• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect

    2022-10-26 09:49:40MingWeiQiu邱明偉ChaoQunCai蔡超群andZuXingZhang張祖興
    Chinese Physics B 2022年10期
    關(guān)鍵詞:超群

    Ming-Wei Qiu(邱明偉), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(張祖興)

    Advanced Photonic Technology Laboratory,College of Electronic and Optical Engineering&College of Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    Keywords: microfiber knot resonance(MKR),dissipative four-wave-mixing(DFMW),nonlinear Kerr beam cleaning effect(NL-KBC),multimode fiber laser

    1. Introduction

    High-repetition-rate pulse fiber lasers can be widely used in optical communication to promote channel transmission rate of communication network,[1–3]materials processing,[4–6]nonlinear optical research,[7]and microwave photonics.[8]Especially ultrafast fiber laser[9–11]with high gain coefficient,wide wavelength range, good heat dissipation performance,and switchable laser mode, provides an ideal platform for high-repetition-rate pulse source research. So far, fiber lasers with high repetition-rate pulse generation have been realized by a variety of schemes,which can be divided into: harmonic mode-locking,based on fractional time domain effect and dissipative four-wave-mixing effect. In general,the pulse repetition rate of a passively mode-locked fiber laser is determined by the cavity mode spacing.Therefore,reducing cavity length is the most straightforward and simple method to obtain highrepetition-rate pulse. However,this obviously has a great limitation: the use of electronic device to achieve active modelocking by control the parameters in the cavity is difficult to further improve the repetition frequency due to the bandwidth limitation inherent in electronic devices. Applications based on fractional time domain effect such as chirped Bragg grating[12–14]and long period fiber grating[15,16]require too much high initial frequency of optical signal and their structure and operation are complicated. The Fabry–Perot filter provided by Yoshida[17]was used to generate pulses with stable high repetition frequency,which was the first proposed scheme based on DFMW.Since then,high repetition-rate pulse based on DFMW has attracted much attention due to its simple structure and higher realizable frequency.

    The key elements of dissipative four-wave mixing modelocking technology are intracavity gain, multiwavelength filter and highly nonlinear components. Generally,the obtained pulse repetition frequency and laser wavelength are determined by the free spectral range(FSR)of the embedded comb filter and the central wavelength of the bandpass filter in the cavity. The widely used intra-cavity optical comb filtering includes Fabry–Perot filter,fiber grating,programmable optical processor,and microfiber knot resonator,[18–22]etc.Among all comb spectral filters,microfiber knot resonator device has become research hotspot due to its strong evanescent field effect,low insertion loss and perfect adaptation to all-fiber laser system. It is worth noting that most of high-repetition-rate pulse mode-locked fiber lasers at present are studied in single-mode fiber cavities.However,the high freedom degree of multimode fiber allows the generation of novel solitons and observation of more nonlinear phenomena. For example,a spatiotemporal mode-locked multimode fiber laser,[23]which relies on spatial beam self-cleaning via the nonlinear Kerr effect to attain high pulse energy with near Gaussian output beam shape was achieved. In addition to spatial beam cleaning[24–26]and spatial mode-locking,[27–29]instability of time and space,dispersive wave[30–32]have also been discovered. Therefore,the realization of high-repetition-rate pulse in multimode fiber laser is expected to observe various nonlinear optical phenomena.

    In this paper, we demonstrate a wavelength-switchable spatiotemporal mode-locked multimode fiber laser, using MKR to realize dissipative four-wave-mixing(DFMW)modelocking. When the DFMW mode-locking operation starts automatically,pulses with high repetition rate of up to 69.21 GHz have been achieved,benefitting from the filtering characteristics of microfiber knot resonance and high nonlinearity implementation of highly nonlinear fiber(HNLF).Furthermore,the virtual few-mode fiber–multimode fiber filtering structure enables switchable wavelength DFMW mode-locking. In this regime,the laser-emitted switchable wavelength between~1035.3 nm and~1040.3 nm by changing the states of the polarization controllers. In addition, it was revealed that the nonlinear Kerr beam cleaning (NL-KBC) effect will result in normal dispersion soliton mode-locking in place of DFMW mode-locking when pulse energy reaches the NL-KBC threshold.

    2. Device fabrication and characterization

    A microfiber knot resonator is mainly composed of two parts: straight waveguide and curved waveguide,as schematically shown in Fig. 1. Due to the characteristics of evanescent field,power conversion mainly occurs in coupling region,therefore the light intensity in the coupling region is the largest after light transmission. MKR is manufactured by three main steps. Initially, fiber in the center should be tapered through the flame tapering method, then knotted and stretched continuously to shrink the ring diameter. Last, ensure that the desired MKR diameter and FSR are achieved and encapsulated with UV glue after tapering, to guarantee the firmness and easy access. The radius of tapered fiber of the used MKR is about 3 μm. As the fiber is stretched,the diameter of MKR becomes smaller. The performance of the MKR can be determined through observing the red light transmission of the micro-ring waveguide. When the light coupled to the microring completely passes through the whole structure, the best filtering spectrum can be obtained.

    Fig. 1. Schematic structure of microfiber knot resonator under the microscope after light pass.

    In order to ensure the excellent performance of the MKR and achieve the desired filtering effect, it is necessary to observe the transmission spectrum behind the light source and adjust the diameter of the MKR during the stretching process,as shown in Fig. 2(a). The broadband light source (BBS) is connected with the straight waveguide at one end,and another end is connected the optical spectrum analyzer (OSA) which is to measure the transmission spectrum of the MKR. Generally, when the diameter of the MKR is between 1 μm and 3 μm,the performance of the MKR filter is the best,its extinction is relatively large and interference spectrum is relatively flat. The transmission spectrum can also be affected by rotating the position of the micro-ring waveguide. Taking Fig.2(b)for example,it shows transmission spectrum of the MKR used in this experiment, whose FSR is 0.12 nm. The diameter of the MKR is 1.9 mm. The extinction ratio of the filtering spectrum cannot be kept consistent which is mainly due to uneven heating of the tapered fiber caused by air fluctuation, but this does not affect the overall extinction ratio of the MKR and its filtering effect in the cavity. It should be noted that the fiber used in the MKR has a core diameter of 8.2 μm, a numerical aperture of 0.14,and a normalized frequencyV >2.405 at 1-μm wavelength band,which can support multiple modes of transmission.

    Fig. 2. (a) Experiment setups of spectrum measurement, (b) and (c) transmission spectrum of the fabricated MKRs.

    3. Experiments and discussion

    The experimental setup of the spatiotemporal modelocked multimode fiber laser is depicted in Fig.3. A 915-nm laser diode with maximum output power of 7 W is used as the pump source, launched into an ytterbium-doped multimode fiber(Yb MMF)through a 915-nm/1064-nm beam combiner.It contains a 2.2-m graded-index multimode fiber(GIMF)with 50-μm core diameter,a double-cladding multimode gain fiber of 4.5 m. The gain fiber supports about 3 spatial modes, and GIMF can support dozens of spatial modes. Due to the different core diameters of the fibers,most transverse modes are eliminated, which serves as a virtual spatial filter. There is a bulky polarizing beam splitter (PBS) and a free space isolator in free space part of the laser cavity, which is coupled with fiber part by two lenses(L1 and L2). With the PBS and two polarization controllers(PCs),nonlinear polarization evolution(NPE)is implemented as an artificial absorber. The two PCs are placed before and after the space structure. MKR acts as a comb filter in the cavity. A 200-m long highly nonlinear fiber provides high nonlinearity into the cavity to promote the occurrence of four-wave mixing,so that the gain modes transfer energy to the higher-order mode.Four-wave mixing causes all modes to be in constant phase relation as the process repeats itself,resulting in an impulse train whose repetition rate is determined by the free spectral range of MKR.

    Pump

    In this experiment,with the increase of pump power and adjustment of polarization controller, spatiotemporal modelocking operation can be achieved due to the DFMW. We performed a detailed characterization of the laser when the pump power is set to 4.2 W.Owing to the instantaneous pump power and high nonlinearity introduced by the HNLF, laser shifts to the regime of DFMW mode-locking where optical frequency comb spectra emerges. As expected, a typical output of DFMW spatiotemporal mode-locking operation with a high-repetition-rate pulse was measured, as shown in Fig. 4.Its output spectrum is shown in Fig. 4(a). The central wavelength locates at 1040.3 nm. According to the output spectrum, the FSR of 0.12 nm corresponds to the MKR diameter of 1.9 mm. The theoretical calculation shows that the pulse repetition frequency is 33.22 GHz. As also noted, the output beam profile is a high multi-mode beam profile due to the low pulse energy in the cavity. In order to verify the realization of DFMW, we detected the output pulse, as shown in Fig. 4(b).It shows the time interval of the output pulse string is 30.1 ps and its corresponding repetition frequency is 33.22 GHz,consistent with the theoretical calculation value.

    Fig.4. The generation of 33.22-GHz high-repetition-rate pulses: (a)modelocked spectrum,(b)pulse train.

    Meanwhile, we can see that the output spectrum has a larger filter envelope with a spacing of about 5 nm contrasted with the MKR filter, which is obviously due to the virtual few-mode fiber-MMF (FM-MMF) filtering structure. This structure is mainly constituted by the 10-μm/125-μm fiber(YDF)and the GIMF.By carefully adjusting the PCs,DFMW spatiotemporal mode-locking operation with different central wavelengths can be obtained,as shown in Fig.5.Similarly,we have tried to further reduce the diameter of the MKR to change the free spectral range of filtering,and achieved DFMW modelocking with higher repetition rate. These results demonstrate the versatility of MKR during high-repetition-rate pulse generation in multimode fiber lasers.

    In a spatiotemporal mode-locked MMF cavity,the nonlinear energy exchange between transverse modes can be caused by nonlinear gain, nonlinear loss, and pulse energy in cavity. It is shown in the recent exploration of spatiotemporal mode-locked multimode fiber lasers that the NL-KBC effect induced by GIMF can improve beam quality and enhance average power in MMF cavity. The NL-KBC effect refers to the fact that energy of the high-order mode will be irreverently coupled to the fundamental mode, which makes the high-intensity pulsed multimode beam profile transform into a nearly Gaussian beam. It is worth noting the pulse energy needs to reach the required threshold, and pump power required for NL-KBC is distinct with different wavelength spatiotemporal mode-locked multimode lasers.[33]Based on this,an interesting phenomenon occurred when power exceeds 6.2 W. Instead of quasi-DFMW spectrum, a broadband and beam autoselection mode-locked spectrum can be observed,as shown in Fig.6(a). Compared to the DFMW mode-locking spectrum, it is broader and has the similar steep edges as the dissipative solitons in the all-normal-dispersion laser. It can be found that the spectrum still has the characteristics of MKR filtering and the spectral interval of fine structure conforms to the FSR of the MKR. The difference is the pulse repetition rate plummets and the interval of output pulses is 925.9 ns,as shown in Fig.6(b), and the corresponding pulse energy measured is 13.4 nJ. Figure 6(c) plots corresponding detailed radio frequency(RF)spectrum around fundamental pulse repetition rate,which peaks at 1.08 MHz with signal-to-noise ratio(SNR) of 42 dB. The beam profile shows beam energy distribution on the profile map, related to the transverse modes distribution, as shown in interior illustration of Fig. 6(a). It has no longer a high-order-mode beam,but a Gaussian center and a background composed of several high-order modes.And with the increase of pulse energy,the purity of the output beam can be further improved,up to 86%in our cavity. In order to show the NL-KBC effect happened in the cavity directly, we compared output beam profiles under different pump powers,shown in Fig. 6(d). This clearly shows the obvious transformation of the beam profile when the NL-KBC effect occurs.That means competition between nonlinear effects also exists in multimode cavity. When pulse energy reaches the NL-KBC threshold,it will instead of four-wave mixing to play a dominant role in the nonlinear effect in the cavity.

    Fig. 5. Wavelength switchable operation from (a) 1035.3 nm to (b)1040.3 nm.

    Fig.6.Dissipative soliton mode-locking with higher pump power:(a)optical spectrum(inset:the corresponding beam profiles),(b)pulse train,(c)RF spectrum with a resolution bandwidth of 1 Hz,(d)beam profile both under different pump powers.

    Fig. 7. The output characteristics with 0.25-nm FSR of the used MKR: DFMW mode-locking spectrum, (b) corresponding pulse train, (c)dissipative soliton mode-locking spectrum,(d)pulse train.

    All the experimental results shown so far are based on the MKR with an FSR of 0.12 nm. In the discussion of MKR in the previous section,we mentioned that the advantages of microfiber knot compared with other filters are mainly reflected in the adjustable FSR.Therefore,we further reduced the diameter of MKR and applied it to the same multimode fiber laser.When the pump power was set to 4.5 W and the polarization controller was fine-tuned,the DFWM mode-locking spectrum as shown in Fig.7(a)can be acquired. The diameter of MKR at this case turns into 1.4 mm and its FSR is 0.25 nm. The mode-locking center wavelength is located at 1040 nm and the comb spectrum interval is 0.25 nm which meets the ideal expectation, and the measured time interval of the output pulse train is 14.45 ps,as shown in Fig.7(b),the relevant repetition rate is 68.9 GHz, confirming that DFWM mode-locking has been realized. Note that the output beam profile is in a high multimode state, similar to the experiment result with 0.12-nm MKR. Meanwhile, we increased the pump power, making higher pulse energy. After fine-tuning PC,with the pump power of 6 W, the dissipative soliton mode-locking spectrum which is different from the DFWM mode-locking spectra was also observed[shown in Fig.7(c)],and the output beam profile was similarly turned into a nearly Gaussian beam profile,indicating that the nonlinear Kerr beam self-cleaning effect occurs.Similar experiment results using different MKRs verify the competitive relationship between different nonlinear effects in multimode fiber laser. When the pulse energy in the cavity is low,four-wave mixing effect dominates and the DFWM mode-locking is achieved attributed to the use of MKR,getting high-repetition-rate pulse and comb spectrum.When pulse energy reaches the threshold of NL-KBC,the introduction of irreversible NL-KBC effect by GIMF will couple the higherorder mode energy into the lower-order mode,inhibiting production of four-wave mixing effect and occupying the dominant position. And the traditional mode-locked spectrum with normal dispersion can be observed. The output pulse repetition frequency is no longer determined by the FSR of the MKR,but mainly by the length of the cavity.

    4. Conclusions

    In conclusion, we have reported a spatiotemporal modelocked multimode fiber laser with MKR.High-repetition-rate pulse output has been realized by DFMW in highly nonlinear fiber. Wavelength-switchable DFMW operation can be further achieved on account of a virtual FM-MMF filter structure.It was also found that the pulse energy in the cavity determines the dominant role of nonlinear effects for mode-locking.When the pulse energy in the cavity is high enough, the NLKBC effect can transform the beam profile from high-order mode to Gaussian profile irreversibly. We believe that the discovery of this phenomenon will not only provide a new idea for the application of MKR to generate high-repetition-rate pulse train in multimode fiber lasers, but provide a research platform for the observation of more nonlinear phenomena in multimode fiber lasers.

    Acknowledgements

    Project partially supported by the National Natural Science Foundation of China (Grant Nos. 91950105 and 62175116)and the 1311 Talent Plan of Nanjing University of Posts and Telecommunications.

    猜你喜歡
    超群
    《和而不同》
    Increasing linear flux range of SQUID amplifier using self-feedback effect
    Effect of CeO2 doping on the coercivity of 2:17 type SmCo magnets
    熱心腸的同桌
    區(qū)塊鏈技術(shù)助力農(nóng)村金融發(fā)展研究
    武器裝備典型故障和環(huán)境效應(yīng)統(tǒng)計(jì)分析
    絕經(jīng)綜合征的中西醫(yī)診治56例分析
    讓物品有模有樣
    挑選
    黃河之聲(2016年24期)2016-04-22 02:39:43
    夜夜骑夜夜射夜夜干| 男男h啪啪无遮挡| 一级片'在线观看视频| 午夜免费鲁丝| 久热爱精品视频在线9| 欧美日韩福利视频一区二区| 在线观看三级黄色| 又黄又粗又硬又大视频| 一个人免费看片子| 欧美激情高清一区二区三区 | 国产成人a∨麻豆精品| 一级黄片播放器| 国产成人系列免费观看| 肉色欧美久久久久久久蜜桃| 日韩制服骚丝袜av| 丰满少妇做爰视频| 伊人久久大香线蕉亚洲五| 国产一卡二卡三卡精品 | 啦啦啦在线免费观看视频4| 午夜激情av网站| videos熟女内射| 国产一区二区激情短视频 | 中文天堂在线官网| 日韩中文字幕视频在线看片| 女性被躁到高潮视频| 丰满饥渴人妻一区二区三| 美女中出高潮动态图| 人体艺术视频欧美日本| 久久久久精品久久久久真实原创| xxxhd国产人妻xxx| 在线观看www视频免费| 国产又爽黄色视频| 亚洲av日韩在线播放| 成人国语在线视频| 中文乱码字字幕精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| 亚洲在久久综合| 老鸭窝网址在线观看| 欧美精品一区二区免费开放| 黑丝袜美女国产一区| 九色亚洲精品在线播放| 99久国产av精品国产电影| 咕卡用的链子| 777久久人妻少妇嫩草av网站| 激情视频va一区二区三区| 韩国精品一区二区三区| 久久精品aⅴ一区二区三区四区| 亚洲成人国产一区在线观看 | 午夜影院在线不卡| 老熟女久久久| 伊人久久大香线蕉亚洲五| 女的被弄到高潮叫床怎么办| 国产亚洲av片在线观看秒播厂| 精品亚洲成国产av| 秋霞伦理黄片| 久久免费观看电影| 久久热在线av| 18禁动态无遮挡网站| 不卡视频在线观看欧美| 少妇人妻 视频| 少妇猛男粗大的猛烈进出视频| 飞空精品影院首页| 亚洲av电影在线进入| 亚洲国产av新网站| 老司机影院成人| 免费少妇av软件| 天堂中文最新版在线下载| 日韩大片免费观看网站| 九色亚洲精品在线播放| 午夜福利,免费看| 青草久久国产| 久久韩国三级中文字幕| 伊人久久大香线蕉亚洲五| 国产精品.久久久| 午夜老司机福利片| 欧美人与性动交α欧美软件| 久久久精品免费免费高清| 一级片免费观看大全| 国产亚洲午夜精品一区二区久久| 狂野欧美激情性bbbbbb| 久久久久精品人妻al黑| 日韩一卡2卡3卡4卡2021年| 久久精品国产综合久久久| 女人高潮潮喷娇喘18禁视频| 亚洲一码二码三码区别大吗| 两个人看的免费小视频| 熟妇人妻不卡中文字幕| 男女之事视频高清在线观看 | 亚洲欧洲精品一区二区精品久久久 | 美女视频免费永久观看网站| 国产在线视频一区二区| 男女之事视频高清在线观看 | 五月开心婷婷网| 欧美精品一区二区大全| 日本一区二区免费在线视频| www.熟女人妻精品国产| 最近手机中文字幕大全| 青春草国产在线视频| 激情视频va一区二区三区| 纯流量卡能插随身wifi吗| av在线老鸭窝| 深夜精品福利| 久久99一区二区三区| 亚洲欧洲国产日韩| 精品第一国产精品| 亚洲国产欧美日韩在线播放| 90打野战视频偷拍视频| 777米奇影视久久| 国产 精品1| 亚洲人成网站在线观看播放| 欧美日韩一级在线毛片| 欧美国产精品va在线观看不卡| 亚洲国产看品久久| 亚洲精品久久久久久婷婷小说| 久久影院123| 亚洲精品国产区一区二| 在线天堂中文资源库| 操出白浆在线播放| 国产1区2区3区精品| 人人妻,人人澡人人爽秒播 | 在线观看免费日韩欧美大片| 精品午夜福利在线看| 2021少妇久久久久久久久久久| 精品一区二区三卡| 亚洲av国产av综合av卡| 国产成人av激情在线播放| 久久久精品区二区三区| 国产一区二区激情短视频 | 99精品久久久久人妻精品| 美女福利国产在线| av在线app专区| 亚洲一码二码三码区别大吗| 精品一区在线观看国产| 少妇 在线观看| 久久久久精品人妻al黑| 精品一区二区三区四区五区乱码 | 精品久久久精品久久久| 黑人巨大精品欧美一区二区蜜桃| 99精国产麻豆久久婷婷| 可以免费在线观看a视频的电影网站 | 九草在线视频观看| 日韩一卡2卡3卡4卡2021年| 在现免费观看毛片| 国产精品久久久人人做人人爽| 一级片免费观看大全| 亚洲av福利一区| 好男人视频免费观看在线| 国产 精品1| 无遮挡黄片免费观看| 国产免费现黄频在线看| 制服诱惑二区| 一级毛片电影观看| a级毛片黄视频| 蜜桃在线观看..| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久99久久久精品蜜桃| 亚洲第一av免费看| 欧美日韩综合久久久久久| 亚洲激情五月婷婷啪啪| 日本色播在线视频| 亚洲av福利一区| 国产免费视频播放在线视频| 国产日韩欧美视频二区| h视频一区二区三区| 最近最新中文字幕大全免费视频 | 男女边吃奶边做爰视频| 国产精品99久久99久久久不卡 | 国产高清国产精品国产三级| 97精品久久久久久久久久精品| 精品一品国产午夜福利视频| 亚洲精品久久久久久婷婷小说| 国产视频首页在线观看| 久久久久精品性色| 国产精品国产av在线观看| 丝袜人妻中文字幕| 久久久国产一区二区| 777久久人妻少妇嫩草av网站| 国产又色又爽无遮挡免| 亚洲精品自拍成人| svipshipincom国产片| 亚洲四区av| 久久久国产欧美日韩av| 国产成人精品在线电影| 中文字幕人妻熟女乱码| 精品少妇久久久久久888优播| 免费看av在线观看网站| 天天添夜夜摸| √禁漫天堂资源中文www| 晚上一个人看的免费电影| 香蕉丝袜av| 久久久久精品国产欧美久久久 | 99久久精品国产亚洲精品| 91精品国产国语对白视频| 一区二区三区激情视频| av视频免费观看在线观看| 亚洲一码二码三码区别大吗| 日韩中文字幕视频在线看片| a级毛片黄视频| 久久久欧美国产精品| 精品国产一区二区久久| 777久久人妻少妇嫩草av网站| 九草在线视频观看| 国产激情久久老熟女| 久久精品久久久久久久性| 18禁国产床啪视频网站| 亚洲激情五月婷婷啪啪| 一级片'在线观看视频| 欧美国产精品va在线观看不卡| 午夜福利视频在线观看免费| 日韩熟女老妇一区二区性免费视频| 亚洲欧美成人综合另类久久久| 国产精品熟女久久久久浪| 尾随美女入室| 性少妇av在线| 最近的中文字幕免费完整| 性高湖久久久久久久久免费观看| 免费久久久久久久精品成人欧美视频| 久久久久久人人人人人| 大话2 男鬼变身卡| 免费观看性生交大片5| 青春草视频在线免费观看| 看非洲黑人一级黄片| 五月天丁香电影| 国产探花极品一区二区| 又粗又硬又长又爽又黄的视频| 啦啦啦啦在线视频资源| 免费女性裸体啪啪无遮挡网站| 国产成人av激情在线播放| 在线观看一区二区三区激情| 91aial.com中文字幕在线观看| av不卡在线播放| 十八禁网站网址无遮挡| 大片电影免费在线观看免费| 天天躁夜夜躁狠狠躁躁| 亚洲国产精品一区二区三区在线| 最近中文字幕高清免费大全6| 久久国产精品男人的天堂亚洲| 欧美人与性动交α欧美精品济南到| 国产片特级美女逼逼视频| 久久鲁丝午夜福利片| 欧美日韩亚洲国产一区二区在线观看 | 美女国产高潮福利片在线看| www.av在线官网国产| 国产精品免费大片| av线在线观看网站| 日韩av不卡免费在线播放| 黑人欧美特级aaaaaa片| 在线亚洲精品国产二区图片欧美| 亚洲精品美女久久av网站| 99热国产这里只有精品6| 国产免费一区二区三区四区乱码| 老司机在亚洲福利影院| 国产野战对白在线观看| 两性夫妻黄色片| 亚洲一区中文字幕在线| 国产一区二区激情短视频 | 777米奇影视久久| 亚洲精品国产av蜜桃| 伊人亚洲综合成人网| 中文字幕高清在线视频| 黄片小视频在线播放| 亚洲av成人精品一二三区| av不卡在线播放| 久久狼人影院| 视频在线观看一区二区三区| 亚洲精品久久午夜乱码| 久久精品国产a三级三级三级| 一级毛片黄色毛片免费观看视频| 少妇人妻久久综合中文| 老司机深夜福利视频在线观看 | 日本爱情动作片www.在线观看| 亚洲精品国产av蜜桃| 精品国产露脸久久av麻豆| 国产男人的电影天堂91| 秋霞在线观看毛片| 日本黄色日本黄色录像| 18禁裸乳无遮挡动漫免费视频| 我要看黄色一级片免费的| 国产午夜精品一二区理论片| 青草久久国产| 亚洲 欧美一区二区三区| 久久精品国产a三级三级三级| 成年美女黄网站色视频大全免费| 国产男女内射视频| 国产日韩欧美视频二区| 女人久久www免费人成看片| 久久ye,这里只有精品| 国产成人系列免费观看| 日本wwww免费看| 国产成人欧美| 中文天堂在线官网| 欧美乱码精品一区二区三区| 宅男免费午夜| 视频区图区小说| 午夜91福利影院| 天天躁狠狠躁夜夜躁狠狠躁| 欧美在线一区亚洲| 美女扒开内裤让男人捅视频| 侵犯人妻中文字幕一二三四区| 十八禁网站网址无遮挡| 日本午夜av视频| 一本久久精品| 国产xxxxx性猛交| 汤姆久久久久久久影院中文字幕| 2021少妇久久久久久久久久久| 国产成人精品在线电影| 看免费av毛片| 国产av一区二区精品久久| 精品一区二区免费观看| 999精品在线视频| 亚洲精品视频女| 国产精品久久久久久精品电影小说| 国产男女超爽视频在线观看| 最近中文字幕高清免费大全6| 亚洲,欧美精品.| svipshipincom国产片| 国产又爽黄色视频| e午夜精品久久久久久久| 久久久久久人妻| 日本午夜av视频| 激情视频va一区二区三区| 男女边摸边吃奶| 热99国产精品久久久久久7| 人体艺术视频欧美日本| 久久韩国三级中文字幕| 在线天堂中文资源库| 国产一区二区 视频在线| 国产精品久久久人人做人人爽| 亚洲综合色网址| 国产一区有黄有色的免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品嫩草影院av在线观看| 亚洲成人国产一区在线观看 | 国产精品秋霞免费鲁丝片| 在线 av 中文字幕| 亚洲,欧美,日韩| 精品久久蜜臀av无| 久久久久久人妻| 婷婷色综合大香蕉| 亚洲av综合色区一区| 久久久久久久久久久久大奶| 一二三四中文在线观看免费高清| tube8黄色片| 电影成人av| 日日摸夜夜添夜夜爱| 日韩 欧美 亚洲 中文字幕| 国产 一区精品| 2021少妇久久久久久久久久久| 精品少妇黑人巨大在线播放| 久久午夜综合久久蜜桃| 久久久欧美国产精品| 免费久久久久久久精品成人欧美视频| 国产欧美日韩一区二区三区在线| 亚洲av日韩在线播放| 亚洲色图综合在线观看| 久久婷婷青草| 日韩精品有码人妻一区| √禁漫天堂资源中文www| 国产深夜福利视频在线观看| 亚洲精品自拍成人| 国产激情久久老熟女| 制服人妻中文乱码| 十八禁高潮呻吟视频| 国产成人精品无人区| 精品第一国产精品| 国产色婷婷99| 看非洲黑人一级黄片| 欧美精品亚洲一区二区| 久久久久久久久久久免费av| 亚洲精品国产色婷婷电影| 欧美av亚洲av综合av国产av | av国产久精品久网站免费入址| 亚洲精华国产精华液的使用体验| 亚洲美女视频黄频| 久久人人爽人人片av| 色网站视频免费| netflix在线观看网站| 在线天堂中文资源库| 一级毛片电影观看| 精品亚洲成a人片在线观看| 日本av免费视频播放| 一边摸一边抽搐一进一出视频| 国产免费现黄频在线看| 久久热在线av| 欧美黑人欧美精品刺激| 黄色怎么调成土黄色| 日本黄色日本黄色录像| 一二三四中文在线观看免费高清| 亚洲av日韩精品久久久久久密 | 中文乱码字字幕精品一区二区三区| 国产成人精品久久二区二区91 | 美女脱内裤让男人舔精品视频| 天天躁日日躁夜夜躁夜夜| 在线天堂最新版资源| 最近手机中文字幕大全| 久久精品国产亚洲av高清一级| 中文乱码字字幕精品一区二区三区| 国产精品久久久久久人妻精品电影 | 看免费成人av毛片| 美女福利国产在线| 欧美日韩综合久久久久久| 无限看片的www在线观看| 精品免费久久久久久久清纯 | 我的亚洲天堂| 黄色视频不卡| 精品卡一卡二卡四卡免费| 色94色欧美一区二区| 女人爽到高潮嗷嗷叫在线视频| 美女脱内裤让男人舔精品视频| 亚洲婷婷狠狠爱综合网| 亚洲精品美女久久久久99蜜臀 | 亚洲 欧美一区二区三区| 精品视频人人做人人爽| 久久久久精品久久久久真实原创| 在线观看www视频免费| 亚洲天堂av无毛| 亚洲国产成人一精品久久久| 精品一区二区三区四区五区乱码 | 青春草视频在线免费观看| 桃花免费在线播放| 欧美 日韩 精品 国产| 亚洲精品自拍成人| www日本在线高清视频| 亚洲成人av在线免费| 久久综合国产亚洲精品| 在线观看一区二区三区激情| 啦啦啦在线观看免费高清www| avwww免费| 久久久久精品国产欧美久久久 | 999精品在线视频| 日韩不卡一区二区三区视频在线| 丁香六月天网| 亚洲国产中文字幕在线视频| 热99久久久久精品小说推荐| 亚洲情色 制服丝袜| 日本黄色日本黄色录像| 9191精品国产免费久久| 亚洲第一区二区三区不卡| 亚洲欧美中文字幕日韩二区| 久久99精品国语久久久| 青春草国产在线视频| 国产黄色免费在线视频| 国产免费现黄频在线看| 国产精品三级大全| 精品人妻一区二区三区麻豆| 日韩伦理黄色片| 亚洲精品中文字幕在线视频| 久久免费观看电影| 高清不卡的av网站| 国产精品免费视频内射| 国产女主播在线喷水免费视频网站| www日本在线高清视频| 制服丝袜香蕉在线| 最近手机中文字幕大全| 欧美日韩亚洲综合一区二区三区_| av卡一久久| www.av在线官网国产| 黄色怎么调成土黄色| 两个人免费观看高清视频| 又粗又硬又长又爽又黄的视频| videos熟女内射| 日韩大片免费观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲伊人久久精品综合| 国产爽快片一区二区三区| 亚洲熟女精品中文字幕| 亚洲欧美激情在线| 色精品久久人妻99蜜桃| 亚洲国产欧美网| 19禁男女啪啪无遮挡网站| 国产99久久九九免费精品| 另类亚洲欧美激情| 欧美精品av麻豆av| 国产精品国产av在线观看| 亚洲国产中文字幕在线视频| 精品视频人人做人人爽| 欧美日韩亚洲国产一区二区在线观看 | 女性生殖器流出的白浆| 亚洲色图综合在线观看| 日韩,欧美,国产一区二区三区| 国产成人av激情在线播放| 欧美黄色片欧美黄色片| 青春草亚洲视频在线观看| 亚洲精品一二三| 激情五月婷婷亚洲| 日韩 欧美 亚洲 中文字幕| 高清av免费在线| 久久精品熟女亚洲av麻豆精品| 777米奇影视久久| av在线老鸭窝| 精品久久蜜臀av无| 久久婷婷青草| 中文字幕最新亚洲高清| 国产又色又爽无遮挡免| 伦理电影免费视频| 国产精品二区激情视频| 高清不卡的av网站| 国产av精品麻豆| 午夜福利影视在线免费观看| 欧美日韩综合久久久久久| av电影中文网址| 中文字幕另类日韩欧美亚洲嫩草| 咕卡用的链子| 男女之事视频高清在线观看 | 久久久久久久久免费视频了| 看免费成人av毛片| 大片免费播放器 马上看| 精品国产乱码久久久久久男人| 婷婷色综合www| 中文天堂在线官网| 亚洲欧美日韩另类电影网站| 国产精品无大码| 纯流量卡能插随身wifi吗| av片东京热男人的天堂| 国产亚洲精品第一综合不卡| 操美女的视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产男人的电影天堂91| 久久久久久人人人人人| 十八禁人妻一区二区| 激情视频va一区二区三区| 欧美精品一区二区免费开放| 成年人午夜在线观看视频| 亚洲成色77777| 亚洲欧美一区二区三区久久| 免费观看av网站的网址| 中文乱码字字幕精品一区二区三区| 中文天堂在线官网| 一二三四在线观看免费中文在| 国产黄色免费在线视频| 性色av一级| 日韩伦理黄色片| 国产成人欧美| 亚洲一码二码三码区别大吗| 9热在线视频观看99| 午夜日本视频在线| 亚洲成人一二三区av| 成人手机av| 999精品在线视频| 亚洲欧美成人综合另类久久久| av在线老鸭窝| www.精华液| 亚洲国产精品999| 亚洲,一卡二卡三卡| 大陆偷拍与自拍| av不卡在线播放| 久久久久久久久久久久大奶| 免费黄色在线免费观看| 91aial.com中文字幕在线观看| 欧美日韩亚洲高清精品| 成人国产麻豆网| 精品人妻一区二区三区麻豆| 午夜激情久久久久久久| 精品一品国产午夜福利视频| www.熟女人妻精品国产| 亚洲精品一二三| 国产精品欧美亚洲77777| 深夜精品福利| 最近中文字幕高清免费大全6| 人人妻人人澡人人爽人人夜夜| 最近手机中文字幕大全| 亚洲av日韩在线播放| 亚洲五月色婷婷综合| 哪个播放器可以免费观看大片| 伊人久久国产一区二区| 最新在线观看一区二区三区 | 国产乱来视频区| 久久天躁狠狠躁夜夜2o2o | 国产亚洲欧美精品永久| 美女中出高潮动态图| 男女高潮啪啪啪动态图| 久久精品国产亚洲av涩爱| 男男h啪啪无遮挡| 一级毛片黄色毛片免费观看视频| 热99国产精品久久久久久7| 婷婷色麻豆天堂久久| 老汉色∧v一级毛片| 久久这里只有精品19| 久久久国产欧美日韩av| 欧美国产精品一级二级三级| 国产探花极品一区二区| 99九九在线精品视频| 精品福利永久在线观看| 亚洲精品在线美女| 99热国产这里只有精品6| 精品人妻一区二区三区麻豆| 午夜激情久久久久久久| 午夜免费男女啪啪视频观看| 久久综合国产亚洲精品| 久久久久久久久久久免费av| 欧美国产精品va在线观看不卡| 汤姆久久久久久久影院中文字幕| 欧美 日韩 精品 国产| 日韩大片免费观看网站| 精品人妻在线不人妻| 久久久久久久久免费视频了| 日韩熟女老妇一区二区性免费视频| 亚洲综合精品二区| 久久免费观看电影| 黄色 视频免费看| 狂野欧美激情性xxxx| 亚洲精华国产精华液的使用体验| 国产成人免费无遮挡视频| 欧美激情高清一区二区三区 | 男女免费视频国产| 国产日韩欧美视频二区| 日韩不卡一区二区三区视频在线| 搡老岳熟女国产| 人人澡人人妻人| 久久国产精品大桥未久av| 最近2019中文字幕mv第一页| 欧美日韩视频精品一区| 免费黄网站久久成人精品| 777米奇影视久久| 男女床上黄色一级片免费看|