• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum simulation of τ-anti-pseudo-Hermitian two-level systems

    2022-10-26 09:49:40ChaoZheng鄭超
    Chinese Physics B 2022年10期

    Chao Zheng(鄭超)

    Department of Physics,College of Science,North China University of Technology,Beijing 100144,China

    Keywords: quantum simulation,linear combination of unitaries,non-Hermitian,anti-pseudo-Hermitian

    1. Introduction

    Non-Hermitian (NH) systems, closely relating to open and dissipative quantum systems,[1–9]are more common in real physical world than closed Hermitian systems, and are attracting increased research interest in recent decades. The featured properties of NH systems enlighten various investigations both in fundamental researches and in applications.[10–33]parity-time-reversal (PT) symmetric systems and the antisymmetric counterparts can be investigated experimentally in different physical systems by different methods, such as NMR,[34]optical micro-cavities,[35]photons–magnons coupled optical systems,[36]quantum photonics,[37]metalsemiconductor complex systems,[38]other optical systems,[39]etc.

    Besides thePTsymmetric systems,[11–17]pseudo-Hermitian (PH) systems,[10,18–22,40–46]and their antisymmetric counterparts,[31,47–58]a class of NH systems ofτ-anti-pseudo-Hermitian (τ-APH) Hamiltonian was defined and investigated in 2002.[21]Both theτ-APH and its antilinear operatorτrelevant to the symmetry are important to thoroughly investigate the sufficient and necessary conditions of an NH Hamiltonian having real spectrums.[21]

    Obeying Feynman’s thinking that nature should be simulated by itself,[59]quantum simulation has become an efficient way to investigate various phenomena and properties by controllable quantum systems. Besides Hermitian systems,[60–71]NH systems can be investigated effectively and efficiently in the way of quantum simulation, such asPT-symmetric andP-pseudo-Hermitian systems,[34,37,72–76]their anti-symmetric counterparts,[40,57,58]and other novel systems.[77–79]

    In this work, we investigate quantum simulation ofτanti-pseudo-Hermitian two-level systems, proposing in detail both for a general case and for special cases that theτbeingTandPT. We use linear combination of unitaries (LCU) in the scheme of duality quantum computing[80]and the unitaryexpansion(UE)technique[6,7]to achieve the quantum simulation in an indeterministic way, optimize the quantum circuit,and calculate the success probability. At last,we discuss how to generalize our method to simulate a generalτ-APH highlevel system,and suggest experimental systems for implementation in the near future.

    2. The τ-anti-pseudo-Hermitian symmetry

    Aτ-APH HamiltonianHτ, defined by Mostafazadeh,[21]satisfies

    ?ξandζ ∈?.τcan be the time-reversal (T) operator,parity-time-reversal (PT) operator, etc. Notice that the antisymmetry of the PH Hamiltonian introduced in Ref. [40] is relevant to a linear Hermitian automorphism(such as the parity operatorP),so it is completely different from theτ-anti-PH Hamiltonian that relevant to an antilinear anti-Hermitian automorphismτ[21]we investigate in this work.

    3. The τ-APH two-level systems

    SinceP,Tand their combinations are basic symmetries attracting increased research interest,[81–85]we illustrate the NH systems by specifyingτas operatorsTandPTin twodimensional cases. Notice thatPT-anti-pseudo-Hermiticity andPT-symmetry are two distinguishable symmetries, of which Hamiltonians can be classified by the relevant mathematical relations of symmetries, i.e.,PTH(PT)-1=HandPTH?(PT)-1=H,respectively.

    3.1. τ =T

    In the two-dimensional case,the general form ofT-APH HamiltonianHTcan be decided by settingτ=Tand the symmetry in Eq.(1)

    wheres,w,ukandvk(k=1,2) are real parameters, and the time-reversal operatorThas an effect as the complex conjugate operating on its right operators and state-vectors.

    3.2. τ =PT

    In the two-dimensional case,the general form ofPT-APH HamiltonianHTcan be decided by settingτ=PTand the symmetry in Eq.(1)

    Fig.1. Subsets of the τ-anti-pseudo-Hermitian systems. The intersection of the T-anti-pseudo-Hermitian and the PT-symmetric systems are P-pseudo Hermitian, while that of the PT-anti-pseudo-Hermitian and PT-symmetric systems are Hermitian.

    We show the relations between typical NH two-level sets in Fig. 1:τ-APH (τ=TorPT),PT-symmetric,P-pseudo-Hermitian systems,and Hermitian cases. In special cases,theτ-APH systems becomeP-pseudo-Hermitian or trivial Hermitian systems.

    4. Quantum simulation of T- and PT-antipseudo-Hermitian two-level systems

    It is the Hermiticity that guarantees the unitarity of the time-evolution of a Hermitian system,which can be simulated in the Hilbert space of the same dimensions. However, the two-dimensional time-evolutionary operator,

    that we will simulate, is not unitary. Thus, one qubit cannot achieve the simulation. Aτ-APH subsystem will be constructed in a larger Hilbert space and simulated by qubits using LCU and duality quantum algorithm.

    The exceptional points (EPs),[86,87]consist of the points in the parametric space,lead the eigenvalues ofHτto be zero.Except the EPs, our quantum simulation is applicable to the whole parametric space(including the neighborhoods of EPs).Because the NH systems are simulated in a Hermitian system,the conventional Hilbert–Schmidt inner product will be used.

    4.1. LCU and duality quantum algorithm

    We now propose the quantum simulation of the timeevolution in Eq. (6) based on LCU and duality quantum algorithm[80]in a Hermitian quantum device.

    LCU and duality quantum algorithm were proposed in 2002,[80]and they were developed fast,[88–93]becoming one of the strongest tools in designing quantum algorithms.[94]Besides to accelerate and optimize Hermitian quantum simulation, we developed LCU to simulate NH systems,[34,37,40,57,58,72–76]other novel systems,[77,78]and time-dependent non-unitary operators.[6]Our unitary expansion(UE)technique is used to realize the LCU in the detailed cases.

    4.2. UE of the time-evolutionary operator

    In two-dimensional cases,[6]the maximum of the number of UE-terms is four in general, and it can be reduced to two in some special cases when the parameters meet the phase matching conditions. We now applied the UE techniques to the non-unitary time-evolutionary operator. In detail,

    Now,we are able to simulate the non-unitary evolution in Eq. (6) using LCU. A qudit or a qudit-qubit-hybrid device is able to achieve the simulation,and qudits take advantages over qubits in some quantum algorithm,[95]e.g.,it reaches a higher accuracy to solve the eigenvalue problem using quantum phase estimation algorithm by qudits[96]than by qubits.[97]However,we focus on quantum simulations using qubits here,since qubit-quantum computers are available technologies.

    4.3. Qubits simulation of T-APH two-level systems

    We first take aT-anti-pseudo-Hermitian system as an example for illustration. One evolutionary qubiteand two ancillary qubitsaare able to simulate the time-evolution of a generalT-APH system by our theory. The evolutionary qubit will evolve as Eq.(8)with the assistance of the ancillary qubits in a probabilistic way. We will use a six-dimensional Hilbert subspace extended by|l j〉a|k〉e’s(l j=00,01,10 andk=0,1)to achieve the simulation,and the rest two dimensions are spared.Notice that the success probability using six dimensions is larger than that using the full eight dimensions,[6]while the later one can also achieve the simulation.

    The quantum circuit to simulate aT-APH two-level system is shown in Fig.2. At the beginning,the whole system is initialized to a pure state|00〉a|0〉e,and the evolutionary qubitewill be prepared in an arbitrary state|ψ〉eas need by a singlequbit rotationRψ. The two ancillary qubits will assist the evolutionary qubit to evolve governed by theT-APH Hamiltonian. In the first block,we will spare the two dimensions relevant to|11〉a|k〉e(k=0,1)to prepare the six-dimensional subspace,and assign the three UE-parametersgk’s(k=0,1,2)to|l j〉a|k〉e’s(l j=00,01,10 andk=0,1). During this process,the first and second ancillary qubits are swapped,and then two single-qubit operatorsG1and-σ3rotate them. A controlled-NOT gate follows,of which the first and the second qubits are the target and control qubits, respectively. After operated byG2, the first qubit is swapped again with the other ancillary qubit. The explicit forms of the two single-qubit operators are

    whereg0,g1,g2andgsare those in Eqs.(8)and(10).

    In the second block of Fig. 2, the three UE-terms in Eq. (8) will be generated. Notice that the unit-matrixC00-σ0has theoretical meaning to show our method clearly, while no operation is needed in practice. The other two jointlycontrolled gates are necessary,and their explicit forms are

    Now the three UE terms are generated, and we will combine them together in the next step.

    The third block aims at combining the three UE-terms.Five operators will be applied in series, i.e., a first swapping gate, a Hadamard gateH2, a second swapping gate, a singlequbit rotationG3, and a third swapping gate, as shown in Fig.2,where

    If one of the rest two results of|01〉aor|01〉ais measured,the simulation will be terminated. The whole process will then be started over until|00〉ais obtained. Therefore, it is an probabilistic protocol to simulate the time-evolution ofT-APH twolevel systems.

    Fig.2. Three-qubit quantum circuit. The system is prepared to|00〉a|ψ〉e. The six-dimensional subspace is constructed in the first block. At the meantime,the three UE-parameters are assigned.Then,the UE-terms generation is realized by three controlled-controlled operators(the first dashed one is a trivial unit matrix)in the second block. UE-terms superposition in Eq.(8)is achieved in the third block. Finally,quantum measurements are performed on the ancillary system to evolve the qubit e as the T-APH system in a probabilistic way if|00〉a is obtained.

    4.4. Qubits simulation of PT-APH two-level systems

    The simulation of a generalPT-anti-pseudo-Hermitian system(Fig.3)is similar to that of aT-APH system,in which three qubits are essential for a general case. The operatorsGk(k=1,2) and the controlled-σ3in Fig. 2 should be replaced byRk(k=1,2)and a controlled-iσ2as show in Fig.3,respectively. Their explicit forms are

    Before quantum measurements,the whole system evolves to a superposition

    Otherwise, the simulation will be restarted until|00〉ais output.

    Fig. 3. Three-qubit quantum circuit. Detailed operations will be replaced, while the whole process is similar to that in Fig. 2. Finally, quantum measurements are performed on the ancillary subsystem to evolve the qubit e as the PT-APH system in a probabilistic way when the output is|00〉a.

    4.5. Special cases

    In special cases, when the Hamiltonians satisfy phase matching conditions,[6]the four UE-terms in Eq. (7) can be merged to two,and two qubits are enough to simulate the timeevolution. We take

    as an example, which is bothT- andPT-APH. The timeevolution operator can be expanded to

    where the explicit forms ofr0andr1are given in Appendix A(iii).

    In this case, the time-evolution can be simulated by two qubits as the quantum circuit shown in Fig.4. After prepared Otherwise, if the ancillary qubit is observed in state|1〉a, the process will be terminated and the result will be discarded.We will start over the quantum simulation until|0〉ais measured at last.

    Notice that the evolution ofHcan be simulated by both the three-qubit in the previous two subsections and this twoqubit protocol here. However, from Eqs. (17), (22) and (28),the success probability using two qubits is larger than that using three qubits (noticers,gsandhsare the same for a fixedH). Therefore, it is meaningful to reduce UE-terms before quantum simulation,decreasing the complexities of the quantum circuit but increasing the success probability.

    Fig.4. Two-qubit quantum circuit. The system includes an ancillary qubit a and an evolutionary qubit e. After initialized to|0〉a|ψ〉e, operators areapplied in series,i.e., asingle-qubit rotationV, twocontrolledoperators (the frist one is a trivial unit-matrix), and a Hadamard. Finally, the evolutionary qubit e will evolveas e-i htˉ H|ψ〉e if|0〉a ismeasured.

    4.6. High-dimensional cases

    For a high-dimensional case,assume that the dimensions of theτ-APH system areDand the evolutionary operator can be expanded toNUE-terms. The qubit numbers of the ancillary and the evolutionary subsystems,N1andN2, should not less than log2Nand log2D,respectively.

    At the beginning, the whole system is initialized to state|0〉a|ψ〉e. Designing the quantum circuit by LCU and duality quantum algorithm, a series of operators will be applied on the system to assign the UE-parameters, generate and superpose the UE-terms to constructing theτ-APH subsystem. At last, quantum measurements will be performed on the ancillary subsystem to complete the time-evolution in a probabilistic way if the ancillary qubits are measured in state|0〉a.In this situation, the subsystemewill evolve as governed by the the high-dimensionalτ-APH system. Otherwise, this simulation will be terminated and started over.

    5. Discussion and conclusion

    Investigations of novel phenomena by controllable and available quantum devices are one of the main tasks of quantum simulation. We discuss experimental implementations of quantum simulation of theτ-APH here. Our proposals can be implemented in small quantum devices that are available technologies, such as nuclear-magnetic-resonance (NMR) quantum simulator,quantum optics systems,superconductor quantum systems,ultracold atoms,trapped ions,etc. Our proposals can also be realized on the IBM QE 5-qubit quantum processor as that in Ref.[98].

    In conclusion, we mainly investigate quantum simulation of theτ-anti-pseudo-Hermitian systems using LCU in the scheme of duality quantum computing. In detail,we propose how to simulate theT-APH andPT-APH two-level system both in general cases using three qubits and in a special case using two qubits. In general cases, a minimum sixdimensional Hilbert space is essential to simulate the timeevolution by our unitary expansion technique. The simulation is achieved in a probabilistic way. Although the special cases can be simulated by both the two proposals, the twoqubits one has a higher success probability, deciding by the initial state, the Hamiltonian and the dimensions of the used Hilbert space. Therefore, it is meaningful to merge the UEterms based on our UE technique and phase matching conditions to reduce the needed dimensions before quantum simulation, saving qubit source and increasing the success probability. Furthermore, we discuss schematically for general high-dimensional cases and experimental implementation of the two-dimensional cases,expecting experimental implementation in various small quantum devices.

    Acknowledgments

    This work was funded by the National Natural Science Foundation of China (Grant No. 12175002), Beijing Natural Science Foundation(Grant No.1222020),and NCUT Talents Project and Special Fund for C.Z.

    在线看a的网站| 母亲3免费完整高清在线观看 | 久久午夜综合久久蜜桃| 高清黄色对白视频在线免费看| 国产亚洲av片在线观看秒播厂| 美女福利国产在线| av播播在线观看一区| 伦精品一区二区三区| 国产欧美日韩一区二区三区在线 | 国产免费又黄又爽又色| 亚洲综合精品二区| 国产亚洲午夜精品一区二区久久| 日本与韩国留学比较| 亚洲,欧美,日韩| 国产欧美日韩一区二区三区在线 | 亚洲精华国产精华液的使用体验| 国产黄色视频一区二区在线观看| 一本色道久久久久久精品综合| 国产白丝娇喘喷水9色精品| 久久久久久久久久久丰满| 亚洲美女搞黄在线观看| 久久久久久久亚洲中文字幕| 老女人水多毛片| 美女中出高潮动态图| 91精品一卡2卡3卡4卡| 女人久久www免费人成看片| 久久久久久久久久久免费av| 制服丝袜香蕉在线| 欧美日韩成人在线一区二区| 美女主播在线视频| 99久久中文字幕三级久久日本| 国产男女内射视频| 午夜免费鲁丝| 我要看黄色一级片免费的| 免费黄色在线免费观看| 嘟嘟电影网在线观看| 亚洲av在线观看美女高潮| 亚洲国产毛片av蜜桃av| 97超碰精品成人国产| 久久久久久久久久久免费av| 成人毛片a级毛片在线播放| 欧美日韩在线观看h| 亚洲伊人久久精品综合| 午夜久久久在线观看| 人人妻人人添人人爽欧美一区卜| 国产成人a∨麻豆精品| 国产片特级美女逼逼视频| 青春草国产在线视频| 丝瓜视频免费看黄片| 亚洲精品久久成人aⅴ小说 | av免费观看日本| 极品人妻少妇av视频| 色哟哟·www| 黄色毛片三级朝国网站| 美女cb高潮喷水在线观看| 久久久久国产精品人妻一区二区| 999精品在线视频| 国产免费又黄又爽又色| 不卡视频在线观看欧美| 制服丝袜香蕉在线| 欧美日韩精品成人综合77777| av又黄又爽大尺度在线免费看| 国产片内射在线| av国产精品久久久久影院| 女性被躁到高潮视频| 国产无遮挡羞羞视频在线观看| 日本91视频免费播放| 国产又色又爽无遮挡免| 波野结衣二区三区在线| 22中文网久久字幕| 欧美人与性动交α欧美精品济南到 | 高清视频免费观看一区二区| 国产男女超爽视频在线观看| 一级,二级,三级黄色视频| 视频区图区小说| 一级片'在线观看视频| 国产成人免费无遮挡视频| 五月天丁香电影| 在线亚洲精品国产二区图片欧美 | 777米奇影视久久| 久久人人爽人人爽人人片va| 亚洲欧洲精品一区二区精品久久久 | 国产午夜精品一二区理论片| 日韩,欧美,国产一区二区三区| 国产成人精品一,二区| 亚洲三级黄色毛片| 国产在线免费精品| 母亲3免费完整高清在线观看 | 午夜激情福利司机影院| 99久久人妻综合| 91精品一卡2卡3卡4卡| 一级毛片黄色毛片免费观看视频| 日本与韩国留学比较| 五月玫瑰六月丁香| 啦啦啦中文免费视频观看日本| 久久久久网色| 内地一区二区视频在线| 另类亚洲欧美激情| 精品国产露脸久久av麻豆| 大香蕉久久成人网| 最近最新中文字幕免费大全7| 亚洲国产精品一区三区| 美女cb高潮喷水在线观看| 在线观看www视频免费| 免费少妇av软件| 黄色配什么色好看| 日韩av不卡免费在线播放| www.色视频.com| 天堂8中文在线网| 国产老妇伦熟女老妇高清| 成年av动漫网址| 欧美激情 高清一区二区三区| 欧美三级亚洲精品| 欧美bdsm另类| 搡老乐熟女国产| 中文乱码字字幕精品一区二区三区| 99热这里只有精品一区| 少妇的逼水好多| 欧美日韩综合久久久久久| 街头女战士在线观看网站| 大码成人一级视频| 校园人妻丝袜中文字幕| a级毛片黄视频| 亚洲国产精品国产精品| 国产伦理片在线播放av一区| 永久免费av网站大全| 国产一区二区在线观看av| 久久午夜综合久久蜜桃| 女性被躁到高潮视频| 久热久热在线精品观看| 亚洲三级黄色毛片| 欧美日韩综合久久久久久| 日本av免费视频播放| 色吧在线观看| 久久精品久久精品一区二区三区| 黄色视频在线播放观看不卡| 中文字幕人妻熟人妻熟丝袜美| 国产不卡av网站在线观看| 久久人妻熟女aⅴ| 人人妻人人澡人人看| 亚洲精品国产色婷婷电影| 免费观看的影片在线观看| 亚洲精品456在线播放app| 考比视频在线观看| 日本免费在线观看一区| av福利片在线| 中国国产av一级| 2021少妇久久久久久久久久久| 欧美成人精品欧美一级黄| 久热这里只有精品99| 最近中文字幕2019免费版| 3wmmmm亚洲av在线观看| 丰满迷人的少妇在线观看| 国产成人aa在线观看| 欧美精品高潮呻吟av久久| 色94色欧美一区二区| 国产一区二区三区av在线| 一级毛片电影观看| 国产精品一区www在线观看| 久久久久久久亚洲中文字幕| 国产男女超爽视频在线观看| 最黄视频免费看| 一级二级三级毛片免费看| 黄色视频在线播放观看不卡| 国产爽快片一区二区三区| 久久亚洲国产成人精品v| a级毛片在线看网站| 2018国产大陆天天弄谢| 日韩免费高清中文字幕av| 九九爱精品视频在线观看| 久久鲁丝午夜福利片| freevideosex欧美| 2018国产大陆天天弄谢| 亚洲四区av| av在线app专区| 国产成人精品在线电影| 欧美日韩在线观看h| a级毛片免费高清观看在线播放| 中文字幕精品免费在线观看视频 | 乱码一卡2卡4卡精品| 免费av不卡在线播放| 国产欧美日韩综合在线一区二区| 啦啦啦中文免费视频观看日本| 人妻系列 视频| 亚洲精华国产精华液的使用体验| 国产成人精品久久久久久| 日本vs欧美在线观看视频| 日本av手机在线免费观看| 久久久久国产精品人妻一区二区| 国产日韩欧美在线精品| 老司机影院毛片| 日韩中字成人| 国产成人av激情在线播放 | 国产伦理片在线播放av一区| 欧美日本中文国产一区发布| 男的添女的下面高潮视频| 日本wwww免费看| 日韩成人av中文字幕在线观看| 99久久精品国产国产毛片| 亚洲av不卡在线观看| 久久av网站| 国产女主播在线喷水免费视频网站| 色吧在线观看| 美女福利国产在线| 妹子高潮喷水视频| 国产成人午夜福利电影在线观看| av有码第一页| 哪个播放器可以免费观看大片| 久久午夜综合久久蜜桃| 人妻少妇偷人精品九色| 久久久a久久爽久久v久久| 成人亚洲精品一区在线观看| 国产精品无大码| 国产日韩一区二区三区精品不卡 | 午夜免费观看性视频| 男女免费视频国产| av免费在线看不卡| 久久韩国三级中文字幕| 国产精品久久久久久久久免| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人18禁高潮啪啪吃奶动态图 | 赤兔流量卡办理| 久久久久久久久久久久大奶| 精品午夜福利在线看| 一区二区三区免费毛片| 香蕉精品网在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 男女边吃奶边做爰视频| 午夜91福利影院| 亚洲美女搞黄在线观看| 九草在线视频观看| 五月伊人婷婷丁香| 久久青草综合色| 欧美 日韩 精品 国产| 一区二区日韩欧美中文字幕 | 黑人巨大精品欧美一区二区蜜桃 | 精品酒店卫生间| 日韩精品有码人妻一区| 久久久久久久精品精品| 亚洲精品第二区| 秋霞伦理黄片| 高清午夜精品一区二区三区| 街头女战士在线观看网站| 大片电影免费在线观看免费| 人妻人人澡人人爽人人| 如何舔出高潮| 亚洲无线观看免费| 交换朋友夫妻互换小说| 69精品国产乱码久久久| 精品久久国产蜜桃| 国语对白做爰xxxⅹ性视频网站| 国产成人aa在线观看| 欧美精品高潮呻吟av久久| 免费大片黄手机在线观看| 欧美亚洲 丝袜 人妻 在线| 多毛熟女@视频| a级毛片黄视频| 精品亚洲乱码少妇综合久久| 亚洲久久久国产精品| 伊人亚洲综合成人网| 爱豆传媒免费全集在线观看| 精品久久久精品久久久| 欧美成人午夜免费资源| .国产精品久久| 99久久中文字幕三级久久日本| 亚洲四区av| 高清在线视频一区二区三区| 色94色欧美一区二区| 亚洲国产av影院在线观看| xxxhd国产人妻xxx| 亚洲欧美清纯卡通| 18禁观看日本| .国产精品久久| 日本黄大片高清| 2022亚洲国产成人精品| 亚洲国产欧美在线一区| 精品一区二区三区视频在线| h视频一区二区三区| 边亲边吃奶的免费视频| 97超视频在线观看视频| 一本大道久久a久久精品| 午夜影院在线不卡| 母亲3免费完整高清在线观看 | 啦啦啦啦在线视频资源| 人妻制服诱惑在线中文字幕| 看非洲黑人一级黄片| 日本av手机在线免费观看| 亚洲av不卡在线观看| 性高湖久久久久久久久免费观看| 人人妻人人澡人人看| 王馨瑶露胸无遮挡在线观看| 国产亚洲精品第一综合不卡 | 日韩人妻高清精品专区| 国产片内射在线| 精品一区二区三区视频在线| 黄色欧美视频在线观看| 人成视频在线观看免费观看| 久久人人爽人人爽人人片va| 春色校园在线视频观看| 精品亚洲乱码少妇综合久久| 日本免费在线观看一区| 成人国语在线视频| 插阴视频在线观看视频| 国产色爽女视频免费观看| 久久99一区二区三区| 少妇人妻 视频| 好男人视频免费观看在线| 成人二区视频| 少妇高潮的动态图| 18禁裸乳无遮挡动漫免费视频| av视频免费观看在线观看| 日产精品乱码卡一卡2卡三| 18禁在线播放成人免费| 在线观看www视频免费| 亚洲性久久影院| 视频区图区小说| 嫩草影院入口| 蜜桃久久精品国产亚洲av| 老司机影院毛片| 亚洲国产欧美在线一区| 丝袜脚勾引网站| 亚洲欧美成人精品一区二区| 国产成人精品无人区| 一级毛片电影观看| 美女视频免费永久观看网站| 久久国产精品大桥未久av| av又黄又爽大尺度在线免费看| 亚洲欧美一区二区三区国产| 色5月婷婷丁香| 亚洲国产精品一区三区| 久久久久久久国产电影| 你懂的网址亚洲精品在线观看| 国产成人精品婷婷| 麻豆精品久久久久久蜜桃| 91精品三级在线观看| 大话2 男鬼变身卡| 26uuu在线亚洲综合色| 黑人猛操日本美女一级片| 精品卡一卡二卡四卡免费| 少妇熟女欧美另类| 国产乱人偷精品视频| 国产成人午夜福利电影在线观看| 国产免费现黄频在线看| 高清黄色对白视频在线免费看| 欧美日韩视频精品一区| 成人国语在线视频| 在线观看美女被高潮喷水网站| 婷婷色综合www| 51国产日韩欧美| 国产精品蜜桃在线观看| 乱码一卡2卡4卡精品| 久热这里只有精品99| 亚洲,欧美,日韩| 狠狠婷婷综合久久久久久88av| 久久99精品国语久久久| 亚洲国产av新网站| 日韩大片免费观看网站| 国产亚洲最大av| 能在线免费看毛片的网站| 97精品久久久久久久久久精品| 中文字幕亚洲精品专区| 乱码一卡2卡4卡精品| 成人亚洲欧美一区二区av| 五月玫瑰六月丁香| 免费黄色在线免费观看| a级片在线免费高清观看视频| 哪个播放器可以免费观看大片| 大片免费播放器 马上看| 精品亚洲成a人片在线观看| 永久免费av网站大全| 青春草亚洲视频在线观看| 91精品国产九色| 亚洲成色77777| 国产成人精品婷婷| 超碰97精品在线观看| 99国产综合亚洲精品| 国产精品欧美亚洲77777| 婷婷色av中文字幕| 国产成人精品在线电影| 国产亚洲午夜精品一区二区久久| 香蕉精品网在线| 欧美日韩一区二区视频在线观看视频在线| 多毛熟女@视频| 午夜精品国产一区二区电影| 国产成人精品久久久久久| 在线观看国产h片| 在线亚洲精品国产二区图片欧美 | 91在线精品国自产拍蜜月| 老女人水多毛片| 久久热精品热| 亚洲色图综合在线观看| videos熟女内射| 亚洲精品自拍成人| 一二三四中文在线观看免费高清| 老女人水多毛片| 蜜臀久久99精品久久宅男| av卡一久久| 日韩一区二区视频免费看| 五月伊人婷婷丁香| 曰老女人黄片| 免费大片黄手机在线观看| xxx大片免费视频| 丝袜在线中文字幕| 国产av码专区亚洲av| av一本久久久久| 妹子高潮喷水视频| 夜夜看夜夜爽夜夜摸| √禁漫天堂资源中文www| 一级黄片播放器| 国产欧美亚洲国产| 97超视频在线观看视频| 精品人妻熟女av久视频| 99国产精品免费福利视频| 一级毛片 在线播放| 国产 精品1| 十八禁网站网址无遮挡| 十分钟在线观看高清视频www| 亚洲精品日本国产第一区| 午夜免费男女啪啪视频观看| 美女主播在线视频| av女优亚洲男人天堂| 99re6热这里在线精品视频| 国产一区二区在线观看av| 午夜激情福利司机影院| 看十八女毛片水多多多| 日韩中文字幕视频在线看片| 嘟嘟电影网在线观看| 免费观看在线日韩| 久久ye,这里只有精品| 97在线人人人人妻| 亚洲熟女精品中文字幕| 亚洲av免费高清在线观看| 日本黄色日本黄色录像| 亚洲精品国产色婷婷电影| 精品一品国产午夜福利视频| 26uuu在线亚洲综合色| 秋霞在线观看毛片| 天天躁夜夜躁狠狠久久av| 一本久久精品| 日韩成人伦理影院| 色吧在线观看| 亚洲色图综合在线观看| 国产又色又爽无遮挡免| 国产成人免费观看mmmm| 久久人人爽人人片av| 亚洲精品一二三| 在线观看免费日韩欧美大片 | 在现免费观看毛片| 免费人成在线观看视频色| 永久网站在线| 国产男人的电影天堂91| 美女国产高潮福利片在线看| h视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 日韩三级伦理在线观看| 在线免费观看不下载黄p国产| 亚洲人成77777在线视频| 9色porny在线观看| 欧美变态另类bdsm刘玥| 日韩三级伦理在线观看| 亚洲美女搞黄在线观看| 91aial.com中文字幕在线观看| 最近2019中文字幕mv第一页| 纵有疾风起免费观看全集完整版| 春色校园在线视频观看| 美女大奶头黄色视频| 国产视频内射| 日本wwww免费看| 国产成人精品一,二区| 欧美少妇被猛烈插入视频| 午夜福利,免费看| 国产免费视频播放在线视频| 久久人妻熟女aⅴ| 亚洲欧美一区二区三区国产| 欧美人与性动交α欧美精品济南到 | 久久鲁丝午夜福利片| 精品国产国语对白av| 亚洲国产精品一区二区三区在线| 99热全是精品| 人人妻人人澡人人看| 一级爰片在线观看| 在线观看国产h片| 国产在线免费精品| 国产精品熟女久久久久浪| 日韩av在线免费看完整版不卡| 国产一级毛片在线| 草草在线视频免费看| 亚洲国产毛片av蜜桃av| 在线观看国产h片| 精品酒店卫生间| 国产亚洲精品久久久com| 寂寞人妻少妇视频99o| 丝袜脚勾引网站| 国产一区二区三区av在线| 亚洲精品一区蜜桃| 夫妻午夜视频| 黄色一级大片看看| 国产精品嫩草影院av在线观看| 最新的欧美精品一区二区| 丰满饥渴人妻一区二区三| 欧美亚洲 丝袜 人妻 在线| 欧美日韩国产mv在线观看视频| 高清欧美精品videossex| 国产成人freesex在线| 亚洲情色 制服丝袜| 热99久久久久精品小说推荐| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品乱码久久久v下载方式| 91aial.com中文字幕在线观看| 99热全是精品| 免费高清在线观看日韩| 欧美日韩综合久久久久久| 在线观看美女被高潮喷水网站| 亚洲丝袜综合中文字幕| 美女国产视频在线观看| 久久久久国产精品人妻一区二区| 亚洲精品aⅴ在线观看| 国模一区二区三区四区视频| 色94色欧美一区二区| 一区二区三区四区激情视频| 在线观看免费视频网站a站| 色婷婷av一区二区三区视频| 三上悠亚av全集在线观看| 国产精品成人在线| 亚洲国产精品成人久久小说| 日韩人妻高清精品专区| 亚洲精品日本国产第一区| 国产有黄有色有爽视频| 亚洲欧美日韩卡通动漫| 亚洲精品美女久久av网站| 欧美性感艳星| 久久毛片免费看一区二区三区| 2018国产大陆天天弄谢| 久久狼人影院| 久久久国产一区二区| 久久狼人影院| 午夜久久久在线观看| 欧美变态另类bdsm刘玥| 激情五月婷婷亚洲| 黄色欧美视频在线观看| 一本—道久久a久久精品蜜桃钙片| 久久精品国产鲁丝片午夜精品| 国产伦精品一区二区三区视频9| 久久精品国产亚洲av天美| 最近最新中文字幕免费大全7| 青春草视频在线免费观看| 青春草亚洲视频在线观看| 久久精品国产亚洲av涩爱| 好男人视频免费观看在线| 制服丝袜香蕉在线| 韩国av在线不卡| 亚洲美女黄色视频免费看| 狠狠精品人妻久久久久久综合| 少妇人妻久久综合中文| 又黄又爽又刺激的免费视频.| 成人国产av品久久久| 亚洲欧美精品自产自拍| 丝袜美足系列| 国产男女超爽视频在线观看| 日本爱情动作片www.在线观看| 在线精品无人区一区二区三| 9色porny在线观看| 日本黄色日本黄色录像| 久久 成人 亚洲| 欧美最新免费一区二区三区| av国产久精品久网站免费入址| 色网站视频免费| av不卡在线播放| 两个人的视频大全免费| 一级黄片播放器| 少妇人妻久久综合中文| 熟女av电影| 国产亚洲精品久久久com| 亚洲熟女精品中文字幕| 中文字幕久久专区| 国精品久久久久久国模美| 伊人亚洲综合成人网| 亚洲图色成人| 亚洲国产精品一区三区| 天堂中文最新版在线下载| 欧美 日韩 精品 国产| 亚洲内射少妇av| 成人亚洲精品一区在线观看| 99热全是精品| 日韩三级伦理在线观看| 亚洲精品美女久久av网站| 丝袜脚勾引网站| 日韩制服骚丝袜av| 亚洲国产精品999| 欧美 亚洲 国产 日韩一| 日本av免费视频播放| 国产淫语在线视频| 91久久精品国产一区二区成人| 视频在线观看一区二区三区| 老女人水多毛片| 久久99热这里只频精品6学生| 亚洲av欧美aⅴ国产| 内地一区二区视频在线| 久久久久人妻精品一区果冻| 亚洲第一区二区三区不卡| 三级国产精品片| 人人妻人人澡人人看| 免费黄频网站在线观看国产| av在线观看视频网站免费| 精品久久久久久电影网| 久久久久久久久久久丰满| 97超视频在线观看视频| 精品人妻在线不人妻| 99久久精品国产国产毛片| 高清午夜精品一区二区三区| 久久久久网色| 亚洲一区二区三区欧美精品| 欧美亚洲日本最大视频资源| 日韩制服骚丝袜av| 精品一区二区三卡|