• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced single photon emission in silicon carbide with Bull’s eye cavities

    2022-10-26 09:49:34XingHuaLiu劉興華FangFangRen任芳芳JiandongYe葉建東ShuxiaoWang王書曉WeiZongXu徐尉宗DongZhou周東MingbinYu余明斌RongZhang張榮YoudouZheng鄭有炓andHaiLu陸海
    Chinese Physics B 2022年10期
    關(guān)鍵詞:興華陸海

    Xing-Hua Liu(劉興華) Fang-Fang Ren(任芳芳) Jiandong Ye(葉建東) Shuxiao Wang(王書曉)Wei-Zong Xu(徐尉宗) Dong Zhou(周東) Mingbin Yu(余明斌) Rong Zhang(張榮)Youdou Zheng(鄭有炓) and Hai Lu(陸海)

    1School of Electronic Science and Engineering,Nanjing University,Nanjing 210023,China

    2State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China

    Keywords: single photon sources,4H-SiC,Bull’s eye cavities,color centers

    1. Introduction

    Quantum photonics, which is involved in the emerging quantum information technologies such as quantum communication, metrology, sensing, and quantum computation has been developed rapidly over the past few decades.[1]In the quest for realizing all these applications, robust, and efficient single photon sources(SPSs)on demand are highly desirable.Single photon emission has been demonstrated among a variety of physical systems, including trapped atoms, trapped ions, molecules, quantum dots (QDs), and color centers in wide-bandgap semiconductors.[2]Of the above different types of emitters,color centers in wide-bandgap semiconductors are considered as one of the most promising single photon emitters because it does not need to operate at cryogenic temperatures and has potential in integrated photonic circuits on chip.

    For an ideal SPS, a high brightness or emission rate, directional radiation, a high single photon purity, and indistinguishability are required. However,many free-standing semiconductor SPSs do not show distinct superiority in device performance compared with their counterparts due to the isotropic angular emission pattern and intrinsic low emission rate.[3]These limit the collection efficiency of emitted photons and the operating speed of whole system. Great efforts have been made to improve semiconductor SPSs by coupling the emitters with various photonic microcavities such as micropillars,[4]micro-disk,[5]and photonic crystals[6,7]to enhance intrinsic emission into the zero-phonon line (ZPL). In particular, by employing photonic crystal cavities in QDs and wide-bandgap semiconductors for enhancing photon emission, high quality factors were indeed achieved, whilst the improvement of farfield profile was still weak. The cavity-induced Purcell effect,which shortens the radiative lifetimes of the emitters,will also improve photon indistinguishability on short time scales.[8]

    Bull’s eye geometries are capable of photon extraction from emitters, in which the circular Bragg gratings (CBGs)serve as a resonant cavity that enables an enhancement of spontaneous emission rate with highly directional emission and therefore a higher photon collection efficiency. So far,the CBGs have been employed to enhance photon collection efficiency from QDs or color centers in diamond.[9,10]Silicon carbide(SiC)and diamond share most of the favorable properties of color centers in wide-bandgap semiconductors that are used for single photon emission. However, the implementation of Bull’s eye cavities in an SiC-based SPS is still vacant to be of our best knowledge.

    In this work,we present a design by introducing CBG into a 4H-SiC-based SPS where the emitter is embedded in a micropillar cavity in the center,i.e.,the so-called Bull’s eye cavity. Three-dimensional finite-difference time-domain(FDTD)method was employed to calculate the emission rates and farfield distributions of a target color center. With optimized geometric parameters,a bright and vertically emitting SiC-based SPS can be realized.

    2. Design and simulation

    An emitter in an optical cavity will experience a mediumenhanced radiation rate relative to that in a homogenous medium given by the Purcell factor(FP)[11]

    whereλis resonant wavelength in free space,nis the refractive index of cavity material,Qis the quality factor,andVmis the volume of the cavity mode. The exciton will radiate faster in a cavity than in free space if the Purcell factor is higher than one. The Purcell enhancement can be achieved by increasing the ratio of the quality factor to the mode volume,i.e.,Q/Vm.Here the quality factor (Q) is defined asQ=λ/FWHM,[12]where FWHM (full width at half-maximum) can be determined from the resonance intensity spectrum. The mode volume of a dielectric cavity is calculated using the ratio of the total electric energy to the maximum electric energy density[13]whereεis the permittivity andEis the electric field.

    The schematic diagrams of the proposed SiC-based SPS and the referenced structures are shown in Fig. 1. Structure A is an SiC epitaxial on an SiC substrate wafer without any nanostructures. According to Ref. [14], we suppose an oxidation-related color center in 4H-SiC whose luminescence spectrum displays a peak around wavelength of 600 nm.Structure B with a micropillar cavity surrounding the color center can be formed by window etching on structure A.By introducing a CBG structure into structure B,we expand to structure C with a Bull’s eye cavity which potentially enables an improved Purcell factor due to a higherQ-factor and a smaller mode volume. The Bull’s eye cavity is also capability of far-field modulation for an improved emission directionality. The top-view and cross-sectional schematics of structure C are sketched in Figs.1(b)and 1(c),respectively. Here,r,Λ,g,w,anddrepresent the cylinder radius,grating period,teeth width,and the width and depth of the etched circular trenches. The number of the teeth around the central cylinder is denoted by the period numberN. Given that a pure dielectric antenna can preferably avoid the metal-related ohmic loss and emission quenching,[15]we use an all-dielectric design for the Bull’s eye cavity due to the potential of higher Purcell enhancement and the ease of fabrication process.[16]

    Fig. 1. Schematic diagram of the proposed SiC-based SPS. (a) Evolution of the SPS structure design from structure A to structure B and structure C. (b)Top-view and(c)cross-section schematics of structure C with N=4.

    During the simulation, a dipole source was placed at the center (x=0,y=0,z=-300 nm) with a depth of 300 nm beneath the top surface of the SiC epilayers. This dipole depth is optimal for achieving a high Purcell factor based on simulations (not shown). The transverse magnetic (TM) and transverse electric(TE)modes are defined for the magnetic or electric fields parallel to the slab(i.e.,xy-plane),respectively.Considering the dipole orientation can be selected as any of horizontal and vertical directions, we calculated both polarizations individually and the results were similar. Thus, only the case of horizontally oriented dipole was studied in this letter. To ensure an efficient vertical light extraction at 600 nm,FDTD method was employed to optimize all the structural parameters. Although these parameters are interlinked in fact and there is a trade-off between them, we carry out separate analyses since they allow us to distinguish different influences or mechanisms among the central cavity and the surrounding grating. For simplicity,we assumeg=w. The collection efficiency(CE)can be calculated as the ratio of photons collected by an objective lens with a numerical aperture(NA)to all photons emitted into far field.[17]The formula reads as

    where far field electric fieldEis a function of the direction cosines(ux,uy), andθNAis the half-angle corresponding to a given NA.

    3. Results and discussion

    One important figure of merit of the device performance is radiative decay rate, which can be optimized for structures B and C by sweeping the geometrical parameters as shown in Fig. 2. For structure B, when sweeping the radius (r) from 100 nm to 500 nm by fixing the height of the cylinder cavity(d)to be 500 nm,a series of maxima in intensity are observed atr=13, 260, 375 nm,etc., as shown in Fig.2(a)due to the lateral mode resonances. Considering a compact device layout,we preferr=13 nm for structure B.It can be seen from Fig. 2(b) that the radiative rate also depends on the height of the cylinder cavity(d)in structure B.For the emission wavelength of 600 nm, the value ofdin the range of 450 nm–550 nm is favorable to ensure a high radiative rate. Whilst for structure C, the suitable value range ofdfor the same emission wavelength is from 690 nm to 720 nm (Fig. 2(c)). For simplicity,we fixdat 500 nm for structure B and 700 nm for structure C,respectively. Although deeper etching might also support a high radiative rate due to the multiple longitudinal modes in the Fabry–P′erot cavity,it will lead to tricky fabrication process for a larger depth ofd.

    When introducing a CBG antenna, the resonance modes exhibit more sensitive to the cylinder radius due to the enhancedQ-factors,which can be seen clearly by comparing the data between Figs. 2(a) and 2(d). Therefore, a more precise control of the cylinder size is required to make sure a cavity resonance for the color center in structure C.To ensure the device with a compact layout and also a feasible fabrication,we chooser=140 nm for structure C. As the period length (Λ)of the CBG increases from 100 nm to 700 nm(see Fig.2(e)),the calculated radiative rate of structure C varies periodically and its maxima occurs when Bragg conditions are satisfied,in which an efficient coupling occurs between the same forward and backward modes in a periodic single-mode guided wave structure. According to the coupled-mode theory, the Bragg condition can be written asmλ=2neffΛ, wheremis the diffraction order andneffis the SiC slab TE mode effective index. We may chooseΛ=18, 315, or 455 nm for structure C, corresponding tom= 1, 2, or 3 that satisfies the 1st, 2nd,or 3rd Bragg condition. Although the refraction index of SiC tends to be high,the mode number can be small owing to the subwavelength size of the structure.

    Fig. 2. Dependence of the normalized radiative decay rate spectra on (a) radius and (b) height of the cylinder cavity in structure B. Dependence of the normalized radiative decay rate spectra on(c)trench depth,(d)cylinder radius,and(e)grating period of structure C.

    Fig.3. (a)The normalized radiative decay rate spectra of structures A,B,and C with various period number N. (b)The simulated values of Q and FP with different N. Practically,N=0 represents the case of structure B.(c)The calculated collection efficiency of structures A,B,and C with various NA.

    Fig. 4. The simulated near-field (|E|) (logarithmic scale) distributions in (a) structure A, (b) structure B (r=140 nm), and (c) structure C (r=140 nm,d=700 nm,Λ =315 nm,N=3)in the xy,xz,and yz planes at the wavelength of 600 nm.

    As described above,the Purcell factor(FP)is proportional to the ratio ofQandVm, which can be calculated based on FDTD simulations. Figure 3(a)displays the calculated radiative decay rate spectra of structures A–C. During the simulation,the light source was set as an electric dipole at the color center with a unit amplitude of electric field and the orientation aligned along they-axis direction, exciting only TE slab waves.The groove numberNin structure C is varied from 1 to 5. As shown in Fig.3(a),the radiative decay rates of structure A are quite low and no peaks can be observed throughout entire wavelength range from 560 nm to 660 nm,which means a heavy emission loss in the block material. In the case of structure B,a broad peak around 600 nm appears indicating a lowQ-factor.As discussed above,introducing CBG is a promising way to significantly enhance the intensity of the photon emission, which can be seen from the higher and narrower peaks in the spectra of structure C.As compared to structure A,the radiative decay rate at 600 nm can be enhanced by 12.8 times in structure C (N ≥3). For clarity, we extract the FWHM values from the radiative decay rate spectra and calculatedQfactor as shown in Fig. 3(b). It shows a remarkable increase ofQ-factor which reaches saturation when the period numberNexceeds 2. By using the FDTD simulation, the mode volumeVmof each dielectric cavity can be calculated and then the Purcell factorFPcan be obtained according to Eq.(1). When compared to structure B, theQ-factor is increased by~30.5 times in structure C withN ≥3. The mode volumeVmis 0.21(λ/n)3in structure B whilst increases up to~0.82 (λ/n)3in structure C,where the refractive index of SiC is considered asn=2.64 at the wavelength of 600 nm.[18]Eventually, the Purcell factor(FP)in structure C is about 7.6 times as high as structure B.As shown in Fig.3(c),the collection efficiency as a function of the NA is theoretically enhanced from structure A to structure C (N=5), which is mainly contributed by the improved emission directionality. However, the CE of structure B is the lowest especially when NA less than 0.7, which might be due to the scattering by the central cylinder.

    To further understand the Purcell factor enhancement,we plot out the electromagnetic field configurations in logarithmic scale at the wavelength of 600 nm in structures A,B,and C (withN=3) in Fig. 4. The light source was set as same as Fig.3. Apparently,the electromagnetic field extends over a relatively large area in bulk SiC(i.e.structure A).In structure B, the emission starts to be concentrated by the micrometerscale resonator due to Fabry–P′erot resonance, while the resonant TE mode becomes leaky and features the capability of interacting with outside owing to the small geometric size. By coupling with CBG in structure C, the electromagnetic field is squeezed into the area of Bull’s eye rings whenN ≥3, indicating that our designed structure has been optimized for a Purcell factor as high as possible. As shown in Fig. 4(c), a lower bound of spatial field distribution is found with two secondary maximum pots appearing on the sidewall of the central cylinder. This indicates a larger mode volume that has been discussed above. As explained in Ref.[19],vertical light scattering at the CBG antenna in structure C is partial,so that the 2nd-order Bragg reflections towards the central cavity lead to a vertically leaky cavity resonance as shown in Fig.4(c). At the SiC-air interfaces of trenches,the large index contrast leads to strong reflections and out-of-slab-plane scattering, which are evidenced by the strong field concentration at the Bull’s eye center and a fast field decay in the couple of trenches from the center.[19]It interprets the larger enhancement of field intensity in structure C,eventually higherQ-factors and Purcell factors.

    Fig.5. (a)–(c)Simulated far-field polar plot(|E|2)of structures A–C at λ =600 nm. (d)Normalized electric field distribution(|E|)along the propagating direction in xz-plane of structure C(left),and along the dotted gray line for changed period length(right). (e)The dependence of the maximum E intensity at the focal point on the period number.

    The directionality of emission can be quantified by examining the angular distribution of the emitted light in farfield(see Figs.5(a)–5(c)). During the simulation,the dipole source was set as same as Fig. 3. Comparing the results obtained from structure A, the simulated emission intensities of structures B and C are enhanced by one or two orders owing to the resonance. However,the directionality of structure B remains poor with an emission angle of about 50°, which is consisted with the low collection efficiency.Importantly,an obvious improvement of far-field directionality can be seen from structure C, clearly indicating that the Bull’s eye cavity not only supplies a higherQ-factor but also strongly governs the propagation direction of light emitted from the center cylinder. To clearly illustrate the physical mechanism of the light-focusing functionality, we calculated the electric field distribution of structure C in thexz-plane at the wavelength of 600 nm (see the left image of Fig.5(d)). A bright focal spot can be seen atz=5 μm in free space. The focusing process can be attributed to the scattering of the emitted light at different positions of the grooves and the corresponding in phase field superposition due to the constructive interference on the optical axis.[20]In the simulation, we additionally included a linear profile monitor for structure C(i.e.,the dotted gray line shown in the left image of Fig.5(d)).This allowed us to examine theE-field crosssectional profile cut along thezaxis. As shown in the right image of Fig. 5(d), when the period (Λ) varies from 100 nm to 600 nm with fixed parameters ofd=70 nm,r=140 nm,andN=5, the focal point (where the maximumEintensity occurs)moves gradually. It can be understood that the period length decides the groove locations where the scattering or reflection will happen. The variation leads to the change of the near field distribution, and ultimately influences the intensity and location of the focal spot. Confirmed by the calculated far-field distributions shown in Fig. 5(c), the CBG antenna withΛ=315 nm acts as a near-field focusing lens to a small degree (~15°), which can concentrate more emission in the vertical direction and bring excellent far-field directionality.This is also verified by the increase of CE. It was found that the directionality depends on the period numberNas shown in Fig. 5(e). WhenNincreases, theE-field at the focal point is gradually enhanced due to an improved focusing capability of CBGs and then saturates whenN ≥6 where the Bragg scattering is balanced by the leakage of light in the plane of grating.AlthoughN=3 is enough to reach the saturation value ofQorFP,the period number still needs to be increased up to 6 for an optimal directionality.

    4. Conclusion and perspectives

    In summary, we demonstrated the improvement of photon emission and beam directionality in an SiC-based singlephoton source by employing circular Bragg gratings coupled with a cylinder cavity, in which a resonance cavity mode at 600 nm with Bragg reflection occurred. The structural parameters,including cylinder radius,grating period,and trench depth,etc., are identified and optimized based on FDTD numerical simulations. For quantum light emitters, Purcell enhancement, and convergent angular distribution of the emitted light in far field are achieved, which indicated that this structure allows for efficient transmission of light in SiC.The proposed structure design plays a vital role in quantum electrodynamics and could have potential in application of highperformance quantum light sources.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.91850112,61774081,62004099,and 61921005), in part by Shenzhen Fundamental Research Program (Grant Nos. JCYJ20180307163240991 and JCYJ20180307154632609),in part by the State Key Research and Development Project of Jiangsu Province, China (Grant No. BE2018115), in part by the Natural Science Foundation of Jiangsu Province, China(Grant No.BK20201253), in part by the State Key Research and Development Project of Guangdong Province, China (Grant No. 2020B010174002),and in part by Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB43020500).

    猜你喜歡
    興華陸海
    上海出發(fā)愛達世界
    毛焰藝術(shù)風(fēng)格中的自我表達
    陸海之縱
    興華市林湖鄉(xiāng):村企聯(lián)建共走振興路
    華人時刊(2021年17期)2021-11-12 20:09:49
    村長外號叫“老邪”
    陸海新通道鐵海聯(lián)運班列今年開行破1000班
    攝影作品欣賞
    金沙江文藝(2019年7期)2019-07-29 01:57:06
    書法,何者為要——從沃興華的創(chuàng)作瓶頸談起
    藝術(shù)品(2018年5期)2018-06-29 02:14:58
    陸海統(tǒng)籌推進海岸帶地質(zhì)調(diào)查
    馬興華攝影作品欣賞
    金沙江文藝(2017年4期)2017-03-31 07:35:16
    亚洲av日韩精品久久久久久密| 成人黄色视频免费在线看| 久久天躁狠狠躁夜夜2o2o| 夜夜夜夜夜久久久久| 看免费av毛片| 国产精品一区二区精品视频观看| 国产精品影院久久| 久久久精品欧美日韩精品| 国产精品成人在线| 国产高清国产精品国产三级| 欧美精品啪啪一区二区三区| 国产欧美日韩一区二区三区在线| 美女高潮喷水抽搐中文字幕| 国产av又大| 中文字幕最新亚洲高清| 成人特级黄色片久久久久久久| 国产主播在线观看一区二区| 亚洲精品中文字幕一二三四区| 日本撒尿小便嘘嘘汇集6| 国产激情欧美一区二区| 精品国产超薄肉色丝袜足j| 国产高清激情床上av| а√天堂www在线а√下载| 色婷婷av一区二区三区视频| 成人永久免费在线观看视频| 日本欧美视频一区| 电影成人av| 精品日产1卡2卡| 美国免费a级毛片| 日韩精品青青久久久久久| 欧美激情极品国产一区二区三区| 久久久精品国产亚洲av高清涩受| 搡老熟女国产l中国老女人| 大型黄色视频在线免费观看| 久久久久久久午夜电影 | 身体一侧抽搐| 一二三四社区在线视频社区8| 久久久久九九精品影院| 高潮久久久久久久久久久不卡| 成人特级黄色片久久久久久久| 免费av毛片视频| 亚洲国产欧美一区二区综合| 高清在线国产一区| 成人特级黄色片久久久久久久| 91麻豆精品激情在线观看国产 | 精品电影一区二区在线| 一区二区日韩欧美中文字幕| 亚洲片人在线观看| 国产精品一区二区精品视频观看| 亚洲成人久久性| 超碰97精品在线观看| 精品午夜福利视频在线观看一区| www.www免费av| 午夜精品久久久久久毛片777| 女人被狂操c到高潮| 精品熟女少妇八av免费久了| 成熟少妇高潮喷水视频| 久久精品亚洲精品国产色婷小说| 欧美亚洲日本最大视频资源| av视频免费观看在线观看| 亚洲七黄色美女视频| 三级毛片av免费| 欧洲精品卡2卡3卡4卡5卡区| 亚洲在线自拍视频| 老司机亚洲免费影院| 每晚都被弄得嗷嗷叫到高潮| 久久亚洲精品不卡| 国产亚洲欧美在线一区二区| 精品免费久久久久久久清纯| 在线观看免费午夜福利视频| 搡老乐熟女国产| 欧美 亚洲 国产 日韩一| 日韩av在线大香蕉| 黄片大片在线免费观看| 大码成人一级视频| 国产片内射在线| 丁香六月欧美| 日韩国内少妇激情av| 动漫黄色视频在线观看| 一级a爱片免费观看的视频| 精品乱码久久久久久99久播| 视频区欧美日本亚洲| 亚洲一码二码三码区别大吗| 午夜精品久久久久久毛片777| 精品无人区乱码1区二区| 真人一进一出gif抽搐免费| 后天国语完整版免费观看| 真人一进一出gif抽搐免费| 日韩大码丰满熟妇| 久久人妻福利社区极品人妻图片| 91av网站免费观看| 精品免费久久久久久久清纯| 日本免费a在线| 国产精品久久视频播放| 一区在线观看完整版| 女人精品久久久久毛片| 少妇的丰满在线观看| 丰满迷人的少妇在线观看| 欧美黄色淫秽网站| 香蕉国产在线看| 久久午夜亚洲精品久久| 丝袜人妻中文字幕| 啦啦啦 在线观看视频| 黄色视频,在线免费观看| 亚洲视频免费观看视频| 极品教师在线免费播放| 日日干狠狠操夜夜爽| 亚洲五月婷婷丁香| 久久久精品国产亚洲av高清涩受| 色尼玛亚洲综合影院| 一级毛片高清免费大全| 一边摸一边抽搐一进一出视频| 色哟哟哟哟哟哟| 国产精品久久久av美女十八| 国产欧美日韩一区二区三| 淫秽高清视频在线观看| 丝袜人妻中文字幕| 国产亚洲欧美精品永久| 黄色a级毛片大全视频| 欧美乱色亚洲激情| 欧美亚洲日本最大视频资源| 大陆偷拍与自拍| 可以免费在线观看a视频的电影网站| 热99国产精品久久久久久7| 久久亚洲精品不卡| 操出白浆在线播放| 日韩精品中文字幕看吧| 岛国视频午夜一区免费看| 99热国产这里只有精品6| 中文字幕av电影在线播放| 男女午夜视频在线观看| 黄片大片在线免费观看| 国产熟女xx| avwww免费| 18禁裸乳无遮挡免费网站照片 | 午夜亚洲福利在线播放| 男女高潮啪啪啪动态图| 一进一出抽搐gif免费好疼 | 亚洲 欧美 日韩 在线 免费| 久久久久久久午夜电影 | 18禁国产床啪视频网站| 亚洲欧美激情综合另类| 变态另类成人亚洲欧美熟女 | 国产欧美日韩一区二区精品| 在线观看舔阴道视频| 美女午夜性视频免费| 亚洲一区二区三区欧美精品| 热re99久久国产66热| 亚洲欧美日韩无卡精品| 青草久久国产| 高清欧美精品videossex| 亚洲片人在线观看| 热99re8久久精品国产| 色婷婷久久久亚洲欧美| 亚洲视频免费观看视频| 女人精品久久久久毛片| 999精品在线视频| 一个人免费在线观看的高清视频| 一级片'在线观看视频| 亚洲中文字幕日韩| 90打野战视频偷拍视频| 美女扒开内裤让男人捅视频| 日韩免费av在线播放| 91av网站免费观看| 亚洲精品久久午夜乱码| 在线观看一区二区三区| 免费在线观看黄色视频的| 国产亚洲精品一区二区www| av欧美777| 香蕉国产在线看| 美国免费a级毛片| av视频免费观看在线观看| 欧美日韩福利视频一区二区| 手机成人av网站| 99精品欧美一区二区三区四区| 极品人妻少妇av视频| 亚洲av五月六月丁香网| 国产一区二区三区在线臀色熟女 | 91精品三级在线观看| 老司机午夜十八禁免费视频| 一边摸一边做爽爽视频免费| 久久久精品欧美日韩精品| 国产成人啪精品午夜网站| 老汉色∧v一级毛片| 久久久久久大精品| 最新美女视频免费是黄的| 97碰自拍视频| 老鸭窝网址在线观看| 黄色怎么调成土黄色| 亚洲自拍偷在线| 国产精品 国内视频| 怎么达到女性高潮| av视频免费观看在线观看| 黄色片一级片一级黄色片| 欧美不卡视频在线免费观看 | 国产亚洲精品一区二区www| 精品一区二区三区av网在线观看| 在线观看免费视频日本深夜| 中文字幕另类日韩欧美亚洲嫩草| 欧美最黄视频在线播放免费 | bbb黄色大片| 女性被躁到高潮视频| 日本精品一区二区三区蜜桃| 校园春色视频在线观看| 乱人伦中国视频| 最近最新免费中文字幕在线| 女人爽到高潮嗷嗷叫在线视频| 男女做爰动态图高潮gif福利片 | 国产精品永久免费网站| 欧美日本亚洲视频在线播放| 国产欧美日韩一区二区精品| 精品少妇一区二区三区视频日本电影| 欧美激情高清一区二区三区| 脱女人内裤的视频| 亚洲精品一二三| av片东京热男人的天堂| 精品一区二区三区视频在线观看免费 | 51午夜福利影视在线观看| 久久久久久久久免费视频了| 婷婷六月久久综合丁香| 国产成人一区二区三区免费视频网站| 妹子高潮喷水视频| 国产精品 国内视频| 热re99久久国产66热| 另类亚洲欧美激情| 欧美丝袜亚洲另类 | 国产精品二区激情视频| 少妇的丰满在线观看| 欧美亚洲日本最大视频资源| 老鸭窝网址在线观看| 在线国产一区二区在线| 中文字幕人妻丝袜一区二区| 夫妻午夜视频| 国产野战对白在线观看| 男人的好看免费观看在线视频 | 国产黄色免费在线视频| 91九色精品人成在线观看| 久久亚洲精品不卡| 亚洲第一欧美日韩一区二区三区| 夜夜看夜夜爽夜夜摸 | 在线观看免费高清a一片| 国产主播在线观看一区二区| 亚洲第一欧美日韩一区二区三区| 精品人妻1区二区| 成年人黄色毛片网站| 热99国产精品久久久久久7| 啦啦啦 在线观看视频| √禁漫天堂资源中文www| 亚洲av成人不卡在线观看播放网| 国产欧美日韩一区二区精品| 黄网站色视频无遮挡免费观看| 51午夜福利影视在线观看| 一级毛片精品| 男女做爰动态图高潮gif福利片 | 丰满人妻熟妇乱又伦精品不卡| 日本五十路高清| 亚洲五月婷婷丁香| 亚洲欧美精品综合一区二区三区| 俄罗斯特黄特色一大片| 人人妻人人添人人爽欧美一区卜| 黄色女人牲交| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产欧美日韩在线播放| 夜夜爽天天搞| 日韩免费高清中文字幕av| 99在线人妻在线中文字幕| 多毛熟女@视频| 免费看a级黄色片| 麻豆国产av国片精品| 国产精品1区2区在线观看.| 亚洲人成77777在线视频| 50天的宝宝边吃奶边哭怎么回事| 久久中文看片网| 久久久国产一区二区| 午夜免费成人在线视频| 国产欧美日韩一区二区精品| 在线观看www视频免费| 最近最新中文字幕大全免费视频| 亚洲自偷自拍图片 自拍| 啦啦啦 在线观看视频| 国产人伦9x9x在线观看| 少妇被粗大的猛进出69影院| av网站在线播放免费| 日韩欧美国产一区二区入口| 18禁黄网站禁片午夜丰满| 日本黄色视频三级网站网址| 99riav亚洲国产免费| 亚洲国产精品合色在线| 少妇裸体淫交视频免费看高清 | 日本精品一区二区三区蜜桃| xxx96com| 欧美黄色片欧美黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 人人妻,人人澡人人爽秒播| 波多野结衣一区麻豆| 又紧又爽又黄一区二区| 一级片免费观看大全| 两性午夜刺激爽爽歪歪视频在线观看 | 黑人猛操日本美女一级片| 亚洲成人精品中文字幕电影 | 亚洲精品在线美女| 嫁个100分男人电影在线观看| 老司机亚洲免费影院| 黄色视频,在线免费观看| 丁香六月欧美| 亚洲中文av在线| 91大片在线观看| 日韩 欧美 亚洲 中文字幕| 操美女的视频在线观看| 国产深夜福利视频在线观看| 别揉我奶头~嗯~啊~动态视频| 一边摸一边做爽爽视频免费| 日韩大码丰满熟妇| 一二三四在线观看免费中文在| 日本免费a在线| 精品卡一卡二卡四卡免费| 日本黄色日本黄色录像| 欧美最黄视频在线播放免费 | 日本三级黄在线观看| 天天影视国产精品| 久久草成人影院| 人人妻,人人澡人人爽秒播| 在线观看日韩欧美| 亚洲成人免费电影在线观看| 免费看十八禁软件| 欧美成人午夜精品| 这个男人来自地球电影免费观看| 国产精品国产高清国产av| 他把我摸到了高潮在线观看| 国产欧美日韩一区二区精品| 一本大道久久a久久精品| 国产欧美日韩一区二区三| 欧美乱妇无乱码| 欧美最黄视频在线播放免费 | 黄色视频,在线免费观看| 久久伊人香网站| 18禁观看日本| 男女下面插进去视频免费观看| 精品久久久久久久久久免费视频 | 男女下面插进去视频免费观看| 91大片在线观看| www.精华液| 18禁国产床啪视频网站| 国产精品偷伦视频观看了| 国产伦一二天堂av在线观看| 久久狼人影院| 99精品久久久久人妻精品| 欧美乱码精品一区二区三区| 亚洲自拍偷在线| 国产精华一区二区三区| 香蕉久久夜色| 99热只有精品国产| 女人精品久久久久毛片| 手机成人av网站| 老汉色av国产亚洲站长工具| 夜夜夜夜夜久久久久| 侵犯人妻中文字幕一二三四区| 19禁男女啪啪无遮挡网站| 国产激情久久老熟女| 亚洲全国av大片| 日韩av在线大香蕉| 美女福利国产在线| 日韩欧美一区二区三区在线观看| 久久香蕉激情| 九色亚洲精品在线播放| 国产精品爽爽va在线观看网站 | 在线观看www视频免费| 欧美日韩乱码在线| 午夜免费鲁丝| av欧美777| 波多野结衣一区麻豆| 九色亚洲精品在线播放| 国产成人影院久久av| 黄色成人免费大全| 1024视频免费在线观看| 激情视频va一区二区三区| 18禁裸乳无遮挡免费网站照片 | 我的亚洲天堂| 国产三级黄色录像| 黑人操中国人逼视频| 国产一区二区三区在线臀色熟女 | 中亚洲国语对白在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 啦啦啦在线免费观看视频4| www.999成人在线观看| 脱女人内裤的视频| 亚洲人成77777在线视频| 精品国内亚洲2022精品成人| 在线观看免费视频网站a站| 久久这里只有精品19| 大香蕉久久成人网| 老司机深夜福利视频在线观看| 黄色视频,在线免费观看| 真人做人爱边吃奶动态| 国产一卡二卡三卡精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲第一av免费看| 久久久国产成人精品二区 | 丝袜美腿诱惑在线| 免费在线观看日本一区| 在线观看一区二区三区| 亚洲免费av在线视频| 久久久久久免费高清国产稀缺| 久久久久久久精品吃奶| 久久精品亚洲精品国产色婷小说| 丰满的人妻完整版| 99热国产这里只有精品6| 超碰97精品在线观看| 叶爱在线成人免费视频播放| 亚洲男人的天堂狠狠| 男女午夜视频在线观看| 精品国产一区二区久久| 久久婷婷成人综合色麻豆| 麻豆av在线久日| 久久精品亚洲熟妇少妇任你| 国产免费现黄频在线看| 亚洲在线自拍视频| 国产在线观看jvid| 麻豆国产av国片精品| 一级黄色大片毛片| 亚洲精品中文字幕一二三四区| 成人精品一区二区免费| 88av欧美| 国产人伦9x9x在线观看| 欧美在线黄色| 桃色一区二区三区在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产精品偷伦视频观看了| 欧美精品亚洲一区二区| 日本免费a在线| 色综合婷婷激情| 午夜福利,免费看| 亚洲精品国产一区二区精华液| 欧美一区二区精品小视频在线| 1024视频免费在线观看| 欧美激情久久久久久爽电影 | 9热在线视频观看99| 久久久国产精品麻豆| 国产伦一二天堂av在线观看| 久久亚洲真实| 久久婷婷成人综合色麻豆| 午夜老司机福利片| 亚洲国产精品999在线| www.精华液| 亚洲第一青青草原| 久久国产亚洲av麻豆专区| 国产精品av久久久久免费| 免费日韩欧美在线观看| 久久久久国内视频| ponron亚洲| 国产亚洲欧美98| 精品国产一区二区三区四区第35| 最新美女视频免费是黄的| 啦啦啦 在线观看视频| 搡老熟女国产l中国老女人| 久久久久久久精品吃奶| 久久久久久免费高清国产稀缺| 国产极品粉嫩免费观看在线| 国产又爽黄色视频| 久久影院123| 久久久水蜜桃国产精品网| 在线国产一区二区在线| 人成视频在线观看免费观看| 精品国产亚洲在线| 日本wwww免费看| 亚洲国产毛片av蜜桃av| 男女高潮啪啪啪动态图| 国产精品九九99| av电影中文网址| 亚洲五月天丁香| 精品国产超薄肉色丝袜足j| 热99re8久久精品国产| 巨乳人妻的诱惑在线观看| 制服人妻中文乱码| 久久久久久久午夜电影 | 国产色视频综合| 波多野结衣高清无吗| 色综合欧美亚洲国产小说| 国产精品国产av在线观看| 一级毛片女人18水好多| 免费女性裸体啪啪无遮挡网站| 又紧又爽又黄一区二区| 黄色片一级片一级黄色片| 欧美在线黄色| 午夜免费鲁丝| 18禁美女被吸乳视频| 亚洲人成网站在线播放欧美日韩| 欧美日韩福利视频一区二区| 精品一区二区三卡| 50天的宝宝边吃奶边哭怎么回事| 叶爱在线成人免费视频播放| 欧美成人午夜精品| 性少妇av在线| 他把我摸到了高潮在线观看| 热re99久久国产66热| 人成视频在线观看免费观看| 欧美日韩亚洲高清精品| 精品久久蜜臀av无| 天堂动漫精品| 欧美 亚洲 国产 日韩一| 黄片大片在线免费观看| 最好的美女福利视频网| www.熟女人妻精品国产| 90打野战视频偷拍视频| 国产精品免费视频内射| 精品国产一区二区久久| 久久精品国产亚洲av香蕉五月| 怎么达到女性高潮| 精品免费久久久久久久清纯| 妹子高潮喷水视频| 中文字幕色久视频| 亚洲久久久国产精品| 日韩免费高清中文字幕av| 老鸭窝网址在线观看| 国产精品综合久久久久久久免费 | 精品国产乱子伦一区二区三区| 久久中文字幕一级| 亚洲 欧美 日韩 在线 免费| 十分钟在线观看高清视频www| 1024香蕉在线观看| 欧美乱码精品一区二区三区| 久久久久九九精品影院| 新久久久久国产一级毛片| 亚洲欧洲精品一区二区精品久久久| 久久香蕉国产精品| 国产乱人伦免费视频| 亚洲人成电影免费在线| 一级a爱片免费观看的视频| 淫妇啪啪啪对白视频| 日韩欧美免费精品| 国产99白浆流出| www国产在线视频色| 99精品欧美一区二区三区四区| 国产成+人综合+亚洲专区| 在线观看午夜福利视频| 男女午夜视频在线观看| 黑人欧美特级aaaaaa片| 国产伦人伦偷精品视频| 妹子高潮喷水视频| 99久久综合精品五月天人人| 99在线人妻在线中文字幕| 岛国在线观看网站| 十八禁人妻一区二区| 午夜影院日韩av| 夫妻午夜视频| 免费高清在线观看日韩| 亚洲中文字幕日韩| 久久精品国产99精品国产亚洲性色 | 久久国产乱子伦精品免费另类| 欧美久久黑人一区二区| 欧美激情高清一区二区三区| 亚洲精品中文字幕在线视频| 色综合欧美亚洲国产小说| 亚洲精品粉嫩美女一区| 一边摸一边抽搐一进一出视频| 国产精品美女特级片免费视频播放器 | 亚洲,欧美精品.| 韩国av一区二区三区四区| 一区二区三区精品91| 美女大奶头视频| 淫妇啪啪啪对白视频| 在线看a的网站| 亚洲国产欧美日韩在线播放| 国产成人啪精品午夜网站| 久久久久久大精品| 国产视频一区二区在线看| 在线av久久热| 亚洲熟妇熟女久久| 国产精品1区2区在线观看.| 日本vs欧美在线观看视频| 人人妻人人爽人人添夜夜欢视频| www日本在线高清视频| 午夜精品久久久久久毛片777| 亚洲片人在线观看| 黑人操中国人逼视频| 久久精品亚洲av国产电影网| 免费看a级黄色片| 国产成人av激情在线播放| 男女下面插进去视频免费观看| 一进一出抽搐gif免费好疼 | 超碰成人久久| 最近最新免费中文字幕在线| 午夜福利在线观看吧| 精品国产乱子伦一区二区三区| 色综合站精品国产| 热re99久久国产66热| 啦啦啦 在线观看视频| 精品国产国语对白av| 日日干狠狠操夜夜爽| 麻豆成人av在线观看| 1024视频免费在线观看| 亚洲 欧美 日韩 在线 免费| 日韩有码中文字幕| 色在线成人网| www.熟女人妻精品国产| 亚洲成av片中文字幕在线观看| 在线观看免费高清a一片| 午夜亚洲福利在线播放| 欧美成人午夜精品| 操出白浆在线播放| 成人三级黄色视频| 国产精品永久免费网站| 老汉色av国产亚洲站长工具| 美国免费a级毛片| 久久天躁狠狠躁夜夜2o2o| 欧美日韩亚洲高清精品| www国产在线视频色| 91麻豆精品激情在线观看国产 | 久久精品国产亚洲av香蕉五月| 夜夜躁狠狠躁天天躁| 黄色视频,在线免费观看| 777久久人妻少妇嫩草av网站| tocl精华| 欧美日本亚洲视频在线播放| 黄色丝袜av网址大全|