• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell’s fish-eye lens

    2022-10-26 09:49:28YangyangZhou周楊陽(yáng)andHuanyangChen陳煥陽(yáng)
    Chinese Physics B 2022年10期

    Yangyang Zhou(周楊陽(yáng)) and Huanyang Chen(陳煥陽(yáng))

    Institute of Electromagnetics and Acoustics and Department of Physics,College of Physical Science and Technology,Xiamen University,Xiamen 361005,China

    Keywords: multiple super-resolution imaging,Mikaelian lens,generalized Maxwell’s fish-eye lens,conformal transformation optics

    1. Introduction

    The resolution of the conventional lens is inherently constrained by the diffraction limit, wherein the spatial information of features smaller than one-half of the wavelength exponentially decays and cannot be transferred to the far field.Although near-field scanning optical microscope has achieved super-resolution by collecting the evanescent field in close proximity to the object,[1]this serial technique suffers from the slow scanning speed and non-negligible near-field perturbation preventing its application in real-time imaging. A perfect lens,[2]relying on negative index materials[3,4]to restore evanescent wave at the imaging point, as a first step towards real-time imaging was proposed. Following the concept of the perfect lens, a series of superlenses[5–11]were fabricated to project the sub-diffraction-limited imaging at the near field of the superlens. Later, a hyperlens[12]was designed to far-field super-resolution imaging by metamaterials with hyperbolic dispersion supporting the propagating waves with very large spatial wave vector. Utilizing alternating metal–dielectric structure in a curved geometry and other metamaterial structures, optical hyperlenses were fabricated[13–15]to project the sub-diffraction-limited magnified imaging at the far-field. However, for these designs both the superlens and hyperlens, insurmountable manufacturing challenges and intrinsic losses from the lens are big obstacles to the applications.

    Recently, a series of super-oscillation lenses (short as SOLs)[16–18]have been designed and fabricated to achieve super-resolution focusing without evanescent waves based on optical super-oscillation theory.[19,20]From theoretical analysis,we can conclude that the resolution of SOL goes to infinity.However,with the resolution increasing,a large sidebands will emerge at the focus spots,which will severely constrain the focusing efficiency.Moreover,the working bandwidth of SOL is limited to single frequency or some discrete frequency points,which is another obstacle. As another super-resolution lens,solid immersion lens(SIL)[21,22]has been studied extensively through the application of high refractive index(RI)solid material and specific geometric optical design.[23–25]The SIL improves the imaging resolution utilizing high RI materials to transfer electromagnetic waves with high spatial frequency to the imaging point. So far, many types of SILs have been developed from conventional structures to novel metamaterials structures.[26–28]However,chromatic aberration constrains the applications scope of SIL.

    Gradient refractive index(GRI)lens has been developed rapidly for its excellent capability to control the propagation of electromagnetic waves[29–33]and enable focusing or imaging.[34–41]Among these GRI lenses, the Mikaelian lens(ML)as a self-focusing cylindrical medium was derived firstly by Mikaelian in 1951[42]and has drawn much attention, due to its property of self-imaging in geometrical optics.[43,44]Many applications based on the Mikaelian lens were designed and fabricated from microwave frequency to optical frequency.[43,45,46]

    In this work, we proposed a solid immersion Mikaelian lens(SIML)and proved that the SIML can achieve near-field multiple super-resolution real-time imaging. We found that SIML provides achromatic aberration imaging. Using conformal transformation,[47,48]the SIML was transformed into a modified solid immersion generalized Maxwell’s fish-eye lens(SIGMFEL),which can also realize multiple super-resolution imaging. Although a drain-assisted GMFEL[49]with extreme RI profile also can achieve subwavelength imaging, the drain located at the imaging position hinders the information collection of the target object, and at same time the information of the imaging includes both from the object and from the drain which the imaging is no longer an intrinsic property of GMFEL. Different from the drain-assisted GMFEL,this modified SIGMFEL only alters the RI profile, maintains the intrinsic property of GMFEL and circumvents complex drain. The modified SIGMFEL is easier to realize due to its RI profile with a feasible range compared with drain-assisted GMFEL and conventional generalized Maxwell’s fish-eye lens(GMFEL).[50,51]We will start from a semi-infinite SIML and analyze the super-resolution imaging performance of the SIML. Considering practical applications, a truncated SIML with finite size and RI distribution of feasible range was proposed and can maintain the super-resolution imaging performance to the level of semi-infinite SIML. Later on, utilizing conformal transformation, a modified SIGMFEL was designed for multiple super-resolution imaging based on the truncated SIML. The designed truncated SIML and modified SIGMFEL eliminates the extreme RI.Numerical simulation is employed to prove the validity of super-resolution imaging by commercial software COMSOL Multiphysics.

    2. Results and discussion

    Generally, the Mikaelian lens (ML)[42]is a cylindrical lens, whose RI profile satisfiesn0sech(βr) and decreases gradually from the center to the edge in the radial direction,whereris radial distance andn0is the maximum RI along the symmetric axis,βis the gradient coefficient which determines the focusing period of the lensL=2π/β. For a twodimensional case,the RI can be written as(assuming the symmetric axis is along theyaxis)

    wherenconventionally set as 1 and the RI on the symmetric axis matching RI of the air background. In this case,figure 1(a) shows one-half of conventional ML (withn=1,β=1)located in the region of(0≤x <∞,0≤y ≤5L/2)in the air, and no reflection and evanescent wave emerge at lens/air interface. Light rays propagate along a sine-like path focusing and the RI profile of ML is shown in Fig.1(a). Different from Fig.1(a),figure 1(b)introduces impedance mismatching at the lens/air interface by changingn=3 and the evanescent wave is ignited at the interface. Due to total internal reflection(TIR)at the edge of the lens,light rays realize multiple focusing points along the edge of the lens as shown in Fig. 1(b).By full-wave simulation, we analyze field intensity profile of the SIML and its performance of imaging at the wavelength of 10(a.u.). Figures 1(c)and(d)show the field intensity profile of the conventional ML and SIML and the corresponding full width at half maximum(FWHM)of which a point source(line current)(located atx=0,y=L/2)excites a transverse electric(TE)cylindrical wave in the lens,respectively. In figures,the solid red curves represent normalized electric field intensity along they-axis direction at air imaging plane and the related FWHMs are marked as well. Clearly,the corresponding FWHM decreases from 0.98λto 0.39λwithn=1 increasing to 3. It reveals that the resolution of the SIML is below the diffraction limit 0.5λand keeps the sub-diffraction resolution along the edge of the lens in multiple focusing points.Predictably,the ML can achieve super-resolution imaging.

    To further verify the super-resolution imaging of SIML,a pair of identical sources with a spacing of(1/3)λare located at the interface of the lens to excite a TE cylindrical wave at wavelength of 10 as shown in Fig.1(f).It shows that the SIML resolves the two-point sources and realizes super-imaging successfully. In the figure,the red solid curve illustrates the normalized field intensity along they-axis direction fromLtoL/5 andx=-1 at the air.As comparison,the conventional ML interact with a pair of identical sources with a spacing of(1/3)λas shown in Fig. 1(c). From the figure, the conventional ML fails to distinguish the two-point sources, because the electromagnetic waves with larger wave number than one of vacuum exponentially decay and cannot propagate into far-field imaging point.[40]By contrast, the semi-infinite SIML successfully realizes super-resolution imaging and the solid immersion mechanism is valid for improving the resolution of the lens. However,this semi-infinite SIML is difficult for fabrication and application. The RI profile of the lens along thex-axis direction gradually decreases to 0. To circumvent the problem,we truncate the semi-infinite SIML into finite width to adjust RI ranging from 3 to 1 along thex-axis direction,as shown in Figs. 1(g) and 1(h). The truncated SIML is located in the region of(0≤x ≤arccosh(3),0≤y ≤5L/2). The truncated SIML performance of super-resolution imaging is shown in Figs.1(h)and 1(j). Obviously,the functionality of the truncated SIML is identical with that of the semi-infinite SIML.As a comparison, the imaging of the truncated conventional ML is plot in Figs. 1(g) and 1(i). The size of the truncated conventional ML is the same as that of the truncated SIML and the black solid line represents the boundary of the lens.In the figures, the truncated conventional ML fails to realize super-resolution imaging.

    Using an exponential conformal mapping[47,51]w=exp(-z(x,y)), a SIGMFEL was designed based on the above semi-finite SIML with the RI profilen=n0sech(βx) wheren=3. We can obtain the RI profile of the SIGMFEL inu–vspace according to the following formula:

    whereris the distance from the center of the lens andnrepresents ambient RI, andRdenotes the radius of SIGMFEL.Therefore,we derive the RI profile of the SIGMFEL.According to transformation optics, we can deduce that the SIGMFEL also achieves super-resolution imaging. To verify the super-resolution imaging performance of the SIGMFEL, we choose three different semi-finite SIMLs withβ=0.8,1,and 1.7 and transformed the three SIMLs into three circular SIGMFELs respectively, as shown in Figs. 2(a)–2(c). The size of these SIGMFELs are same and the corresponding radius is 60.Light rays and the related RI profiles are shown in the figures. Forβ=0.8 and 1.7,all the rays emitting from the point source are converging at the two different points as present in Figs. 1(a) and 1(c), respectively. Forβ=1, the GMFEL becomes well-known MFEL[40]and can focus all light rays from a point source into the opposite point and the RI decrease from 6(at the center)to 3(at the edge),as shown Fig.2(b). A part of light rays are reflected at the edges of lenses due to impendence mismatching at the lens/air interfaces. The ambient RI of the three lenses isn=3. Next,we will stimulatingly calculate the super-resolution imaging of three different SIGMFEL at the wavelength of 10. A point source (line current) is located atx=-60,y=0(the center of the SIGMFEL is located at the origin)to excite a TE cylindrical wave.Figures 1(d)–1(f)show the electric field intensity patterns and the corresponding FWHMs of the three different GMFEL withβ=0.8, 1, and 1.7 respectively. In the figures,the red curves display the electric field intensity at the imaging plane and the related FWHM of the imaging point in air.Notably,the corresponding FWHM is less than 0.2λwhich is far below the diffraction limit 0.5λat the wavelength of 10 for the three lenses. It demonstrates that the three GMFELs achieve super-imaging successfully.

    Fig.1. Schematics and imaging functionalities of ML with n=1(conventional ML)and SIML with n=3 respectively. Related results of conventional ML are shown in the left column of the figure and the right column presents related results of SIML.(a)Schematic diagram of a semi-infinite conventional ML with a gradient RI profile along x-axis direction and light trajectories from a point source in the lens. (b)Schematic diagram of a semi-finite SIML with a gradient RI profile along x-axis direction and light ray trajectories from a point source in the lens. Multiple focusing points are formed along y-axis direction at the edge. (c)–(d)Calculated electric field intensity distributions and the corresponding FWHM of the semi-infinite conventional ML and SIML. The red curves present the normalized electric field intensity along y-axis direction distance 1 from the bottom edge of the lens and the related FWHM is marked. (e)–(f) In the two semi-infinite MLs, a pair of identical point sources with a spacing of (1/3)λ was severed as excitation sources at the wavelength of 10 and the electric field intensity distributions are shown respectively. (g)–(j)The truncated conventional ML and SIML with finite size and the related imaging performance. The black solid lines denote the boundary of the lens.

    Fig.2. Schematics and super-resolution imaging functionalities of the modified SIGMFELs with β =0.8,1,and 1.7, respectively. (a)–(c)Schematic diagram of the modified SIGMFELs with a gradient RI profile and light trajectories in the lenses for β =0.8, 1, and 1.7, respectively. All the rays emitting from the point source are converging at the edge of the lenses and a part of the light rays are reflected respectively. (d)–(f)The super-resolution imaging performance of the modified SIGMFLs with the value of β =0.8, 1, and 1.7 with a point source at the wavelength of 10 respectively. The corresponding FWHM at three different SIMFELs are marked. (g)–(i) Imaging performance of the three modified SIGMFELs of which two points sources with a spacing of(1/3)λ are placed at the edge of the lens at the wavelength of 10. The red curves present the normalized electric field intensity along a concentric arc with a radius 61 of the lens from-135° to 135° at the air imaging plane and the related FWHMs are marked respectively.

    For the above problem, we propose the modified SIGMFEL without extreme RI profile and it can keep functionality of super-resolution imaging as same the original SIGMFEL.To design the modified SIGMFEL,we start with a optimized truncated SIML((0≤x ≤4,0≤y ≤5L/2))with the RI profilen=n0sech(βx) wheren0=3 which can realize superresolution imaging. Utilizing the same exponential conformal transformation mappingw=exp(-z(x,y)),based on the truncated SLML withβ=0.8, 1, and 1.7, we obtain three annular SIGMFELs with outer radiusRo=60 and inner radiusRi=exp(-4)Roas shown in Figs.3(a)–3(c). The relative RI distribution satisfies

    whereris the distance from the center of the lens andRodenotes the outer radius andn0=3 is ambient RI. Therefore,the extreme RI at the central region is removed from the lens.According to transformation optics, we can deduce that the three modified SIGMFELs will maintain the property of superresolution imaging which is consistent with that of the truncated SIML.

    To further verify the super-imaging of the lens, a pair of point sources with a spacing of (1/3)λare located at the edge of the lens as an excitation source at same wavelength.In Figs.2(g)–2(i),the electric filed intensity is clearly shown.The related normalized electric field intensity of the air imaging plane, along a concentric arc with a radius 61 of the lens from-135°to 135°, are shown by the red solid curve.The four obvious peaks in the figures represent the imaging points. It is clear that the modified SIGMEL withβ=0.8 and 1.7 can resolve the two sources with spacing of (1/3)λand achieve multiple super-resolution imaging.For SIGMFEL withβ=0.8 and 1.7, they can resolve the two source points and achieve multiply super-resolution imaging.For SIGMFEL withβ=1,it only achieves single super-resolution imaging.

    Therefore, we prove that the three modified SIGMFEL can overcome the diffraction limit and realize super-resolution imaging. However, for the value ofβis not equal to 1, the RI profile of SIGMFEL at center tends to the extreme value,which is a big barrier to fabrication and application.Forβless than 1,the RI profile of the lens gradually increases to infinity from the edge to the center. Forβmore than 1,the RI profile of the lens gradually decreases to 0 from the edge to the center.If the extreme RI profile of the lens can be adjusted within feasible range and at the same time the modified lens maintains its original functionality,the applications for super-resolution imaging will be highly anticipated.

    Fig.3. Schematics and super-resolution imaging functionalities of the modified SIGMFELs with β =0.8,1,and 1.7,respectively. (a)–(c)Schematics of the modified SIGMFELs with a gradient RI profile and light trajectories in the lenses for β =0.8,1,and 1.7,respectively. All the rays emitting from the point source are converging at the edge of the lenses and a part of the light rays are reflected respectively. (d)–(f)Analysis of super-resolution imaging performance of the modified SIGMFLs with the value of β =0.8,1,and 1.7 with a point source at the wavelength of 10 respectively. The corresponding FWHM at three different SIMFELs are marked. It is far below the diffraction limit. (g)–(i)Imaging performance of the three modified SIGMFELs of which two points sources with a spacing of(1/3)λ are placed at the edge of the lens. The red curves present the normalized electric field intensity along a concentric arc with a radius 61 of the lens from-135° to 135° at the air imaging plane and the related FWHMs are marked respectively.

    To verify the performance of super-resolution imaging for the modified SIGMFEL with three values ofβ=0.8, 1, and 1.7,raytracing simulation and full-wave numerical simulation are performed at the wavelength of 10, respectively. A point source is located atx=-60 andy=0 to excite a cylindrical TE wave. Figures 3(a)–3(c) display the imaging performance and reflection at the lens/air interface for three value ofβ= 0.8, 1, and 1.7 respectively. The figures also illustrate the RI distribution of modified SIGMFEL with three values ofβ=0.8, 1, and 1.7, respectively. Perfect geometric focusing and reflection happen at the lens/air interface. Figures 3(d)–3(f) show electric field intensity distribution in the three lenses and the related FWHMs are marked. It is clear that the corresponding FWHM is less than 0.2λ, which is far below the diffraction limit. The imaging performance of the modified SIGMFEL agrees well with the original GMFEL.This demonstrates that the modified SIGFEL can achieve super-resolution imaging as well. To further verify the superimaging performance of the three modified SIGMFELs, fullwave numerical simulation is performance with a pair of identical point sources of spacing of(1/3)λat the wavelength of 10. The related electric field intensity distribution and normalized electric field intensity at the air imaging plane are shown in Figs. 3(g)–3(i). Four tiny spots emerge at the edge of the two lenses withβ= 0.8 and 1.7 respectively in Figs. 3(g)and 3(i). The red solid curves present the normalized electric field intensity at the air imaging plane,where the four obvious peaks in the figures represent the imaging points. It is clear that the modified SIGMEL withβ=0.8 and 1.7 can resolve the two sources with spacing of(1/3)λand achieve multiple super-resolution imaging.The modified SIGMEFL withβ=1 resolves the two sources with deep subwavelength spacing and the related normalized electric field intensity is shown by the red solid curve in Fig.3(b). Therefore,we prove that the three modified SIGMFEL can overcome the diffraction limit and realize super-resolution imaging.

    3. Conclusion

    Enlightened by solid immersion lenses,we introduce the TIR mechanism to excite evanescent waves at the lens/air interfaces for multiple super-resolution imaging of the SIML.Utilizing conformal mapping,we derive the RI profile SIGMFEL from the SIML. The SIML and the SIGMFEL could be used to overcome the diffraction limit. However,the extreme RI profile of the SIML and SIGMFEL have difficulties in fabrication and application. To circumvent the problem, we design a truncated SIML and a modified SIGMFEL without the extreme RI profile and verify the validity of the lenses for super-resolution imaging. The effect is robust and valid for broadband frequencies. It provides feasible designs for overcoming the diffraction limit from microwave to optical frequencies and may pave ways for multiple super-focusing,realtime bio-molecular imaging, nanolithography, high capacity information transmission waveguide. Especially,for the SIGMEL, the high-resolution multichannel waveguide coupler,multichannel waveguide crossing may be designed by transformation optics.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 92050102), the National Key Research and Development Program of China (Grant No.2020YFA0710100),and the Fundamental Research Funds for Central Universities, China (Grant Nos. 20720200074,20720220134,202006310051,and 20720220033).

    欧美性感艳星| 日本黄大片高清| 精品国内亚洲2022精品成人| 国产黄色视频一区二区在线观看 | 日本一二三区视频观看| av免费在线看不卡| 又粗又爽又猛毛片免费看| 中文资源天堂在线| 三级国产精品片| 亚洲最大成人av| ponron亚洲| 男女那种视频在线观看| 91在线精品国自产拍蜜月| 人人妻人人澡人人爽人人夜夜 | 2022亚洲国产成人精品| 亚洲成av人片在线播放无| 国产中年淑女户外野战色| 欧美bdsm另类| 国内精品一区二区在线观看| 特大巨黑吊av在线直播| 能在线免费看毛片的网站| 久久精品夜夜夜夜夜久久蜜豆| 日本一本二区三区精品| 国产亚洲av嫩草精品影院| 国产精品av视频在线免费观看| 亚洲欧美精品自产自拍| 久久人妻av系列| 两个人视频免费观看高清| 精品人妻视频免费看| 国产精品野战在线观看| 嫩草影院入口| 成人高潮视频无遮挡免费网站| 三级经典国产精品| 日日摸夜夜添夜夜爱| 亚洲伊人久久精品综合 | 欧美成人午夜免费资源| 岛国在线免费视频观看| 久久久久精品久久久久真实原创| 99久久九九国产精品国产免费| 国产视频内射| 九九热线精品视视频播放| 男人舔奶头视频| 日本熟妇午夜| 国产一区二区在线av高清观看| 秋霞在线观看毛片| 欧美一级a爱片免费观看看| 在线观看美女被高潮喷水网站| 免费看a级黄色片| 亚洲,欧美,日韩| 一级黄片播放器| 精品免费久久久久久久清纯| 欧美bdsm另类| 午夜福利在线观看免费完整高清在| 晚上一个人看的免费电影| 成年女人永久免费观看视频| 国产av一区在线观看免费| 国产色婷婷99| 午夜免费激情av| 高清av免费在线| 国产精品一区二区性色av| 国产色爽女视频免费观看| 免费观看性生交大片5| 亚洲精品亚洲一区二区| 国产 一区 欧美 日韩| 熟妇人妻久久中文字幕3abv| 久久这里只有精品中国| 全区人妻精品视频| 别揉我奶头 嗯啊视频| 欧美性感艳星| 精华霜和精华液先用哪个| 欧美激情国产日韩精品一区| 亚洲欧美精品综合久久99| 亚洲怡红院男人天堂| 午夜日本视频在线| 久久久久久久久久成人| 狂野欧美激情性bbbbbb| 免费不卡的大黄色大毛片视频在线观看| 亚洲av电影在线进入| 欧美精品高潮呻吟av久久| 精品亚洲乱码少妇综合久久| 欧美日韩国产mv在线观看视频| 日本爱情动作片www.在线观看| 国产1区2区3区精品| av国产久精品久网站免费入址| 大香蕉97超碰在线| 91在线精品国自产拍蜜月| av国产久精品久网站免费入址| 好男人视频免费观看在线| 嫩草影院入口| 视频中文字幕在线观看| 狠狠婷婷综合久久久久久88av| 婷婷成人精品国产| 有码 亚洲区| 亚洲国产欧美在线一区| 午夜久久久在线观看| 九色成人免费人妻av| 97在线视频观看| 国产高清国产精品国产三级| 欧美性感艳星| 亚洲欧美日韩卡通动漫| 国产成人a∨麻豆精品| 日日爽夜夜爽网站| 综合色丁香网| 美女国产高潮福利片在线看| 久久 成人 亚洲| 国产国拍精品亚洲av在线观看| 男的添女的下面高潮视频| 亚洲四区av| 国产 一区精品| 国产熟女午夜一区二区三区| 哪个播放器可以免费观看大片| 成人黄色视频免费在线看| 如日韩欧美国产精品一区二区三区| 亚洲精品,欧美精品| 在线观看免费日韩欧美大片| 91aial.com中文字幕在线观看| 黄片无遮挡物在线观看| 熟女人妻精品中文字幕| 男女国产视频网站| 少妇的丰满在线观看| 国产国语露脸激情在线看| 国产精品不卡视频一区二区| av电影中文网址| 七月丁香在线播放| 一本—道久久a久久精品蜜桃钙片| 日本午夜av视频| 看非洲黑人一级黄片| 亚洲国产av新网站| 日韩中文字幕视频在线看片| 国产亚洲欧美精品永久| 成人影院久久| 亚洲精品av麻豆狂野| 国产麻豆69| 国产一区二区三区av在线| 男女边摸边吃奶| 中文字幕另类日韩欧美亚洲嫩草| 十八禁高潮呻吟视频| 两个人看的免费小视频| 欧美日韩一区二区视频在线观看视频在线| 免费av不卡在线播放| 国产成人精品久久久久久| 天天操日日干夜夜撸| 国产精品国产三级专区第一集| 91午夜精品亚洲一区二区三区| 黄片无遮挡物在线观看| 99热国产这里只有精品6| 日韩大片免费观看网站| xxx大片免费视频| 黄片无遮挡物在线观看| a级毛片在线看网站| 久久国产精品大桥未久av| 精品人妻熟女毛片av久久网站| 欧美老熟妇乱子伦牲交| 免费观看无遮挡的男女| 男女边摸边吃奶| 久久99一区二区三区| 最新的欧美精品一区二区| 日韩中字成人| 搡女人真爽免费视频火全软件| 一区二区av电影网| 国产男女内射视频| 久久97久久精品| 国产综合精华液| 久久ye,这里只有精品| 一二三四中文在线观看免费高清| 人妻人人澡人人爽人人| 亚洲五月色婷婷综合| 中文字幕精品免费在线观看视频 | 精品一区在线观看国产| 成人国语在线视频| 欧美xxⅹ黑人| 麻豆乱淫一区二区| 男女国产视频网站| 一级毛片电影观看| 一二三四中文在线观看免费高清| 国产精品嫩草影院av在线观看| 一边摸一边做爽爽视频免费| 韩国高清视频一区二区三区| 久久久久久久国产电影| 亚洲三级黄色毛片| 91精品三级在线观看| 欧美xxⅹ黑人| 制服诱惑二区| 在线看a的网站| 精品福利永久在线观看| 伊人亚洲综合成人网| 交换朋友夫妻互换小说| 丁香六月天网| 中文字幕精品免费在线观看视频 | 精品99又大又爽又粗少妇毛片| 国产成人精品一,二区| 久久久久久久久久成人| 全区人妻精品视频| av播播在线观看一区| 午夜视频国产福利| 在线天堂中文资源库| 国产福利在线免费观看视频| 欧美日韩视频精品一区| 欧美精品一区二区免费开放| 亚洲一区二区三区欧美精品| 亚洲激情五月婷婷啪啪| 2022亚洲国产成人精品| 国产黄频视频在线观看| 精品福利永久在线观看| 日韩电影二区| 国产无遮挡羞羞视频在线观看| 国产在视频线精品| 免费黄色在线免费观看| 亚洲少妇的诱惑av| 国产毛片在线视频| 看十八女毛片水多多多| 国产成人精品无人区| 美女脱内裤让男人舔精品视频| 午夜福利在线观看免费完整高清在| 久久久久久久久久久免费av| 国产男女超爽视频在线观看| 国产欧美亚洲国产| 欧美亚洲日本最大视频资源| 日日摸夜夜添夜夜爱| 成人国语在线视频| 丝袜脚勾引网站| 69精品国产乱码久久久| 日韩大片免费观看网站| 国产亚洲最大av| 一本大道久久a久久精品| av女优亚洲男人天堂| 精品国产国语对白av| 亚洲av综合色区一区| 亚洲国产精品999| 人人妻人人澡人人爽人人夜夜| 99香蕉大伊视频| 欧美国产精品一级二级三级| 欧美日韩精品成人综合77777| 美女脱内裤让男人舔精品视频| 国产色爽女视频免费观看| 中国美白少妇内射xxxbb| 成年女人在线观看亚洲视频| av在线老鸭窝| 女的被弄到高潮叫床怎么办| 国内精品宾馆在线| 亚洲国产精品一区三区| 69精品国产乱码久久久| 蜜桃在线观看..| 国产深夜福利视频在线观看| 香蕉精品网在线| 18禁国产床啪视频网站| 亚洲av电影在线进入| 纯流量卡能插随身wifi吗| 久热久热在线精品观看| 亚洲精品美女久久av网站| 欧美bdsm另类| 男男h啪啪无遮挡| 亚洲五月色婷婷综合| 免费看不卡的av| 欧美精品一区二区大全| 2018国产大陆天天弄谢| 久久精品夜色国产| 精品一品国产午夜福利视频| 欧美精品一区二区大全| 国产成人免费观看mmmm| 美国免费a级毛片| 人妻 亚洲 视频| 日产精品乱码卡一卡2卡三| 最近中文字幕高清免费大全6| 国产欧美日韩一区二区三区在线| 久久久精品免费免费高清| 国产黄频视频在线观看| 久久人人爽av亚洲精品天堂| 婷婷色av中文字幕| 久久精品人人爽人人爽视色| 看非洲黑人一级黄片| av国产精品久久久久影院| 97精品久久久久久久久久精品| 精品人妻在线不人妻| 这个男人来自地球电影免费观看 | 欧美日韩亚洲高清精品| 色5月婷婷丁香| 免费女性裸体啪啪无遮挡网站| 国产国语露脸激情在线看| 美女内射精品一级片tv| 午夜影院在线不卡| 免费av不卡在线播放| 波多野结衣一区麻豆| 日本av手机在线免费观看| 久热久热在线精品观看| www.av在线官网国产| 大香蕉久久成人网| 极品人妻少妇av视频| 日韩免费高清中文字幕av| 国产色婷婷99| 欧美xxⅹ黑人| av免费在线看不卡| 久久这里只有精品19| 亚洲精品,欧美精品| 亚洲欧美日韩卡通动漫| 亚洲精品456在线播放app| 80岁老熟妇乱子伦牲交| 一级片免费观看大全| 国产成人av激情在线播放| 免费黄网站久久成人精品| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久久久免| 一级毛片黄色毛片免费观看视频| 大码成人一级视频| 97人妻天天添夜夜摸| 高清在线视频一区二区三区| 国产老妇伦熟女老妇高清| 久久人人爽人人片av| 免费看光身美女| 在线天堂最新版资源| 国产有黄有色有爽视频| a级毛片在线看网站| 色婷婷av一区二区三区视频| 免费观看无遮挡的男女| 女的被弄到高潮叫床怎么办| 高清毛片免费看| 99热这里只有是精品在线观看| 国产探花极品一区二区| 男的添女的下面高潮视频| 精品一区在线观看国产| 国产乱来视频区| 久久亚洲国产成人精品v| 久久女婷五月综合色啪小说| 精品国产乱码久久久久久小说| 9191精品国产免费久久| 国产xxxxx性猛交| av播播在线观看一区| 91精品伊人久久大香线蕉| 欧美精品高潮呻吟av久久| 在线看a的网站| 免费观看a级毛片全部| 男女高潮啪啪啪动态图| 国产精品国产三级国产专区5o| 80岁老熟妇乱子伦牲交| 国产福利在线免费观看视频| 我的女老师完整版在线观看| 97人妻天天添夜夜摸| 18+在线观看网站| 美女大奶头黄色视频| av天堂久久9| 国产精品国产三级国产专区5o| 两个人免费观看高清视频| 日本色播在线视频| 日日爽夜夜爽网站| 日日啪夜夜爽| 全区人妻精品视频| 狂野欧美激情性xxxx在线观看| 亚洲人与动物交配视频| 久久毛片免费看一区二区三区| 夫妻性生交免费视频一级片| 男女免费视频国产| 国产有黄有色有爽视频| 国产精品人妻久久久影院| 亚洲欧美一区二区三区国产| 日日啪夜夜爽| 国产男女超爽视频在线观看| 亚洲精品乱码久久久久久按摩| 久久久精品94久久精品| 亚洲欧美日韩另类电影网站| 99国产精品免费福利视频| 精品国产乱码久久久久久小说| 国产欧美另类精品又又久久亚洲欧美| 9191精品国产免费久久| 97人妻天天添夜夜摸| 久热久热在线精品观看| 国产精品蜜桃在线观看| 亚洲国产精品国产精品| 日本欧美视频一区| kizo精华| 精品酒店卫生间| 天堂中文最新版在线下载| 丝袜人妻中文字幕| 看非洲黑人一级黄片| 五月玫瑰六月丁香| 最近中文字幕高清免费大全6| 免费日韩欧美在线观看| 国产精品久久久久久精品电影小说| 欧美性感艳星| 国精品久久久久久国模美| 韩国av在线不卡| 欧美激情 高清一区二区三区| 一区二区av电影网| 侵犯人妻中文字幕一二三四区| videosex国产| 黑人猛操日本美女一级片| 精品一区二区三区视频在线| 精品亚洲成国产av| 丝袜人妻中文字幕| 久久国产亚洲av麻豆专区| 亚洲少妇的诱惑av| av网站免费在线观看视频| 国产精品三级大全| 老司机亚洲免费影院| 老女人水多毛片| 国产av精品麻豆| av免费在线看不卡| 亚洲综合精品二区| 成人综合一区亚洲| 1024视频免费在线观看| 亚洲 欧美一区二区三区| 女的被弄到高潮叫床怎么办| 亚洲成色77777| 99久久中文字幕三级久久日本| www日本在线高清视频| 免费人成在线观看视频色| 亚洲精品,欧美精品| 国产1区2区3区精品| 国产精品麻豆人妻色哟哟久久| 国产熟女欧美一区二区| 桃花免费在线播放| 咕卡用的链子| 亚洲欧美色中文字幕在线| 欧美精品一区二区大全| 多毛熟女@视频| 国产成人欧美| 久久久久精品人妻al黑| 国产极品粉嫩免费观看在线| 丰满少妇做爰视频| 亚洲国产毛片av蜜桃av| 中文天堂在线官网| 免费大片18禁| 高清在线视频一区二区三区| 18禁在线无遮挡免费观看视频| 老司机影院成人| 精品一品国产午夜福利视频| 亚洲av中文av极速乱| 青春草亚洲视频在线观看| 香蕉精品网在线| 一级毛片黄色毛片免费观看视频| 丰满乱子伦码专区| 丝袜在线中文字幕| 狠狠婷婷综合久久久久久88av| 国产精品三级大全| 亚洲国产成人一精品久久久| 插逼视频在线观看| 男女高潮啪啪啪动态图| 久久精品国产亚洲av天美| 大话2 男鬼变身卡| 校园人妻丝袜中文字幕| 新久久久久国产一级毛片| 99视频精品全部免费 在线| 各种免费的搞黄视频| 女性被躁到高潮视频| 国产不卡av网站在线观看| 91国产中文字幕| 国产免费一区二区三区四区乱码| 日韩电影二区| 成人黄色视频免费在线看| av卡一久久| 久热这里只有精品99| 亚洲精品视频女| av国产精品久久久久影院| 内地一区二区视频在线| 欧美精品一区二区大全| 久久青草综合色| 精品亚洲成国产av| 国产黄频视频在线观看| 一区二区三区乱码不卡18| 久久狼人影院| 一区在线观看完整版| 久久久久网色| 性高湖久久久久久久久免费观看| 亚洲精品乱久久久久久| 久久精品夜色国产| 久久鲁丝午夜福利片| 亚洲综合色惰| 韩国精品一区二区三区 | 老熟女久久久| 精品国产一区二区三区久久久樱花| 国产男女内射视频| 成人二区视频| 全区人妻精品视频| 人人澡人人妻人| 久久国产精品男人的天堂亚洲 | av不卡在线播放| 国产成人午夜福利电影在线观看| 欧美日韩精品成人综合77777| 国内精品宾馆在线| av有码第一页| 精品一区在线观看国产| 久久精品国产鲁丝片午夜精品| 亚洲一区二区三区欧美精品| 啦啦啦中文免费视频观看日本| 国产亚洲av片在线观看秒播厂| 只有这里有精品99| av不卡在线播放| 在线天堂最新版资源| 久久精品国产综合久久久 | av一本久久久久| 中文字幕制服av| 永久免费av网站大全| 精品少妇久久久久久888优播| 精品一品国产午夜福利视频| 亚洲美女视频黄频| 一级黄片播放器| 永久网站在线| 91精品国产国语对白视频| 亚洲久久久国产精品| 九色成人免费人妻av| 18禁动态无遮挡网站| 丝袜人妻中文字幕| 咕卡用的链子| 久久久久国产网址| 伦理电影免费视频| 国产日韩欧美亚洲二区| 国产精品一国产av| 国产片特级美女逼逼视频| 99国产综合亚洲精品| 91在线精品国自产拍蜜月| 免费人成在线观看视频色| 亚洲av.av天堂| 蜜桃国产av成人99| 亚洲精品乱码久久久久久按摩| 9191精品国产免费久久| 欧美日本中文国产一区发布| 色哟哟·www| 男女午夜视频在线观看 | 一二三四中文在线观看免费高清| 亚洲少妇的诱惑av| 18在线观看网站| 我要看黄色一级片免费的| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲av在线观看美女高潮| 亚洲av国产av综合av卡| 最近手机中文字幕大全| 伦理电影大哥的女人| 国产精品一区二区在线不卡| 亚洲第一av免费看| 亚洲综合色惰| 亚洲成人一二三区av| 婷婷色麻豆天堂久久| 老司机亚洲免费影院| 精品国产一区二区三区久久久樱花| 亚洲情色 制服丝袜| 赤兔流量卡办理| 日本猛色少妇xxxxx猛交久久| 91成人精品电影| 成人国产麻豆网| 丝袜在线中文字幕| 久久99精品国语久久久| 亚洲欧美清纯卡通| 黄色配什么色好看| 91久久精品国产一区二区三区| tube8黄色片| 免费播放大片免费观看视频在线观看| 51国产日韩欧美| 精品国产露脸久久av麻豆| 国产1区2区3区精品| 欧美老熟妇乱子伦牲交| 激情五月婷婷亚洲| 人妻 亚洲 视频| 午夜福利影视在线免费观看| 赤兔流量卡办理| 亚洲av.av天堂| 高清在线视频一区二区三区| 中文字幕人妻熟女乱码| 建设人人有责人人尽责人人享有的| 久久免费观看电影| 老司机影院成人| 中文字幕人妻丝袜制服| 精品久久久精品久久久| 岛国毛片在线播放| 黄色毛片三级朝国网站| h视频一区二区三区| 亚洲内射少妇av| 国产免费又黄又爽又色| 99久久中文字幕三级久久日本| 精品亚洲乱码少妇综合久久| 2022亚洲国产成人精品| a级毛片黄视频| 中文字幕人妻丝袜制服| 王馨瑶露胸无遮挡在线观看| 免费看光身美女| 成人漫画全彩无遮挡| 成年女人在线观看亚洲视频| 亚洲精品乱久久久久久| 十八禁高潮呻吟视频| 搡女人真爽免费视频火全软件| 成人二区视频| 欧美精品一区二区免费开放| 久久人人爽人人片av| 国产女主播在线喷水免费视频网站| 亚洲综合精品二区| 亚洲av电影在线进入| 卡戴珊不雅视频在线播放| 在线精品无人区一区二区三| 国产精品女同一区二区软件| 成人午夜精彩视频在线观看| 少妇的逼好多水| h视频一区二区三区| 男女边吃奶边做爰视频| 少妇被粗大的猛进出69影院 | 久久国产亚洲av麻豆专区| 亚洲成色77777| 亚洲欧美清纯卡通| 天堂中文最新版在线下载| 精品久久久精品久久久| 久久女婷五月综合色啪小说| 日日爽夜夜爽网站| www.av在线官网国产| 青青草视频在线视频观看| 尾随美女入室| 成人漫画全彩无遮挡| 国产精品不卡视频一区二区| 激情五月婷婷亚洲| 国产精品国产av在线观看| 国产免费一区二区三区四区乱码| 精品一区二区三区四区五区乱码 | 久久久久视频综合| 国产深夜福利视频在线观看| 国产极品粉嫩免费观看在线| 三上悠亚av全集在线观看| 欧美亚洲 丝袜 人妻 在线| 欧美成人午夜精品| 亚洲av国产av综合av卡|