance measurements as a function of temperature reveal a superconducting transition at 82 K, as evidenced by the sharp drop in the resistance,as shown in Fig.1(b). This superconducting transition can be perfectly reproduced in several independent experiments (Fig. 2 and Fig. S2), further confirming the reliability of our results. To determine the highest value ofTc,we evaluated the pressure dependence ofTc,as shown in Fig.2(b).Tcfluctuates in the pressure range of 145 GPa–170 GPa in different experiments and the highestTcof 84 K at 162 GPa is consistent with the previous theoretical estimate of 84 K–95 K for YH4.Furthermore,as pressure decreases,the superconducting transition disappears at about 143 GPa[Figs.S2(a)and S2(b)],indicating a possible superconducting phase decomposition.

    Fig.1. (a)Schematic of the experimental setup for synthesis and four-probe superconducting electrical resistance measurements. (b)Temperature dependence of resistance in sample 1(S1)at 167 GPa. The insets show an optical micrograph of the sample before and after laser heating. The value of the Tc is defined as the crossing point of the resistance slopes before and after the resistance drop. (c)Synchrotron XRD pattern of S1 at 167 GPa.The inset displays a two-dimensional XRD pattern. Unidentified weak reflections are marked by asterisks. (d)Crystal structures of I4/mmm-YH3 and I4/mmm-YH4. Big and small balls represent Y and H atoms,respectively.

    Fig.2. (a)Temperature dependence of resistance in sample 3(S3)at 162 GPa. Inset: crystal structures of Imm2-YH7. Big and small balls represent Y and H atoms, respectively. (b) Pressure dependence of Tc for I4/mmm YH4 (circle) and Imm2-YH7 (star). Different colors represent different samples. The cited experimental data for YH4 are represented by open circles.[21]Dark cyan symbols depict the calculated data from Troyan et al.[18]

    To further determine the structure of the high-temperature superconducting phase, we performedin situhigh-pressure ADXRD measurements of sample 1, which revealed that the products were dominated byI4/mmm-YH3andI4/mmm-YH4as shown in Fig.1(c)and the refined structural information is listed in Table S1.The tetragonal YH3,which possessed a new high-pressure phase in addition to the conventional fcc phase,was synthesized for the first time after prediction.[17]Moreover, no superconductivity was predicted inI4/mmm-YH3up to 200 GPa. Consequently, the observed-superconducting transition in sample 1 should be attributed to YH4.

    Due to the small sample size,measuring the Meissner effect in ultra-high-pressure experiments remains a significant challenge to this day. An applied external magnetic field can break the Cooper pairs, reducing the value ofTc; thus, the suppression of superconducting transitions by an applied magnetic field can be used to investigate the nature of the superconducting states. Figure 3(a)shows the measured resistance of sample 2 under different magnetic fields at 170 GPa.TheTcdecreased from 77 K to 53 K as the magnetic field increased to 8.5 T,indicating the superconducting nature of the transition.The extrapolated upper critical fieldμ0Hc2(T)and coherence length towardT=0 K are 14.9 T and 47 ?A,as well as 18.7 T and 42 ?A,respectively, as shown in Fig.3(b), and were fitted by the Ginzburg–Landau (GL)[30]and Werthamer–Helfand–Hohenberg (WHH)[31]models. Furthermore, besides the superconductivity of YH4,we observed another low-temperature superconductivity of 17 K [inset in Fig. 3(a)] in this experiment,which can be attributed to the element yttrium based on the agreement with theTcof the unheated sample (Fig. S3).Similar results for YH4were independently reported by another group.[21]

    Furthermore, after laser heating sample 3 to approximately 1750 K at 162 GPa, we observed step-down behavior in electrical resistance measurements at 81 K,29 K,and 18 K(Fig. 2(a)). As aforementioned, the first and third resistance drops,result from superconducting transitions of YH4and element Y,respectively. Based on previous theoretical work,[18]we hypothesized that the second resistance drop at 29 K may originate from the superconducting transition ofImm2-YH7,which was also reproduced in sample 7 [Fig. S2(c)]. Figure 2(b) summarizes the pressure dependency ofTcfor YH7and YH4. Similar to the variation trend of YH4, theTcof YH7was relatively stable in the pressure range of 142 GPa–170 GPa. Although bothI4/mmm-YH4andImm2-YH7have a molecular“H2”unit[Fig.1(d)and Fig.2(a)],theTcof YH4with a high-symmetry structure is higher than that of YH7due to stronger electron-phonon coupling.[18]

    In the following work, we tuned the heating temperature and pressure, to synthesize the high-temperature superconducting clathrate YH6, YH9, or even YH10. When we increased the heating temperature to 2200 K at 165 GPa for sample 4,aTcof 218 K was observed,as shown in Fig.4(a). Subsequently,sample 5 was compressed to a superhigh pressure of 300 GPa[Fig.S1(a)]and heated to about 2000 K,and the electrical resistance measurement curve revealed superconductivity at 230 K (Fig. 4(a)). As shown in Fig. 4(b) theTcs of samples 4 and samples 5 perfectly match the reported experimental results for clathrate structured YH6and YH9,[18,19]respectively. The highTcofImˉ3m-YH6andP63/mmc-YH9was attributed to their hydrogen cage structure,and particularly the significant contribution of the H-derived electronic density of states at the Fermi level.[8,10]Unfortunately,we found no evidence of clathrate YH10,which may be synthesized at higher pressures.

    Fig.3. (a)The temperature dependence of the resistance for I4/mmm-YH4 under external magnetic fields of μ0H=0 T,1 T,3 T,5 T,7 T,and 8.5 T at 170 GPa in sample 2(S2). Inset: the temperature-resistance curve without external magnetic fields. (b)Upper critical field versus temperature,μ0H(0)was fitted with the GL and WHH models.

    Fig. 4. (a) Temperature dependence of resistance in sample 4 (S4) at 165 GPa and sample 5 (S5) at 300 GPa. The large residual resistance in S4 and S5 is mainly from the coexistence of multiple phases. Furthermore, the pseudo-four-electrode method was used in the electrical measurement for S5, thus introducing additional resistance from the electrodes.Inset:crystal structures of Imˉ3m-YH6 and P63/mmc-YH9.Big and small balls represent Y and H atoms,respectively. (b)Pressure dependence of Tc for Imˉ3m-YH6 (star)and P63/mmc-YH9 (hexagon). The symbols of dark cyan, orange,and red correspond to the data of Kong et al.,[19] Troyan et al.,[18] and this work,respectively.

    A series of superhydrides with highTchave been synthesized under high pressures; however, the absence of resistive transition broadening with increasing magnetic field in some works[12,16,32]has led to a debate about their superconductivity.[33]Using YH4as an example,we observed a clear broadening of the resistive transition under applied magnetic fields (Fig. S4), which follows a similar trend to that of typical standard superconductors such as MgB2[34]and NbN,[35]further demonstrating the veracity of our results. As a member of superhydride, the results of electrical transport measurements under external magnetic fields in YH4will help clarify the debate on the superconductivity in superhydrides.

    4. Conclusion and perspectives

    In summary, we have successfully synthesized YH4,YH6,YH7,and YH9,which exhibitedTcs of 82 K at 167 GPa,218 K at 165 GPa, 29 K at 162 GPa, and 230 K at 300 GPa,respectively. Furthermore, a tetragonal phase as a new highpressure structure of conventional YH3was synthesized for the first time at 167 GPa. These findings confirm the original theoretical prediction and provide a foundation for future research into HTS on the doped Y-based polynary superhydrides.

    Acknowledgments

    XRD measurements were performed at BL15U1 station in Shanghai Synchrotron Radiation Facility(SSRF)and 4W2 station in Beijing Synchrotron Radiation Facility(BSRF).The measurements of superconducting transition under external magnetic fields were supported by the Synergic Extreme Condition User Facility(SECUF)and China’s Steady High Magnetic Field Facility(SHMFF).

    Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400203 and 2018YFA0305900), the National Natural Science Foundation of China(Grant Nos.52090024,11874175,12074139,12074138, 11874176, and 12034009), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB33000000),and Program for JLU Science and Technology Innovative Research Team(JLUSTIRT).

    猜你喜歡
    周密馬良
    父親
    馬丹丹 馬良作品
    大眾文藝(2021年14期)2021-08-15 18:40:12
    當閨蜜變成姑嫂
    分憂(2021年6期)2021-07-19 20:56:44
    我讀《神筆馬良》
    我想成為神筆馬良
    Мероприятия и контакты
    中國(俄文)(2018年5期)2018-05-24 13:53:06
    照應周密,行文流暢
    我的神筆馬良
    童話世界(2017年11期)2017-05-17 05:28:26
    夏天的風秋天的霧
    小馬良認錯
    久久精品国产a三级三级三级| 国产亚洲最大av| 十八禁网站网址无遮挡| 国产一级毛片在线| 亚洲精品第二区| 日韩亚洲欧美综合| 国产免费视频播放在线视频| 国产av国产精品国产| 少妇猛男粗大的猛烈进出视频| 啦啦啦在线观看免费高清www| 久久久久久久久久久久大奶| 老司机影院毛片| 日韩,欧美,国产一区二区三区| 国产毛片在线视频| 又黄又爽又刺激的免费视频.| 韩国高清视频一区二区三区| 国产免费视频播放在线视频| 日本av手机在线免费观看| 免费av中文字幕在线| 国产一区二区三区av在线| 伦理电影大哥的女人| 精品久久久噜噜| 久久久久久久大尺度免费视频| 18禁在线无遮挡免费观看视频| 综合色丁香网| 黑人欧美特级aaaaaa片| 成人国语在线视频| 精品一区二区免费观看| 免费观看a级毛片全部| 欧美日韩综合久久久久久| 熟女av电影| 大又大粗又爽又黄少妇毛片口| av黄色大香蕉| 亚洲国产最新在线播放| 一本色道久久久久久精品综合| 亚洲国产精品一区二区三区在线| 高清视频免费观看一区二区| 国产爽快片一区二区三区| 在线观看www视频免费| 简卡轻食公司| 欧美精品亚洲一区二区| 欧美日韩国产mv在线观看视频| 国产精品国产三级国产av玫瑰| 男女啪啪激烈高潮av片| 国产一区二区三区综合在线观看 | 美女国产高潮福利片在线看| 国产成人av激情在线播放 | 日本爱情动作片www.在线观看| 国产成人免费观看mmmm| 日韩av不卡免费在线播放| 岛国毛片在线播放| 欧美97在线视频| 精品人妻一区二区三区麻豆| 久久精品夜色国产| 久久久久网色| 国产精品一区www在线观看| 97精品久久久久久久久久精品| 婷婷色av中文字幕| 丝袜在线中文字幕| 99久久人妻综合| 日韩视频在线欧美| 亚洲国产精品国产精品| 晚上一个人看的免费电影| 另类精品久久| 亚洲精品中文字幕在线视频| 啦啦啦啦在线视频资源| 国内精品宾馆在线| 伦理电影免费视频| 亚洲欧洲日产国产| 中文字幕最新亚洲高清| 天美传媒精品一区二区| 色吧在线观看| 免费人妻精品一区二区三区视频| 少妇 在线观看| 免费观看性生交大片5| 丰满迷人的少妇在线观看| 成人漫画全彩无遮挡| 久久人人爽av亚洲精品天堂| www.色视频.com| 婷婷色综合大香蕉| 国产欧美日韩综合在线一区二区| 在线看a的网站| 国产免费福利视频在线观看| 亚洲精品乱码久久久久久按摩| 国产精品成人在线| 国产精品国产三级专区第一集| 成人午夜精彩视频在线观看| 蜜桃久久精品国产亚洲av| 免费黄色在线免费观看| av电影中文网址| 欧美日韩国产mv在线观看视频| 一本大道久久a久久精品| 人妻少妇偷人精品九色| 一区二区三区免费毛片| 中文精品一卡2卡3卡4更新| 欧美bdsm另类| 久久久午夜欧美精品| 肉色欧美久久久久久久蜜桃| 亚洲精品美女久久av网站| 亚洲三级黄色毛片| 成年av动漫网址| 国产精品国产三级国产专区5o| 一本一本综合久久| 少妇猛男粗大的猛烈进出视频| 成人漫画全彩无遮挡| 亚洲内射少妇av| 中国三级夫妇交换| 看非洲黑人一级黄片| 只有这里有精品99| 人妻夜夜爽99麻豆av| 久久国产精品大桥未久av| 国产欧美亚洲国产| 久久亚洲国产成人精品v| 久久婷婷青草| 成人午夜精彩视频在线观看| 高清毛片免费看| 熟妇人妻不卡中文字幕| 国产日韩欧美亚洲二区| 黄色欧美视频在线观看| 午夜福利,免费看| 老司机影院毛片| 男女啪啪激烈高潮av片| 九九久久精品国产亚洲av麻豆| www.色视频.com| 3wmmmm亚洲av在线观看| 国产精品 国内视频| 免费播放大片免费观看视频在线观看| 日韩制服骚丝袜av| 九色成人免费人妻av| 国产精品国产三级国产av玫瑰| xxx大片免费视频| 黑人猛操日本美女一级片| 久久久国产一区二区| 人人澡人人妻人| 王馨瑶露胸无遮挡在线观看| 五月天丁香电影| 毛片一级片免费看久久久久| 久久ye,这里只有精品| 有码 亚洲区| 亚洲精品国产色婷婷电影| 啦啦啦在线观看免费高清www| 亚洲国产欧美在线一区| 久久青草综合色| 国产老妇伦熟女老妇高清| 91精品国产九色| 国产欧美日韩一区二区三区在线 | 性高湖久久久久久久久免费观看| 亚洲第一区二区三区不卡| 全区人妻精品视频| 91久久精品电影网| 婷婷色综合大香蕉| 一级片'在线观看视频| 大片电影免费在线观看免费| 黄色怎么调成土黄色| 亚洲欧美日韩卡通动漫| 黑人欧美特级aaaaaa片| 久久影院123| 男女国产视频网站| 黑人欧美特级aaaaaa片| 91在线精品国自产拍蜜月| 人妻人人澡人人爽人人| 最近2019中文字幕mv第一页| 亚洲精品第二区| 日韩亚洲欧美综合| 老司机影院成人| 日韩亚洲欧美综合| 成年人午夜在线观看视频| 五月天丁香电影| 2021少妇久久久久久久久久久| 亚洲欧美清纯卡通| 99久国产av精品国产电影| 妹子高潮喷水视频| 青春草国产在线视频| a级毛色黄片| 蜜桃国产av成人99| 香蕉精品网在线| 中文字幕免费在线视频6| 亚洲av不卡在线观看| 欧美成人精品欧美一级黄| 亚洲国产成人一精品久久久| 亚洲精品国产av蜜桃| 精品99又大又爽又粗少妇毛片| 欧美成人午夜免费资源| 精品人妻一区二区三区麻豆| 日本91视频免费播放| 国产色婷婷99| av专区在线播放| 少妇的逼水好多| 尾随美女入室| 日韩,欧美,国产一区二区三区| 成年美女黄网站色视频大全免费 | 青青草视频在线视频观看| 欧美日韩视频高清一区二区三区二| 美女cb高潮喷水在线观看| 国产69精品久久久久777片| 大又大粗又爽又黄少妇毛片口| 少妇高潮的动态图| 亚洲激情五月婷婷啪啪| 一级片'在线观看视频| 黑人猛操日本美女一级片| 国产精品欧美亚洲77777| 天堂8中文在线网| 夜夜骑夜夜射夜夜干| 成人二区视频| 成年女人在线观看亚洲视频| 日日摸夜夜添夜夜添av毛片| 日韩,欧美,国产一区二区三区| 国产女主播在线喷水免费视频网站| 亚洲av.av天堂| 久久99热这里只频精品6学生| 久久人人爽人人片av| 日韩一区二区三区影片| 日韩 亚洲 欧美在线| 国产视频内射| 成年av动漫网址| 免费看不卡的av| 女性生殖器流出的白浆| 寂寞人妻少妇视频99o| 日韩伦理黄色片| 丰满乱子伦码专区| 精品卡一卡二卡四卡免费| 亚洲av免费高清在线观看| 国产深夜福利视频在线观看| 亚洲性久久影院| 波野结衣二区三区在线| 成人毛片60女人毛片免费| 午夜av观看不卡| 黑人猛操日本美女一级片| 中文字幕精品免费在线观看视频 | 免费av中文字幕在线| 视频中文字幕在线观看| 插阴视频在线观看视频| 久久精品久久久久久久性| 国产日韩欧美在线精品| 亚洲三级黄色毛片| 精品少妇黑人巨大在线播放| 99国产综合亚洲精品| 欧美精品一区二区免费开放| 在线观看三级黄色| 国产免费一区二区三区四区乱码| 欧美日韩国产mv在线观看视频| 一本一本综合久久| 丰满饥渴人妻一区二区三| 狠狠精品人妻久久久久久综合| 91成人精品电影| 日韩欧美一区视频在线观看| 伊人久久精品亚洲午夜| 国产有黄有色有爽视频| 99热国产这里只有精品6| 五月玫瑰六月丁香| 亚洲精品av麻豆狂野| 国产黄片视频在线免费观看| 欧美日韩在线观看h| 能在线免费看毛片的网站| 热99久久久久精品小说推荐| 国产午夜精品久久久久久一区二区三区| 中文字幕av电影在线播放| 美女中出高潮动态图| av免费观看日本| 日韩亚洲欧美综合| 人妻制服诱惑在线中文字幕| 国产亚洲欧美精品永久| 18禁动态无遮挡网站| 人成视频在线观看免费观看| 日韩成人av中文字幕在线观看| 亚洲欧美色中文字幕在线| 国产一区二区三区av在线| 欧美 亚洲 国产 日韩一| 欧美激情国产日韩精品一区| 日产精品乱码卡一卡2卡三| a级毛片免费高清观看在线播放| 97在线人人人人妻| 国产爽快片一区二区三区| 成人免费观看视频高清| 国产永久视频网站| 日本猛色少妇xxxxx猛交久久| 韩国av在线不卡| 国产精品一区二区在线观看99| 日本猛色少妇xxxxx猛交久久| 国产欧美日韩一区二区三区在线 | 国产精品欧美亚洲77777| 在线免费观看不下载黄p国产| 久久久欧美国产精品| 少妇人妻 视频| 亚洲四区av| 久久av网站| 亚洲精品乱久久久久久| 亚洲国产精品成人久久小说| 另类亚洲欧美激情| 五月伊人婷婷丁香| 国产精品久久久久久精品电影小说| 国产伦理片在线播放av一区| 99久久中文字幕三级久久日本| 热99国产精品久久久久久7| 人妻 亚洲 视频| 交换朋友夫妻互换小说| 成人18禁高潮啪啪吃奶动态图 | 国产成人精品久久久久久| 久久精品久久精品一区二区三区| 男女无遮挡免费网站观看| 五月伊人婷婷丁香| 老司机影院成人| 久久婷婷青草| 久久久久精品久久久久真实原创| 国语对白做爰xxxⅹ性视频网站| 免费黄频网站在线观看国产| 亚洲一区二区三区欧美精品| 午夜老司机福利剧场| 另类亚洲欧美激情| 久久久久精品久久久久真实原创| 亚洲国产最新在线播放| 亚洲精品久久成人aⅴ小说 | 日日爽夜夜爽网站| 国产精品麻豆人妻色哟哟久久| 国产极品天堂在线| 99久久精品国产国产毛片| 91精品一卡2卡3卡4卡| 大香蕉久久成人网| 卡戴珊不雅视频在线播放| 秋霞伦理黄片| 国产 一区精品| 国产免费一区二区三区四区乱码| 欧美97在线视频| 91国产中文字幕| 91精品国产国语对白视频| 免费人成在线观看视频色| 哪个播放器可以免费观看大片| 国内精品宾馆在线| av专区在线播放| 亚洲欧美成人综合另类久久久| 久久久久精品性色| 精品少妇黑人巨大在线播放| 亚洲欧洲日产国产| 国产亚洲av片在线观看秒播厂| 国产极品天堂在线| 久久青草综合色| 赤兔流量卡办理| 18禁裸乳无遮挡动漫免费视频| 嘟嘟电影网在线观看| 亚洲激情五月婷婷啪啪| av在线播放精品| 国产色婷婷99| 国产一区二区在线观看日韩| 狂野欧美激情性bbbbbb| 欧美日韩综合久久久久久| 国产黄片视频在线免费观看| 亚洲三级黄色毛片| 国产精品偷伦视频观看了| 成年人午夜在线观看视频| 免费高清在线观看日韩| av天堂久久9| 亚洲不卡免费看| 国产成人精品无人区| 一区二区三区免费毛片| 人妻制服诱惑在线中文字幕| 日韩三级伦理在线观看| 晚上一个人看的免费电影| 国产精品 国内视频| av国产久精品久网站免费入址| 亚洲国产日韩一区二区| 91久久精品国产一区二区三区| 久久国产精品男人的天堂亚洲 | 男人操女人黄网站| 狂野欧美激情性bbbbbb| 九九在线视频观看精品| 黄片播放在线免费| 久久久a久久爽久久v久久| 欧美人与性动交α欧美精品济南到 | 人人澡人人妻人| 亚洲精品乱码久久久v下载方式| 中文欧美无线码| 男人爽女人下面视频在线观看| 尾随美女入室| 黑人猛操日本美女一级片| 久久国产精品男人的天堂亚洲 | 日韩中文字幕视频在线看片| 亚洲美女搞黄在线观看| 一区二区三区精品91| 亚洲精品国产av成人精品| 91精品三级在线观看| 夫妻午夜视频| 国产免费又黄又爽又色| 美女国产视频在线观看| a级毛色黄片| 黄色一级大片看看| 国产成人精品婷婷| 又黄又爽又刺激的免费视频.| 美女国产视频在线观看| 欧美日韩亚洲高清精品| 如日韩欧美国产精品一区二区三区 | 插阴视频在线观看视频| 国产av一区二区精品久久| 久久久久精品久久久久真实原创| 久久99热6这里只有精品| 亚洲av二区三区四区| 亚洲情色 制服丝袜| 欧美人与善性xxx| 久久99热这里只频精品6学生| 久久久久国产网址| 精品卡一卡二卡四卡免费| 精品国产一区二区三区久久久樱花| 国产精品女同一区二区软件| 伊人久久精品亚洲午夜| 好男人视频免费观看在线| 欧美日韩综合久久久久久| 久久国内精品自在自线图片| 国产精品 国内视频| 秋霞在线观看毛片| 观看av在线不卡| 中文字幕免费在线视频6| 九九久久精品国产亚洲av麻豆| 国产日韩欧美亚洲二区| 大片电影免费在线观看免费| 亚洲精华国产精华液的使用体验| 天美传媒精品一区二区| 免费av不卡在线播放| 中文字幕精品免费在线观看视频 | 少妇的逼好多水| 精品人妻在线不人妻| 国产国拍精品亚洲av在线观看| h视频一区二区三区| 搡老乐熟女国产| 精品少妇黑人巨大在线播放| 99久久综合免费| 日本免费在线观看一区| 亚洲人与动物交配视频| 日本色播在线视频| 涩涩av久久男人的天堂| 色哟哟·www| 91精品一卡2卡3卡4卡| 黄色怎么调成土黄色| 女人久久www免费人成看片| 午夜老司机福利剧场| 三级国产精品欧美在线观看| 99热6这里只有精品| 国产一区二区三区av在线| 国产爽快片一区二区三区| 亚洲综合色惰| 久久这里有精品视频免费| 亚洲国产精品一区三区| 久久久久久久久久久免费av| 日韩亚洲欧美综合| 国产精品一区二区在线观看99| 亚洲av电影在线观看一区二区三区| 日本黄色日本黄色录像| 人妻人人澡人人爽人人| 天天躁夜夜躁狠狠久久av| 日本黄色片子视频| 国产精品秋霞免费鲁丝片| 又黄又爽又刺激的免费视频.| 精品久久久久久久久av| 伦精品一区二区三区| 少妇猛男粗大的猛烈进出视频| 国产av码专区亚洲av| 曰老女人黄片| 国产精品一国产av| 国产日韩欧美亚洲二区| 男女高潮啪啪啪动态图| 亚洲精品美女久久av网站| 亚洲国产最新在线播放| 国产精品 国内视频| 亚洲精品中文字幕在线视频| 亚洲av男天堂| 赤兔流量卡办理| xxxhd国产人妻xxx| 高清午夜精品一区二区三区| 狂野欧美激情性bbbbbb| 最黄视频免费看| 久久久国产欧美日韩av| 日韩强制内射视频| 久久精品人人爽人人爽视色| 美女国产高潮福利片在线看| 亚洲熟女精品中文字幕| av在线老鸭窝| 丰满迷人的少妇在线观看| 久久久久久久久久久免费av| 男人爽女人下面视频在线观看| 国产精品偷伦视频观看了| 自线自在国产av| 中文精品一卡2卡3卡4更新| 日韩成人伦理影院| av国产久精品久网站免费入址| 成人毛片60女人毛片免费| 丰满饥渴人妻一区二区三| 国产精品秋霞免费鲁丝片| 亚洲三级黄色毛片| 校园人妻丝袜中文字幕| 欧美三级亚洲精品| 性色av一级| 国产成人91sexporn| 午夜免费观看性视频| xxxhd国产人妻xxx| 日本免费在线观看一区| 三级国产精品片| 少妇人妻 视频| 日韩电影二区| 国精品久久久久久国模美| av.在线天堂| 麻豆精品久久久久久蜜桃| 九九久久精品国产亚洲av麻豆| 亚洲丝袜综合中文字幕| 91在线精品国自产拍蜜月| 免费观看av网站的网址| 啦啦啦啦在线视频资源| 免费不卡的大黄色大毛片视频在线观看| 国产又色又爽无遮挡免| 好男人视频免费观看在线| 久久热精品热| 蜜桃久久精品国产亚洲av| 一边亲一边摸免费视频| www.av在线官网国产| 女性被躁到高潮视频| 日本av免费视频播放| 97在线人人人人妻| 国产精品一区二区在线不卡| 黑丝袜美女国产一区| 人妻少妇偷人精品九色| 国产极品粉嫩免费观看在线 | 久久久久久久久大av| 久久久欧美国产精品| 大片免费播放器 马上看| 精品人妻偷拍中文字幕| 午夜精品国产一区二区电影| 少妇的逼好多水| 国产在线免费精品| av女优亚洲男人天堂| 3wmmmm亚洲av在线观看| 日韩精品免费视频一区二区三区 | 99久久精品国产国产毛片| 国产精品偷伦视频观看了| 精品亚洲成a人片在线观看| 久久午夜综合久久蜜桃| 国产有黄有色有爽视频| 啦啦啦啦在线视频资源| 精品久久蜜臀av无| 免费看光身美女| 亚洲四区av| 男人操女人黄网站| 青春草视频在线免费观看| 人人澡人人妻人| 亚洲第一区二区三区不卡| 蜜桃国产av成人99| 国产成人精品婷婷| 大香蕉久久网| 51国产日韩欧美| 亚洲欧美成人综合另类久久久| 国产av一区二区精品久久| 嫩草影院入口| 国产精品国产三级专区第一集| videos熟女内射| 黄片播放在线免费| 亚洲av日韩在线播放| 女的被弄到高潮叫床怎么办| 2018国产大陆天天弄谢| 日韩熟女老妇一区二区性免费视频| 国产精品99久久99久久久不卡 | 80岁老熟妇乱子伦牲交| 91精品伊人久久大香线蕉| 美女大奶头黄色视频| av线在线观看网站| 成人漫画全彩无遮挡| 日本-黄色视频高清免费观看| 亚洲av综合色区一区| 亚洲综合色网址| 少妇高潮的动态图| 亚洲精品第二区| 中国三级夫妇交换| 国产在线视频一区二区| 国产精品99久久99久久久不卡 | 午夜免费男女啪啪视频观看| 精品久久久精品久久久| av播播在线观看一区| 黄色欧美视频在线观看| 少妇猛男粗大的猛烈进出视频| 91午夜精品亚洲一区二区三区| 久久精品国产鲁丝片午夜精品| 欧美性感艳星| 国产免费一级a男人的天堂| 自线自在国产av| 久久午夜综合久久蜜桃| 永久网站在线| 午夜精品国产一区二区电影| 亚洲精品国产色婷婷电影| 全区人妻精品视频| 亚洲av不卡在线观看| 国产亚洲午夜精品一区二区久久| 成人亚洲欧美一区二区av| 免费看av在线观看网站| 国产精品免费大片| 波野结衣二区三区在线| 欧美3d第一页| 一级a做视频免费观看| 老司机影院毛片| 亚洲精品中文字幕在线视频| 精品久久国产蜜桃| 九九在线视频观看精品| 如何舔出高潮| 伦理电影免费视频| 日本-黄色视频高清免费观看| 18禁观看日本| 成人漫画全彩无遮挡| 成人毛片60女人毛片免费| 99久久人妻综合| 人人妻人人添人人爽欧美一区卜| 91久久精品电影网| 新久久久久国产一级毛片| 91在线精品国自产拍蜜月| 亚洲精品视频女| 天天影视国产精品| 91精品伊人久久大香线蕉| 国产精品成人在线| 精品一品国产午夜福利视频| 人妻人人澡人人爽人人| 3wmmmm亚洲av在线观看| a级片在线免费高清观看视频|