• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency

    2022-10-26 09:54:00XiaoPingXie謝小平QianYuBai白倩玉GangLiu劉剛PengDong董鵬DaWeiLiu劉大偉YuFengNi倪玉鳳ChenBoLiu劉晨波HeXi習鶴WeiDongZhu朱衛(wèi)東DaZhengChen陳大正andChunFuZhang張春福
    Chinese Physics B 2022年10期
    關鍵詞:劉大偉劉剛

    Xiao-Ping Xie(謝小平) Qian-Yu Bai(白倩玉)Gang Liu(劉剛) Peng Dong(董鵬)Da-Wei Liu(劉大偉) Yu-Feng Ni(倪玉鳳) Chen-Bo Liu(劉晨波) He Xi(習鶴)Wei-Dong Zhu(朱衛(wèi)東) Da-Zheng Chen(陳大正) and Chun-Fu Zhang(張春福)

    1Qinghai Huanghe Hydropower Development CO.,LTD.,Xining 810008,China

    2State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology,Xidian University,Xi’an 710071,China

    Keywords: two-dimensional,device simulation,antireflection layers,tandem solar cells

    1. Introduction

    Silicon (Si) solar cells have dominated the photovoltaic market so far due to their high performance and high reliability since their advent in 1954.[1]Now their power conversion efficiency(PCE)has reached 26.67%,[2]which is approaching their maximum theoretical PCE of 29.4%.[3]To break through this efficiency bottleneck at a lower cost, a tandem technology of metal halide perovskite top cells and crystalline Si bottom cells has attracted explosively increasing attention in both academia and industry areas.[4,5]This is due to the perovskite solar cells(PSC)possessing the advantages of tunable bandgap, bipolar transport, high carrier mobility, easy fabrication process, low cost, and the rapidly increased PCE from 3.8%to 25.7%during ten years.[6–10]Also the theoretical PCE of perovskite/Si tandem cells is as high as 43%,[11]what is more exciting is that they have achieved a laboratory PCE of 29.80% (certified), an efficiency over the theoretical limit of Si cells.

    Perovskite/Si tandem solar cells mainly include two structures of two-terminal (2T, monolithic) and four-terminal(4T,mechanically stacked)devices.[12,13]Comparing with the 2T devices,the main issue of current matching does not exist in 4T devices,where the top perovskite cell and bottom Si cell can be fabricated separately and optimized individually, presenting the natural process compatibility. Nowadays, a PCE of 28.3% has been reported in 4T-perovskite/Si devices,[14]which is also very close to the theoretical limit of Si cells.More importantly, owing to the intrinsic instability of perovskite under light,heat,and moisture conditions induced by the organic cation(MA+or FA+)components,[15]the lifetime of organic–inorganic hybrid perovskite devices(several years)is shorter than that of Si cells(>20 years),which will significantly shorten the operating life of 2T-perovskite/Si tandem devices. While in the 4T tandem modules, the degraded top cells can be replaced easily by new PSCs and the bottom Si modules keep working, which provides another route to improving the longtime stability of perovskite/Si tandem devices in practical applications.

    To further improve the stability of perovskite material,it has been proved to be effective to substitute MA+or FA+by inorganic cation (Cs+), however, the relatively wide bandgap of more stable CsPbIBr2(~2.0 eV)[16]or CsPbBr3(~2.3 eV)[17]limits the ability to absorb light and the PCE of corresponding PSCs; the high crystal temperature (over 200°C)[18]is also not expected for the cost-effective PSCs.Fortunately,the emerging quasi-2D perovskite materials have been considered as one of the most promising strategies to address the instability problem, and found wide applications in light-emitting diodes,photodetectors,and solar cells.[19,20]The quasi-2D perovskite was obtained by cutting off a piece of traditional 3D perovskite along its crystallographic plane and inserting big organic cations to separate the inorganic parts, which behaves like multilayer quantum wells and exhibits greatly improved air, phase, and thermal stability.[21]Simultaneously,the PCE of quasi-2D PSCs increased steadily and exceeded 20%[22,23]by orientation adjustment, organicspacer-cations design, composition engineering, and device engineering.[21]

    The most studied Ruddlesden–Popper(RP)2D perovskite showed a structure of (RNH3)2An-1MnX3n+1, whereRrepresents an aliphatic alkylammonium or aromatic cation,ndenotes the ‘quantum-well’ thickness or the layer number of perovskite sheets.[24]Particularly, both thenand organic components can be used to modulate the bandgap, absorbance, and exciton binding energy of 2D perovskite material. In 2016, the successful fabrication of vertically oriented(BA)2(MA)3Pb4I13by hot-casting[19]paved the way to develop RP 2D-PSCs, and now the PCE over 18% has been reported.[25–27]Songet al.performed a systematic spectroscopic ellipsometry study and extracted the optical dielectric functions and complex refractive indices of phase-pure RP and DJ phase perovskite, which opens the door for modeling and simulating 2D perovskite-based optoelectronic devices.[28]

    In this work,the semitransparent quasi-2D PSCs with an absorber of(BA)2(MA)n-1PbnI3n+1(n=1,2,3,4,5)is used as a top cell to construct a 4T-tandem solar cell with an Siheterojunction bottom cell. The tandem device model has been established by Silvaco Atlas based on the experimental parameters, and the photovoltaic performances for quasi-2D perovskite/Si PSCs have been studied systematically. Simulation results for single-junction PSCs show that the device presents a senior PCE of 17.64%when thenvalue is chosen as 4,which is consistent with the experimental report. In the 4Ttandem device, the top cell(n=4)obtains a PCE of 17.39%and the filtered Si bottom cell possesses a PCE of 11.44%,thus an overall PCE arrives at 28.83%.Furthermore,when a 90-nm LiF anti-reflection layer is introduced,theJscof the top cell is enhanced from 15.56 mA/cm2to 17.09 mA/cm2,i.e., the increment is 9%, the corresponding PCE reaches 19.05% and the overall PCE of the tandem device rises to 30.58%. Simultaneously,in the case ofn=3,n=4,andn=5,all the tandem PCE exceeds 30%,which is greater than the limiting theoretical efficiency of silicon cells. Therefore,besides the improved long-term stability,the 4T quasi-2D perovskite/Si devices provide a more cost-effective tandem strategy to break through the theoretical efficiency limit of Si cells and hold their dominance in the PV market.

    2. Theory and methods

    Silvaco TCAD Atlas device simulator is used to establish the model of single-junction quasi-2D RP PSCs and 4Tperovskite/Si-heterojunction tandem based on the optical and electrical parameters (see Tables S1 and S2 in supporting information)in experimental reports.[29–37]In addition,because the carrier dynamics of quasi-2D perovskite films are closely related to thenvalue, the mobility, carrier concentration and effective state density are inconsistent with differentnvalues.Taking the perovskite film withn=4 as a reference, the perovskite model with different mobilities,doping carrier concentration,and effective state density is analyzed and calculated.Figure S1 in supporting information shows the relationship between the electrical performance and mobility of the device. It can be seen that the change in mobility has no great influence on the electrical performance of the device. Table S3 shows the relationship between the electrical properties of the device and the carrier concentration. When the carrier concentration(ND) changes, the electrical properties of the device do not change significantly. From Table S4, with the increase of the state density(NCandNV),only the open-circuit voltage(Voc)of device changes within the theoretical range[34,38,39]and other parameters are basically unchanged. Therefore, since the electron mobility(Mun),hole mobility(Mup),ND,NC,andNVhave little influence on the overall calculation,n=1, 2,3, 4, and 5 are calculated on the basis ofMun=Mup=50,ND=1×1013,andNC=NV=1×1020. The device geometry as well as the structure of quasi-2D (BA)2(MA)n-1PbnI3n+1perovskite whenn=1,n=2,n=3,n=4,andn=5 is shown in Fig.1. Here,it is assumed that the quantum-well structured quasi-2D perovskite has homogeneous energy landscape and shows no cascade energy transfer behaviors. The top cell possesses a structure of ITO/SnO2/quasi-2D perovskites/spiro-OMeTAD/ITO, the LiF acts as an anti-reflection layer, and the parameters of Si-heterojunction cells are identical to those in our previous research.[40]In addition, a refractive matching layer[41]with a refractive index of about 1.414 is used between the top cell and the bottom cell to reduce the light loss at the interface between the sub-cells. Then the light absorption,J–Vcharacteristics,and optical electric field distributions are systemically studied to obtain an optimal tandem device structure and understand the photoelectric conversion mechanism.The simulations are mainly based on three basic equations,i.e.Poisson’s equation, carrier continuity equation, and driftdiffusion equation,[42]and the detailed calculation method can be found in our previous researches.[40,43,44]

    Fig. 1. (a) The 4T-tandem solar cell structure and (b) schematic crystal structure of quasi-2D RP (BA)2(MA)n-1PbnI3n+1 perovskites with various values of n and bandgap.

    3. Results and discussion

    Comparing the conventional 3D perovskites,the remarkably enhanced stability against moisture of the 2D perovskites can be attributed to the Van der Waals interactions between the organic spacer cations.The lower the value ofn,the higher the stability for 2D perovskite is.[45]It has been verified that the 2D perovskite withn=1 immersing in water can be maintained several minutes without any decomposition from perovskite to lead iodide.[46]On the other hand, the bandgap of 2D perovskites increases with the decreasing ofnvalue, and the wider bandgap will limit their light absorption range and the PCE of PSCs.

    Fig.2. (a)Calculated J–V curves and(b)photovoltaic parameters of single junction quasi-2D(BA)2(MA)n-1PbnI3n+1 PSCs with varying n values.

    Consequently,the cases ofn ≤5 for Ruddlesden–Popper(BA)2(MA)n-1PbnI3n+1perovskite are investigated in this work. For the single junction 2D PSCs with an opaque Ag electrode, the calculatedJ–Vcurves and photovoltaic parameters are shown in Figs.2(a)and 2(b). It can be observed that theJscincreases withnvalue increasing, but theVocshows the opposite trend, and there is no significant change for theFF,the resulting PCE continuously increases when the value ofnis lower than 4 and begins to degrade when the value ofnis set to 5. Thus the quasi-2D PSCs withn=3, 4, and 5 (PCE=15.34%, 17.63%, and 17.53%) can achieve higher PCE and more balance between photovoltaic performance and stability, which is consistent with the experimental result.[47]For the lowernof 1 and 2, the wider bandgaps(2.14 eV and 2.41 eV) limit theJscand PCE, although the corresponding PSCs have largerVocand better stability. However, owing to the low absorption coefficients and poor carrier transport caused by the strong quantum confinement effect,the 2D perovskite withn=1,2 cannot be preferred for photovoltaic applications.

    For the 4T-tandem device of 2D perovskite top cell and Si bottom cell,the efficient segmented spectral absorption between sub-cells is a key to optimizing the overall PCE of tandem devices. Here,the semitransparent 2D PSCs(n=1,2,3,4,5)with an ITO rear electrode are stacked with the Si heterojunction cells. Figure 3 displays the calculated photon absorption andJ–Vcurves of 4T perovskite/Si tandem devices. It can be seen that the semitransparent 2D PSCs mainly absorb the incident photons at short wavelength and the Si bottom cell harvests the long wavelength photons filtered by the top cell,and the light absorption of sub-cells can be tuned by thenvalue of 2D perovskite. When it comes to the photoelectric conversion capacity,the semitransparent 2D PSC shows a lower PCE than that of opaque 2D PSC(Fig.2),which is due to the transmission loss caused by the ITO electrode. Even so,their PCEs increase with thenvalue increasing from 10.40%(n=1)to 17.39%(n=4). However,comparing with the reference Si cell with a PCE of 24.4%andJscof 36.83 mA/cm2,theJscand PCE of the filtered Si bottom cell rapidly degrade to 25.88 mA/cm2(by 36.9%)and 15.39%(by 29.7%)whennequals 1, and further decreases to 18.59 A/cm2and 11.29%with the value ofnincreasing from 1 to 5. The corresponding overall PCEs of 4T tandem devices are 25.79% (n=1),28.29%(n=2),28.51%(n=3),28.83%(n=4),and 28.67%(n=5),respectively. Obviously,the tandem devices with top 2D PSCs(n=3,4,5)have acquired a PCE close to the theoretical efficiency limit of Si cells.

    Fig.3. Calculated absorption spectra and J–V curves of quasi-2D perovskite/Si tandem solar cells with different n values.

    In order to further improve the PCE of perovskite/silicon tandem solar cells, reducing the refection loss at the topcell/air interface may be an efficient optical strategy,and typical various thickness anti-reflection layers of LiF are used to cap the top 2D PSCs. Compared with the highest PCE of 2D perovskite (n= 4)/Si tandem devices, the overall PCE as a function of LiF thickness is shown in Fig.4(a), and it can be observed that the optimal thickness of LiF anti-reflection layer is about 90 nm, corresponding to an improvement of 30.58%in PCE. Also in Fig. 4(b), for the 2D top PSCs with 90nmthick LiF and different values ofn, all the PCEs of tandem devices are enhanced noticeably and exceed 30% when the value ofnequals 3, 4, and 5. The detailedJ–Vcurves of sub-cells can be found in Fig. S1 in the supporting information. Therefore, only by adding an anti-reflection layer, the PCE of quasi-2D perovskite/Si tandem device can surpass the theoretical efficiency limit of Si cells,which is also comparable to those of both 4T 3D-perovskite(hybrid or inorganic)/Si tandem devices and the 2T perovskite/Si tandem cells. At the same time,the quasi-2D perovskites provide a selection of tandem structure with longer operation stability.

    The optimized photovoltaic performance of quasi-2D perovskite (n= 4)/Si tandem device is further discussed in Fig. 5. The top PSC shows a PCE of 19.05% withJsc=17.09 mA/cm2,Voc=1.39 V, andFF=0.8; the bottom Si cell realizes a PCE of 11.53% withJsc= 19.00 mA/cm2,Voc=0.76 V, andFF=0.8; and the tandem device achieve a total PCE as high as 30.58%. It is apparent that the substantially enhancedJscby 9.8% is responsible for the champion PCE,which is confirmed by the obvious increase of photoabsorption in the wavelength from 500 nm to 700 nm as shown in Fig.5(b). The relatively large intensity of optical electric field at 540 nm and 640 nm in Fig.5(d)accord well with the above results. Simultaneously,the introduction of LiF layer triggers off an oscillation behavior of absorption in the Si bottom cell(Fig. 5(c)), but still be helpful for the Si bottom cell asJsc(0.15 mA/cm2)increases slightly. In addition,the PCE andJscloss of bottom Si cell are 52.7%and 48.4%in comparison with those of the reference Si cell,respectively,which,however,are still lower than the 63.7%and 63.8%of the most efficient 3Dperovskite/Si tandem cells.[14]In other words, the employing of quasi-2D top PSC in 4T tandem devices can make the total PCE exceed 30%and reduce the power loss of Si bottom cells.

    Fig. 4. Overall PCEs of tandem solar cells (a) with various thickness LiF anti-reflection layers and(b)with/without(w/o)a 90-nm LiF layer at different values of n.

    Fig. 5. (a) Calculated J–V curves of optimal quasi-2D perovskite (n=4)/Si tandem solar cells with a 90-nm-thick LiF antireflection layer,absorption curves of(b)top cell,and(c)bottom cell,and(d)optical electric field distributions of top cell at wavelengths of 550 nm and 640 nm with/without(w/o)antireflection layer.

    Fig. 6. Optical electric field distributions of tandem cells (a) with and (b)without LiF antireflection layer. (c)Difference between electric field distributions in panels(a)and(b)after adding LiF antireflection layer.

    Furthermore,the 3D images of optical electric field distributions as a function of wavelength and position in top quasi-2D(n=4)PSCs are shown in Fig.6 to understand the optical mechanisms. Here,E1andE2represent the optical electric field in 2D PSCs without and with an LiF antireflection layer.In Figs.6(a)and 6(b),most of the photons at short wavelengths in a range of 300 nm–700 nm are absorbed by the top 2D perovskites;while the electric field distributions at the long wavelength ranging from 700 nm to 1100 nm determine the photon energy that can be harvested by the Si bottom cell and the obvious oscillation of electric field distributions accords with the behavior of photoabsorption in Fig.5(c).At the same time,the overall intensity of optical electric field in quasi-2D PSCs is slightly enhanced after utilizing the LiF anti-reflection layer,which can be clearly distinguished by the difference in electric field intensity displayed in Fig. 6(c). Here, the negative intensity near 750 nm and 900 nm are consistent with the interference minimum of absorption in Fig.5(c),and the positive intensities at all other wavelengths prove the optical modulation effect of LiF anti-reflection layer. On the other hand,the 4T quasi-2D(n=5)perovskite/Si tandem devices also obtain a total PCE of 30% (see Fig. S5); what is interesting is the current density of top and bottom cells (17.79 mA/cm2and 18.17 mA/cm2) are very close to each other, thus the natural current matching makes it possible to construct a 2T-tandem devices of quasi-2D(n=5)PSCs and Si bottom cells. Therefore,this work may open the door to the design and fabrication of quasi-2D perovskite/Si tandem devices with both 4T and 2T structures. Of course,the more efficient reflective layers(double or triple), organic-spacer-cation design, composition and device engineering can be used to improve the performance of quasi-2D top PSCs,and the experimental investigation will go further in future.

    4. Conclusions

    Semitransparent quasi-2D RP PSCs are introduced for the first time to construct 4T tandem devices with the Siheterojunction bottom cells. By establishing the Atlas device model and performing systemic simulations from optical and electrical aspects, a PCE over 30% is achieved for quasi-2D(BA)2(MA)n-1PbnI3n+1)/Si tandem cells with three values ofn(3, 4, and 5) and the LiF anti-reflection layer at the air/top cell interfaces.Whennequals 4,corresponding to a perovskite bandgap of 1.9 eV, the optimized top quasi-2D PSC and bottom Si cell show a PCE of 19.05%and 11.53%,respectively,and the total PCE of the tandem device reaches 30.58%,which exceeds the theoretical efficiency limit of Si based solar cells.More importantly,compared with the traditional 3D PSC,the quasi-2D PSC possesses a comparable PCE and can obviously improve air, phase, and thermal stability. Therefore, the 4T quasi-2D perovskite/Si device provides a more cost-effective tandem strategy and long-term stability solution. This work is instructive for designing and fabricating the perovskite/Si tandem solar cells.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.62004151,62274126,62274126,61874083,and 61804113)and the China Postdoctoral Science Foundation(Grant No.2020T130490).

    猜你喜歡
    劉大偉劉剛
    The state-of-the-art of atmospheric pressure plasma for transdermal drug delivery
    A homogeneous atmospheric pressure air plasma in a 10mm gap based on a threeelectrode configuration
    Plasma-activated hydrogel: fabrication,functionalization,and effective biological model
    Temporal electric field of a helium plasma jet by electric field induced second harmonic(E-FISH)method
    綠水青山 朗朗乾坤
    都市(2022年9期)2022-09-07 09:15:12
    高密400G數據中心交換機的系統設計和應用
    全球高通脹和貨幣政策轉向
    The enhanced aerosol deposition by bipolar corona discharge arrays
    敲詐
    禮物
    金山(2015年8期)2015-08-27 11:15:18
    精品国产乱码久久久久久男人| 国产欧美日韩一区二区三 | 赤兔流量卡办理| 亚洲成色77777| 国产成人精品在线电影| 久久久久久久久久久久大奶| 中国美女看黄片| 亚洲熟女精品中文字幕| 亚洲国产av影院在线观看| 久久ye,这里只有精品| 黄色a级毛片大全视频| 亚洲欧美一区二区三区久久| 久热爱精品视频在线9| 国产精品99久久99久久久不卡| 久久人人爽av亚洲精品天堂| 高潮久久久久久久久久久不卡| 青春草亚洲视频在线观看| 国产高清videossex| 啦啦啦在线免费观看视频4| 午夜福利影视在线免费观看| 水蜜桃什么品种好| 欧美亚洲日本最大视频资源| 午夜福利视频在线观看免费| 在线观看免费视频网站a站| 人人妻人人爽人人添夜夜欢视频| 免费在线观看完整版高清| 岛国毛片在线播放| 男女下面插进去视频免费观看| 肉色欧美久久久久久久蜜桃| 精品久久久久久电影网| 丰满少妇做爰视频| av线在线观看网站| 你懂的网址亚洲精品在线观看| 欧美人与性动交α欧美精品济南到| 又粗又硬又长又爽又黄的视频| 日日摸夜夜添夜夜爱| 国产亚洲一区二区精品| 91麻豆精品激情在线观看国产 | 精品国产乱码久久久久久小说| 国产视频首页在线观看| 777久久人妻少妇嫩草av网站| av在线app专区| 看十八女毛片水多多多| 精品熟女少妇八av免费久了| av在线播放精品| 另类精品久久| 精品人妻熟女毛片av久久网站| 国产精品 国内视频| xxx大片免费视频| 天天躁日日躁夜夜躁夜夜| 妹子高潮喷水视频| 国产精品国产av在线观看| 男的添女的下面高潮视频| 婷婷丁香在线五月| 下体分泌物呈黄色| 1024香蕉在线观看| 超色免费av| 欧美久久黑人一区二区| 丝袜在线中文字幕| 捣出白浆h1v1| 亚洲欧美成人综合另类久久久| 精品欧美一区二区三区在线| 狂野欧美激情性bbbbbb| 国产不卡av网站在线观看| 一级片免费观看大全| 一级片'在线观看视频| 国语对白做爰xxxⅹ性视频网站| 国产爽快片一区二区三区| 国产精品.久久久| 男人操女人黄网站| 99久久99久久久精品蜜桃| av天堂在线播放| 国产高清不卡午夜福利| 日本五十路高清| 午夜福利乱码中文字幕| 两性夫妻黄色片| 人人澡人人妻人| 亚洲精品国产区一区二| 国产成人精品在线电影| 777米奇影视久久| 五月天丁香电影| av欧美777| 久久免费观看电影| 久久久久久久精品精品| 乱人伦中国视频| 亚洲成色77777| 两人在一起打扑克的视频| 午夜91福利影院| 极品少妇高潮喷水抽搐| 欧美在线一区亚洲| 青青草视频在线视频观看| 国产成人欧美| 叶爱在线成人免费视频播放| 欧美中文综合在线视频| 妹子高潮喷水视频| av有码第一页| 最新在线观看一区二区三区 | 亚洲第一青青草原| 最新的欧美精品一区二区| 一级毛片电影观看| 亚洲成人免费电影在线观看 | 国精品久久久久久国模美| 18禁观看日本| 国产伦人伦偷精品视频| www.熟女人妻精品国产| 亚洲成人免费电影在线观看 | 亚洲成人手机| 国产日韩欧美亚洲二区| 久久久久久久久久久久大奶| 久久精品久久精品一区二区三区| 国产高清视频在线播放一区 | 久久久久久久久久久久大奶| 50天的宝宝边吃奶边哭怎么回事| 国产黄色视频一区二区在线观看| 国产又色又爽无遮挡免| 99热国产这里只有精品6| 精品卡一卡二卡四卡免费| 丁香六月天网| 久久久亚洲精品成人影院| 中文字幕最新亚洲高清| 中文字幕亚洲精品专区| 亚洲国产精品一区二区三区在线| 国产精品 欧美亚洲| 777久久人妻少妇嫩草av网站| 美女中出高潮动态图| 亚洲国产欧美一区二区综合| 一区二区三区四区激情视频| 少妇精品久久久久久久| 国产精品国产三级专区第一集| 美女扒开内裤让男人捅视频| 国产亚洲一区二区精品| 捣出白浆h1v1| 2018国产大陆天天弄谢| 九色亚洲精品在线播放| 性高湖久久久久久久久免费观看| 在线av久久热| 黄色视频在线播放观看不卡| 九草在线视频观看| 中文精品一卡2卡3卡4更新| 亚洲精品日本国产第一区| 国产精品久久久人人做人人爽| 成在线人永久免费视频| av又黄又爽大尺度在线免费看| 天天躁日日躁夜夜躁夜夜| 国产精品香港三级国产av潘金莲 | 国产日韩欧美视频二区| 亚洲成av片中文字幕在线观看| 久久性视频一级片| av电影中文网址| 国产淫语在线视频| 精品熟女少妇八av免费久了| 欧美精品亚洲一区二区| 午夜福利免费观看在线| 久久ye,这里只有精品| 久久久久久久大尺度免费视频| av电影中文网址| 精品一品国产午夜福利视频| 亚洲av成人精品一二三区| 亚洲精品国产av成人精品| 久久久精品免费免费高清| 亚洲五月婷婷丁香| 欧美国产精品va在线观看不卡| 国产亚洲av片在线观看秒播厂| 丝袜美腿诱惑在线| 午夜激情久久久久久久| 每晚都被弄得嗷嗷叫到高潮| 母亲3免费完整高清在线观看| 亚洲欧洲日产国产| 国产视频一区二区在线看| 黄色一级大片看看| 午夜久久久在线观看| 午夜两性在线视频| 少妇裸体淫交视频免费看高清 | 欧美精品av麻豆av| 国产亚洲av片在线观看秒播厂| 51午夜福利影视在线观看| 免费av中文字幕在线| 999精品在线视频| 成在线人永久免费视频| 国产精品欧美亚洲77777| 婷婷色av中文字幕| 亚洲国产精品一区二区三区在线| 国产日韩欧美在线精品| 男人操女人黄网站| a 毛片基地| 一二三四社区在线视频社区8| 精品熟女少妇八av免费久了| www日本在线高清视频| 亚洲精品久久成人aⅴ小说| 日韩大码丰满熟妇| 99久久综合免费| 午夜免费观看性视频| 观看av在线不卡| 婷婷色综合www| 宅男免费午夜| 一级片'在线观看视频| 999精品在线视频| 精品国产一区二区三区久久久樱花| 国产成人免费观看mmmm| 一二三四在线观看免费中文在| 男女床上黄色一级片免费看| 成年女人毛片免费观看观看9 | 中文字幕人妻丝袜制服| 免费在线观看日本一区| 日韩欧美一区视频在线观看| 99热网站在线观看| 欧美 日韩 精品 国产| 51午夜福利影视在线观看| 校园人妻丝袜中文字幕| 天天影视国产精品| 国产国语露脸激情在线看| 女性被躁到高潮视频| 又粗又硬又长又爽又黄的视频| 欧美 亚洲 国产 日韩一| 成人午夜精彩视频在线观看| 亚洲国产av新网站| 国产成人欧美| 大型av网站在线播放| 搡老乐熟女国产| 97在线人人人人妻| 只有这里有精品99| 黄色视频在线播放观看不卡| 国产有黄有色有爽视频| 免费在线观看日本一区| 亚洲精品一二三| 99热网站在线观看| 纯流量卡能插随身wifi吗| 国产精品久久久久久人妻精品电影 | 亚洲精品一二三| 性少妇av在线| 手机成人av网站| 国产三级黄色录像| 国产日韩一区二区三区精品不卡| 极品少妇高潮喷水抽搐| 美女主播在线视频| 如日韩欧美国产精品一区二区三区| 91老司机精品| 日本欧美视频一区| 亚洲免费av在线视频| 建设人人有责人人尽责人人享有的| 女性生殖器流出的白浆| 亚洲欧洲精品一区二区精品久久久| 黄色 视频免费看| 成年美女黄网站色视频大全免费| 欧美大码av| 亚洲成人免费av在线播放| 免费高清在线观看视频在线观看| 又黄又粗又硬又大视频| 90打野战视频偷拍视频| 亚洲精品久久午夜乱码| 久久毛片免费看一区二区三区| 又大又黄又爽视频免费| 韩国高清视频一区二区三区| 大型av网站在线播放| 男男h啪啪无遮挡| 赤兔流量卡办理| 日韩大片免费观看网站| 飞空精品影院首页| 中文欧美无线码| 曰老女人黄片| 肉色欧美久久久久久久蜜桃| 9191精品国产免费久久| 19禁男女啪啪无遮挡网站| av一本久久久久| 精品亚洲成国产av| 少妇人妻 视频| 亚洲成人免费电影在线观看 | 久久国产精品影院| 欧美精品人与动牲交sv欧美| 婷婷色综合www| 黄色视频不卡| 脱女人内裤的视频| 亚洲,欧美精品.| 久久久久国产一级毛片高清牌| 黄色 视频免费看| 久久免费观看电影| 黄色视频在线播放观看不卡| 亚洲一码二码三码区别大吗| 不卡av一区二区三区| 看十八女毛片水多多多| 丁香六月欧美| 亚洲国产日韩一区二区| 黄片播放在线免费| 亚洲第一青青草原| 青春草亚洲视频在线观看| 国产真人三级小视频在线观看| 最黄视频免费看| 秋霞在线观看毛片| 大型av网站在线播放| 天天躁日日躁夜夜躁夜夜| 黄色视频不卡| 日日爽夜夜爽网站| 九草在线视频观看| av国产精品久久久久影院| 国产精品久久久人人做人人爽| 操美女的视频在线观看| 乱人伦中国视频| 婷婷色综合大香蕉| 黄网站色视频无遮挡免费观看| 欧美激情高清一区二区三区| 人妻人人澡人人爽人人| 亚洲人成77777在线视频| 亚洲欧美日韩高清在线视频 | videos熟女内射| 婷婷色综合大香蕉| 久久久久久人人人人人| 最黄视频免费看| 妹子高潮喷水视频| 香蕉国产在线看| 又紧又爽又黄一区二区| 母亲3免费完整高清在线观看| av国产久精品久网站免费入址| 91麻豆精品激情在线观看国产 | 亚洲精品日本国产第一区| 成在线人永久免费视频| 天天躁日日躁夜夜躁夜夜| 国产亚洲欧美在线一区二区| 少妇猛男粗大的猛烈进出视频| 亚洲成人国产一区在线观看 | 宅男免费午夜| 制服人妻中文乱码| 久久精品aⅴ一区二区三区四区| 又大又黄又爽视频免费| 91字幕亚洲| 日本色播在线视频| 免费在线观看影片大全网站 | 欧美国产精品va在线观看不卡| 五月开心婷婷网| 久久人人爽av亚洲精品天堂| 人人妻人人爽人人添夜夜欢视频| 国产高清videossex| 国产伦理片在线播放av一区| 日日摸夜夜添夜夜爱| 欧美黑人欧美精品刺激| 人人妻人人添人人爽欧美一区卜| 免费看不卡的av| 亚洲精品国产一区二区精华液| 97在线人人人人妻| 久久久久久亚洲精品国产蜜桃av| 好男人电影高清在线观看| 国产精品一国产av| 国产一级毛片在线| 最黄视频免费看| 丝袜在线中文字幕| 操出白浆在线播放| 天天躁夜夜躁狠狠躁躁| 精品一区二区三区四区五区乱码 | 成年美女黄网站色视频大全免费| 一区二区三区乱码不卡18| 人妻一区二区av| 亚洲国产中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 爱豆传媒免费全集在线观看| 天天影视国产精品| www.精华液| 久久亚洲精品不卡| 激情五月婷婷亚洲| 1024香蕉在线观看| 欧美日韩视频高清一区二区三区二| 青春草视频在线免费观看| 精品欧美一区二区三区在线| 久久精品熟女亚洲av麻豆精品| 十分钟在线观看高清视频www| 少妇粗大呻吟视频| 别揉我奶头~嗯~啊~动态视频 | 国产一卡二卡三卡精品| 欧美大码av| 欧美激情 高清一区二区三区| 老司机午夜十八禁免费视频| 亚洲少妇的诱惑av| 精品久久蜜臀av无| 国产精品香港三级国产av潘金莲 | 考比视频在线观看| 国产精品一区二区在线不卡| 国产成人一区二区在线| 精品少妇久久久久久888优播| 国产精品 国内视频| 99国产精品99久久久久| 人体艺术视频欧美日本| 婷婷色综合www| 黄频高清免费视频| 黄色视频在线播放观看不卡| 亚洲人成电影观看| 999精品在线视频| 99精品久久久久人妻精品| 免费在线观看影片大全网站 | 美女国产高潮福利片在线看| 亚洲黑人精品在线| 亚洲欧美激情在线| 制服诱惑二区| 亚洲精品国产av蜜桃| 国产极品粉嫩免费观看在线| 涩涩av久久男人的天堂| 国产男人的电影天堂91| 少妇被粗大的猛进出69影院| 精品第一国产精品| 国产欧美亚洲国产| 91九色精品人成在线观看| 精品国产一区二区三区久久久樱花| 中文字幕高清在线视频| 久久人妻熟女aⅴ| 久久精品亚洲熟妇少妇任你| 国产精品 国内视频| 一级黄片播放器| 国产精品国产三级专区第一集| 日韩 亚洲 欧美在线| 国产黄色免费在线视频| 欧美亚洲日本最大视频资源| 最黄视频免费看| 亚洲av成人不卡在线观看播放网 | 黄色毛片三级朝国网站| 国产精品一区二区在线观看99| 99国产精品99久久久久| 中文字幕人妻丝袜制服| 国产精品一区二区精品视频观看| 一级,二级,三级黄色视频| 国产日韩欧美视频二区| 精品熟女少妇八av免费久了| 国产亚洲精品第一综合不卡| 日本猛色少妇xxxxx猛交久久| 男人添女人高潮全过程视频| 久久午夜综合久久蜜桃| 国产精品九九99| 精品高清国产在线一区| 日本a在线网址| 一边摸一边抽搐一进一出视频| 久久99一区二区三区| 国产精品一区二区精品视频观看| 亚洲精品自拍成人| 性色av一级| 精品国产乱码久久久久久小说| 午夜精品国产一区二区电影| 色婷婷av一区二区三区视频| 日韩 欧美 亚洲 中文字幕| av一本久久久久| 亚洲成av片中文字幕在线观看| 高潮久久久久久久久久久不卡| 国产精品二区激情视频| 色播在线永久视频| 日韩熟女老妇一区二区性免费视频| 国产日韩一区二区三区精品不卡| 亚洲,欧美,日韩| 真人做人爱边吃奶动态| 51午夜福利影视在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 最黄视频免费看| 人人妻,人人澡人人爽秒播 | 91字幕亚洲| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美色中文字幕在线| 国产亚洲午夜精品一区二区久久| 赤兔流量卡办理| 国产一区二区 视频在线| 亚洲久久久国产精品| 黄色毛片三级朝国网站| 一级毛片黄色毛片免费观看视频| 亚洲欧美清纯卡通| 电影成人av| 秋霞在线观看毛片| 欧美人与性动交α欧美精品济南到| 欧美成人精品欧美一级黄| 国产一区二区在线观看av| 日本91视频免费播放| 久久久久视频综合| 国产不卡av网站在线观看| 亚洲 欧美一区二区三区| 人体艺术视频欧美日本| 国产精品免费视频内射| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美+亚洲+日韩+国产| 菩萨蛮人人尽说江南好唐韦庄| 国产野战对白在线观看| 免费av中文字幕在线| 亚洲男人天堂网一区| 国产成人精品久久二区二区免费| 成人亚洲欧美一区二区av| 2021少妇久久久久久久久久久| 肉色欧美久久久久久久蜜桃| 少妇 在线观看| 欧美成狂野欧美在线观看| 丝瓜视频免费看黄片| av片东京热男人的天堂| 成年动漫av网址| 91老司机精品| 叶爱在线成人免费视频播放| 九色亚洲精品在线播放| 精品国产乱码久久久久久小说| 999精品在线视频| 精品久久久久久电影网| 亚洲国产看品久久| 青春草亚洲视频在线观看| 岛国毛片在线播放| 中文乱码字字幕精品一区二区三区| 老鸭窝网址在线观看| 免费在线观看影片大全网站 | 国产一级毛片在线| e午夜精品久久久久久久| 在线观看免费视频网站a站| 午夜免费鲁丝| 国产熟女欧美一区二区| 亚洲三区欧美一区| 99久久精品国产亚洲精品| 午夜福利一区二区在线看| 啦啦啦在线免费观看视频4| 精品免费久久久久久久清纯 | 国产极品粉嫩免费观看在线| 青春草视频在线免费观看| 精品一区二区三区av网在线观看 | 精品人妻1区二区| 999精品在线视频| cao死你这个sao货| 免费在线观看影片大全网站 | 精品少妇一区二区三区视频日本电影| 嫁个100分男人电影在线观看 | 91麻豆av在线| 一二三四社区在线视频社区8| 好男人视频免费观看在线| 国产福利在线免费观看视频| 久久人人爽人人片av| 亚洲欧洲国产日韩| 久久久精品免费免费高清| 啦啦啦视频在线资源免费观看| 中文字幕人妻丝袜制服| 啦啦啦啦在线视频资源| 国产成人免费观看mmmm| 亚洲成人国产一区在线观看 | 久久99一区二区三区| 一本久久精品| 麻豆av在线久日| 嫩草影视91久久| 一级毛片电影观看| 国产男女超爽视频在线观看| 亚洲五月色婷婷综合| 成人黄色视频免费在线看| 天天影视国产精品| 亚洲色图综合在线观看| 国产女主播在线喷水免费视频网站| 久久久精品区二区三区| 亚洲免费av在线视频| 亚洲国产精品999| 欧美日韩国产mv在线观看视频| 久久99一区二区三区| 午夜视频精品福利| av网站在线播放免费| 亚洲精品美女久久av网站| 女性被躁到高潮视频| 99香蕉大伊视频| 一区福利在线观看| 国产成人a∨麻豆精品| 天天躁夜夜躁狠狠久久av| 伊人久久大香线蕉亚洲五| www.精华液| 国产精品一区二区在线观看99| a 毛片基地| 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三 | 色婷婷久久久亚洲欧美| 一区在线观看完整版| 搡老岳熟女国产| 国产av国产精品国产| av网站免费在线观看视频| 91字幕亚洲| 欧美精品av麻豆av| 你懂的网址亚洲精品在线观看| 亚洲欧美激情在线| 中文字幕色久视频| 19禁男女啪啪无遮挡网站| 日韩 亚洲 欧美在线| 99久久精品国产亚洲精品| 人妻一区二区av| 久久精品亚洲熟妇少妇任你| 日韩伦理黄色片| 亚洲国产看品久久| 热re99久久国产66热| 亚洲人成电影观看| 搡老岳熟女国产| 黄色毛片三级朝国网站| 久久精品成人免费网站| 丁香六月天网| 啦啦啦中文免费视频观看日本| 亚洲国产精品一区二区三区在线| 国产精品久久久久久精品古装| 成人国语在线视频| 九草在线视频观看| 久热爱精品视频在线9| 在线av久久热| 欧美激情极品国产一区二区三区| 国产精品久久久久久精品电影小说| 69精品国产乱码久久久| 国产主播在线观看一区二区 | 国产成人精品久久二区二区91| 999精品在线视频| 夫妻午夜视频| 国产av精品麻豆| 亚洲av综合色区一区| 大片电影免费在线观看免费| 波野结衣二区三区在线| 超碰97精品在线观看| 午夜激情久久久久久久| 免费高清在线观看日韩| 欧美亚洲日本最大视频资源| √禁漫天堂资源中文www| 国产有黄有色有爽视频| 亚洲国产成人一精品久久久| 欧美精品av麻豆av| 亚洲av日韩在线播放| 国产成人欧美| 伦理电影免费视频| 亚洲欧美精品自产自拍| 999久久久国产精品视频| 亚洲av电影在线观看一区二区三区| 你懂的网址亚洲精品在线观看| 另类精品久久| 夫妻午夜视频| 少妇裸体淫交视频免费看高清 |