• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Accurate determination of anisotropic thermal conductivity for ultrathin composite film

    2022-10-26 09:53:34QiuHaoZhu朱秋毫JingSongPeng彭景凇XiaoGuo郭瀟RuXuanZhang張如軒LeiJiang江雷QunFengCheng程群峰andWenJieLiang梁文杰
    Chinese Physics B 2022年10期
    關(guān)鍵詞:群峰

    Qiu-Hao Zhu(朱秋毫) Jing-Song Peng(彭景凇) Xiao Guo(郭瀟) Ru-Xuan Zhang(張如軒)Lei Jiang(江雷) Qun-Feng Cheng(程群峰) and Wen-Jie Liang(梁文杰)

    1Beijing National Center for Condensed Matter Physics,Beijing Key Laboratory for Nanomaterials and Nanodevices,Institute of Physics,Chinese Academy of Sciences(CAS),Beijing 100190,China

    2CAS Center of Excellence in Topological Quantum Computation and School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    3School of Chemistry,Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education,Beijing Advanced Innovation Center for Biomedical Engineering,Beihang University,Beijing 100191,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: ultrathin,composite film,thermal conductivity,anisotropic ratio

    1. Introduction

    With the further miniaturization of transistors, more and more devices are integrated into a single integrated circuit chip.Owing to the consequent large power density,local overheating becomes a great challenge if the heat dissipation capability is poor. High temperature will severely degrade the system performance because of thermal fluctuation effects, and also cause a great many of irreversible damages to the inner devices and sensing units, thus accelerating their aging processes. Thus, efficient thermal management is of great importance in the field of chip manufacturing and packaging.[1,2]Films with highly anisotropic thermal conductivity whose inplane thermal conductivity (λx) is substantially higher than the cross-plane one (λz),[3,4]capable of in-plane rapid Joule heat diffusion and out-of-plane thermal heat blocking,have attracted extensive research interest in the past few decades.[5,6]It is a promising way to realize high-performance on-chip systems with a long-duration stability by directionally accelerating heat transfer that depositing such films on chip surface within a limited space,which have the capacity to conduct heat from local overheating spots, ensuring that the other internal structures are not susceptive to adjacent thermal fields. Hence,the exploration of ultrathin (<10 μm) thermal management films is of great value for the applications in some specific size-confined environments. However, the accurate determination of thermal conductivity for ultrathin composite film is still a pending issue due to its ultrathin nature and small thermal conductance;hence,now there are no reports on ultrathin(micron-sized) composite films for efficient thermal management.

    Usually, in-plane and cross-plane thermal conductivityλxandλzof thick composite film are determined by using laser flash techniques by heating the films in the center with a laser pulse and measuring its in-/cross-plane thermal response (surface temperatures) at the edge/rear with an infrared detector.[7–10]However, this method is in question for the thermal property measurement of ultrathin composite films.[11]For cross-plane measurements,on the one hand,ultrathin film reaches a thermal equilibrium state in the crossplane direction within a very short time, and visible temperature difference could be hardly obtained. Hence, fitted and extracted thermal diffusivity is unreliable. On the other hand,the laser penetration depth is comparable or larger in ultrathin films, making the adopted 1D cross-plane heat diffusion model invalid. As for in-plane measurements, the direct contact of sample holder’s cap mask to film surface dramatically affects the in-plane thermal transport process from the laserheated spot to the detector-sensed one for ultrathin composite with small thermal conductance, raising the measurement error. Some other typical measurement methods,including Raman method,[12,13]3ωmethod,[14,15]and suspension bridge method,[16,17]are also proposed to detect thin film in-plane thermal conductivity. Nevertheless, the small laser penetration depth,unmatched heat penetration depth or large thermal contact resistance drastically rigidify the boundary conditions,limiting their practical applications in our micron-sized ultrathin composite film measurements.

    To accurately determinate the highly anisotropic thermal conductivity of ultrathin composite film with a thickness less than 10 μm, we develop a hybrid method combining the 1D steady-state heat conduction approach and the 3ωmethod in this work. We carry out measurements based on a montmorillonite/reduced graphene oxide(MMT/rGO)composite system, and the measurement accuracy is verified by control experiments. A more reliableλxresult of~3.99 W·m-1·K-1is obtained through the modified 1D steady-state means by effectively eliminating the influence from background heat dissipation and contact thermal resistance. On the other hand, a reducedλzvalue of~0.066 W·m-1·K-1and a high anisotropic ratio of~60.5 are discovered for composite films by using the 3ωmethod through avoiding the laser penetration effects.As-measured composite thermal conductivity is independent of film thickness from 0.2 μm to 2 μm, further attesting the feasibility of our measurement method.

    2. Results and discussion

    2.1. Material characterization

    The multi-layered composite film to be tested is synthesized through layer-by-layer filtration with a mixture of MMT and rGO layers(in Fig.1(a)). Total thickness of ultrathin hybrid film, ranging from~0.2 μm to 2 μm, is related to the deposition cycle (n, 1–10). A typical cross-sectional scanning electron microscopy(SEM)image of the film(Fig.1(b))shows that the MMT/rGO layers are stacked along the crossplane direction,corresponding with our measurement requirements for highly-anisotropic thermal conductive material.The x-ray diffraction (XRD) patterns show the crystallographic structure of the as-prepared composite as shown in Fig. 1(c),where five distinct peaks exist in the spectra. An evident diffraction peak centered at 6.7°possesses a high intensity,corresponding to(001)plane for MMT in the composite. Two small high-order peaks detected at 13.4°and 19.7°, corresponding to(002)and(020)planes of MMT,further attest its short-range order nature. Thed-spacing value for MMT(001)plane is~13.18 ?A in the stack composite,similar to the value reported previously.[18]Two characteristic peaks at 26.6°and 44.7°(Fig. 1(c)) are from (002) plane and 2D (10) plane of rGO layer. The calculatedd-spacing value of~3.35 ?A for 26.6°peak matches ideally with that of graphite (002)plane.[19,20]We see no other impurity phases from our XRD patterns, indicating that the composite only consists of MMT and rGO.

    Fig.1. (a)Schematic illustration for film composition and measured film thickness. (b)Cross-sectional SEM image of(MMT/rGO)15 composite film,and(c)XRD pattern of the film.

    2.2. In-plane thermal conductivity measurement

    We adopt an improved 1D steady-state heat conduction method,i.e.using a four-probe configuration under a highvacuum condition to measureλxat room temperature, which is a more essential and reliable method.[21,22]The steady-state measurement system (Fig. 2(a)) is carried out in a probe station’s vacuum chamber. A heat flow is generated by a suspended resistive heater at the hot junction, passes through a narrow and long strip composite sample (cut from the MMT/rGO composite film)and is absorbed by a copper block at the clod junction. Two thermocouples are connected with a hot end and a cold end respectively to measure the corresponding hot-/cold-junction temperatureThandTc. Our sample strips are suspended and glued with silver paste between the two junctions. Strip length(l)and width(w)are~2 mm and~1 mm, respectively, and its thickness (h) is variable in our experiments. To minimize the influence of inevitable background heat losses, including the radiation and the heat flow from supporting structures, thermal conductance of ten composite strips is measured together to enhance thermal conductance signal. At the same time,hot junction is completely supported by the pull of thin insulated constantan wires.

    Fig.2. (a)A schematic illustration for modified four-probe setup. (b)Temperature differences between two junctions as a function of heating power for samples with various values of deposition cycle n,with inset showing actual measurement setup.(c)Measured total thermal resistance as a function of sample strip length. (d)Measured IR signal intensity versus time for(MMT/rGO)5 composite by laser flash technique.

    Figure 2(b)shows the in-plane thermal conductance measurement results for composite strips with different values ofn. The background heat dissipation is also exhibited. Note that the background signal is obtained when no sample is suspended on the two junctions, and it is completely determined by heat leakages through the thermocouples and conduction wires together with radiation heat loss. It is found that the temperature difference between two junctions(ΔT=Th-Tc)shows an approximately linear dependence on the heating power,and there appear obvious ΔTdifferences between various samples. The film thermal conductance (G) can be determined by the difference between the reciprocals of fitted slopes for the tested structure and the background. According to the relationshipλx=Gl/wh,the values of the in-plane thermal conductivityλxare obtained to be 4.04, 4.00, 4.07,and 3.84 W·m-1·K-1for strip samples with a deposition cycle of 3, 6, 8, and 10, respectively. Hence, it shows thatλxremains constant when the sample thickness changes,indicating the accuracy and reliability of the measurement. To estimate the thermal contact resistances at hot junction and cold junction and to guarantee our thermal measurement accuracy,the thermal resistances of samples are repeatedly measured for strips with the same thickness(~2 μm)and different lengths.As illustrated in Fig. 2(c), there exists an approximately linear relationship between the measured total thermal resistance and the strip length for multiple measurements, and the linear fitting result passes through the origin within an allowed error range. Thus,it indicates that the total thermal contact resistance is negligible and has little influence on the measured values ofλx.

    As stated above,the conventional laser flash technique is not suitable for measuring the thermal conductances of ultrathin films. To the best of our knowledge,the film thickness of the thinnest composite that was measured by using this technique is on the order of 10 μm to 100 μm.[23–27]For comparison, we also try to estimate in-plane thermal conductivity of ultrathin(~1 μm)(MMT/rGO)5film by using the laser flash technique. Not surprisingly,either the signal is too small to be detected, or laser irradiation creates local heating and makes visual damage to the thin samples. One of such measurement results is shown in Fig. 2(d). The in-plane thermal diffusion coefficient and thermal conductivity of the extracted composite are 177.0±14.7 mm2·s-1and~442.5 W·m-1·K-1, respectively,even greatly exceeding the reported values of pure rGO materials,[4]indicating the large potential measurement errors for in-plane thermal measurements of thin composites.This may be due to the inevitable large thermal leakage induced by laser flash measurement setup, where the cap mask of sample holder closely contacts the film surface as shown in the inset.

    It is noted that although the sample will keep a better balance assisted by supporting the hot junction with a nylon wire(see the inset of Fig.3(a)),the background thermal conductance reaches up to 3.72 mW·K-1for the heat dissipation in such a steady-state measurement setup (see Fig. 3(a)). On this occasion, the ultrathin composite-caused small temperature change cannot be distinguished from the background signals. This phenomenon can be explained by simple heat transfer analyses. It is well established from 1D Fourier heat transfer equation that heat flow ˙Qis related to thermal conductive material cross-sectional areaAand temperature gradient. For the nylon wire-supported measurement setup, the total heat flow is determined by the heat flow through sample ˙QS, the heat flow through nylon wires ˙QNand the heat flow related to background leakage factors ˙QB(including conduction wiresrelevant or thermocouples-correlated conduction heat flows and also the radiation heat flow),following the relationship

    for measurement setups respectively with nylon wire supported and with hot junctions suspended. Owing to the ultrathin sample nature,the nylon wire-induced heat flow portion is far larger than the sample-induced one,and thus scarcely any valid sample heat flow can be extracted from the obtained data when the hot junction is supported.

    Fig.3. Accuracy analyses for modified in-plane thermal conductivity measurement approach, showing (a) as-measured temperature variation results for the (MMT/rGO)10 composite from conventional steady-state measurement and(b)temperature differences between two junctions as a function of the heating power for different numbers of platinum wires. The solid line represents linear fitting results. The insets schematically illustrate the measurement setups with nylon wire-supported and suspended hot junctions,respectively.

    Therefore,we,for the sake of measurement accuracy,determine to suspend the hot junction and the resulting background heat dissipation is reduced by an order of magnitude.To verify the measurement reliability, we use the modified method to measure the values ofλxfor different numbers of commercial platinum wires with diameters~20 μm, whose thermal conductance is comparable to that of our tested ultrathin composite film. The measurement results are shown in Fig. 3(b), and the background heat dissipation is also exhibited here. The calculatedλxis 67.6±6.7 W·m-1·K-1, corresponding with its standard value ofλx(72 W·m-1·K-1). It is worth mentioning that there is a~2%size distribution error(2%in length and 2‰in cross-sectional area)between the purchased platinum wires, resulting in large measurement errors. On the other hand,the material property deviation from standard counterparts is also a main cause forλxdifferent from standard result. This result further demonstrates the feasibility of this modified 1D steady-state heat conduction method to accurately determine the thermal conductivity of the materials with small thermal conductances.

    2.3. Cross-plane thermal conductivity measurement

    A modified 3ωmethod[28,29]is utilized to measure the cross-plane thermal conductivity(see Fig.4(a)). The 10-mmdiameter composites are attached to a silicon substrate and a four-probe gold wire is patterned by using shadow mask and thermally evaporated on the composite film surface to form a 3ωtesting structure. The main conducting path has a physical dimension of 1400 μm/30 μm as determined by gold wire length/width(see Fig.4(b)). The SR830 lock-in amplifier provides an AC heating current for the gold wire and measures high-order harmonic voltage signals of the same wire to reflect thermal properties of composite film underneath it. A steady AC currentIωwith frequencyωis generated in the lock-in amplifier via the internal oscillator andV-to-Iconvertor,passing through two probes of the gold wire. The conducting gold wire is heated,and an oscillating heat flow enters into composite film. Depending on how fast heat enters into the film, an oscillating temperature ΔT2ωtogether with an oscillating electrical resistance can be measured on the wire via the other two voltage probes at an oscillation frequency of 2ω. The voltage oscillationV3ωis eventually realized by combining the heatinduced resistanceR2ωwith the current signalIω,and it is then detected with the lock-in amplifier on the same voltage probes to further extract the composite and substrate thermal properties. To ensure the measurement accuracy,a precise resistance box is connected in series into the circuit, and the intrinsic high-order harmonic noise is offset through a differential circuit. The supplied power remains constant for per unit wire length.

    Fig. 4. (a) Schematic diagram of employed 3ω testing setup, (b) optical microscopy image for as-fabricated 3ω gold structure, (c) input frequency-dependent temperature oscillations for samples with various deposition cycles, and (d) enlarged view of temperature oscillation properties for substrate(n=0)and MMT/rGO/substrate(n=1).

    Figures 4(c) and 4(d) show the gold wire’s temperature oscillations against input current’s frequency for samples with diverse deposition cycles. Experimental data are plotted in dots in different colors. Thermal characteristics of our samples can be extracted from the linear-region results based on an established approximate model,[30,31]where the slope reflects the substrate thermal properties while the temperature oscillation difference is related to compositeλz. It is observed that the ΔT2ω-logarithmic input frequency dependency deviates from the linear relationship in the high-frequency region,and this is a result of the gradually reduced thermal penetration depth approaching the film thickness. On the other hand,a similar phenomenon takes place in the low-frequency region due to the limited silicon substrate thickness. Furthermore, the linear-region slopes are all constant for tested composites with diverse values ofn, meaning the fixed substrate thermal properties and further attesting our measurement accuracy. The calculated values ofλzare 0.060, 0.066,0.072, 0.069, 0.073, 0.058 W·m-1·K-1for composite films with deposition cycles of 1, 2, 3, 4, 6, and 8, respectively,while the silicon substrate possesses a typical conductivity value of 129.3 W·m-1·K-1. For comparison, we also measure the value ofλzfor pure rGO thin film and MMT thin film(thickness<1 μm)by using the same method. The obtained room-temperatureλzvalue is 0.117±0.016 W·m-1·K-1for rGO and 0.160±0.022 W·m-1·K-1for MMT,consistent with the results reported previously.[4,32]Thus the measurement result accuracy and reliability are verified. Besides, we measure the values ofλzof commercial SiO2/Si wafers with diverse SiO2thickness values of 300 nm and 500 nm, and the derived values ofλzare 130.43±6.52 W·m-1·K-1and 1.47±0.12 W·m-1·K-1for silicon substrate and oxide layer,respectively.These results also coincide well with the reported values.[31]

    2.4. Thermal conductivity feature analysis

    Thickness-related composite in-/cross-plane thermal conductivities are plotted in Fig.5,whereλxandλzvalues are denoted by using solid squares and solid circles, respectively.λxandλzare kept constant (3.99±0.20 W·m-1·K-1and 0.066±0.004 W·m-1·K-1) for composite films with various thickness values (i.e., various values of deposition cyclen),meaning that the measuredλxandλzvalues have very high accuracy. We also obtain the value ofλx,442.5 W·m-1·K-1,by using the laser flash method in Fig. 2(a). Apparently,significant difference can be seen between the two methods,showing that for determining the ultrathin composite filmλx,the 1D steady-state heat conduction method is more accurate and effective than the laser flash method. These results also show that the composite films have a highly-anisotropic thermal conductivity, with an anisotropic ratioλx/λzbeing up to~60.5 and independent ofn. The obtained anisotropic ratio also has a high accuracy because the cross-plane thermal conductivity and the in-plane thermal conductivity measuring methods are both reliable. In view of the lack of reports on the thermal properties of ultrathin (<10 μm) composite films due to the difficulties in accurately evaluating their temperature variations, we compare our measurement results with those reported previously on thick composite counterparts with a thickness ranging from 10 μm to 10 mm. It is discovered that the measured value ofλx(~3.99 W·m-1·K-1)is a common result for graphene/rGO-contained composite film,[26,33,34]and the high anisotropic ratio (~60.5) is also similar to that of MXene/MMT film,[24]demonstrating that this proposed hybrid measuring method, instead of conventional laser flash technique, is greatly effective to accurately determine the anisotropic thermal counductivities of ultrathin composite films.

    3. Conclusions

    In summary, we developed a hybrid method of determining ultrathin composite thermal conductivity , where a modified 1D steady-state heat conduction approach and a 3ωmethod are adopted to accurately assess itsλxvalue andλzvalue, respectively. The obtained value ofλxandλzare~3.99 W·m-1·K-1and~0.066 W·m-1·K-1, respectively,meaning the high anisotropic ratio of 60.5 for the tested ultrathin composite films. The thermal conductivity result is thickness-independent and close to that of reported thick composite counterpart, suggesting that the proposed method possesses a higher measurement accuracy than conventional techniques. This work presents a powerful guidance to measure the thermal properties of ultrathin composites,paving the way for developing the high-performance material towards efficient thermal management.

    Acknowledgements

    Project supported by the National Basic Research Program of China (Grant No. 2016YFA0200800), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB07030100),the Sinopec Innovation Scheme (A-527), the National Key Research and Development Program of China (Grant No. 2021YFA0715700), and the National Science Fund for Distinguished Young Scholars,China(Grant No.52125302).

    猜你喜歡
    群峰
    冬日晨瞭
    老年人(2024年12期)2024-12-31 00:00:00
    群峰之上
    北方人(2021年11期)2021-12-06 00:59:59
    群峰之上
    北方人(2021年21期)2021-11-26 05:26:10
    群峰云鎖杳森森
    寶藏(2021年11期)2021-01-01 06:17:20
    位置
    申曉國
    庚子年元宵節(jié)
    詩選刊(2020年3期)2020-03-23 13:34:35
    群峰之上
    中國詩歌(2019年6期)2019-11-15 00:26:47
    好時(shí)節(jié)
    大江南北(2018年7期)2018-11-21 07:57:18
    久热这里只有精品99| 制服人妻中文乱码| 精品国产一区二区久久| 国产麻豆69| 亚洲欧美成人综合另类久久久| 观看av在线不卡| 成人手机av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av成人精品一二三区| 极品人妻少妇av视频| 操出白浆在线播放| 亚洲 欧美一区二区三区| 久久这里只有精品19| 美女扒开内裤让男人捅视频| 一级片'在线观看视频| 婷婷色综合大香蕉| 七月丁香在线播放| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕精品免费在线观看视频| 色婷婷久久久亚洲欧美| 五月天丁香电影| 亚洲熟女毛片儿| 欧美日韩亚洲高清精品| av线在线观看网站| 好男人电影高清在线观看| 十八禁高潮呻吟视频| 国产精品香港三级国产av潘金莲 | www.熟女人妻精品国产| 国产一区亚洲一区在线观看| 免费看十八禁软件| 两性夫妻黄色片| 欧美日韩福利视频一区二区| 操美女的视频在线观看| 18禁裸乳无遮挡动漫免费视频| 国产精品 欧美亚洲| 色视频在线一区二区三区| 99国产精品99久久久久| 我要看黄色一级片免费的| 国产精品一区二区精品视频观看| 婷婷成人精品国产| 涩涩av久久男人的天堂| 免费少妇av软件| 一区二区日韩欧美中文字幕| 啦啦啦 在线观看视频| 国产精品av久久久久免费| 精品福利永久在线观看| 嫁个100分男人电影在线观看 | av天堂久久9| 亚洲av电影在线观看一区二区三区| 色视频在线一区二区三区| 久久国产亚洲av麻豆专区| 欧美人与性动交α欧美软件| 色婷婷久久久亚洲欧美| 丰满饥渴人妻一区二区三| 好男人电影高清在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成网站在线观看播放| 国产欧美亚洲国产| 久久久国产精品麻豆| 免费女性裸体啪啪无遮挡网站| 亚洲激情五月婷婷啪啪| 免费观看a级毛片全部| 一本—道久久a久久精品蜜桃钙片| 国产精品免费大片| 日日夜夜操网爽| 美国免费a级毛片| 精品少妇一区二区三区视频日本电影| 婷婷色av中文字幕| 久久精品国产a三级三级三级| 精品一区二区三卡| 亚洲成av片中文字幕在线观看| 日韩电影二区| 高清视频免费观看一区二区| 久久国产精品大桥未久av| 纵有疾风起免费观看全集完整版| 亚洲一码二码三码区别大吗| 国产精品 国内视频| 免费在线观看黄色视频的| 国产精品人妻久久久影院| 国产人伦9x9x在线观看| 9191精品国产免费久久| 亚洲欧美日韩另类电影网站| 丝袜在线中文字幕| 亚洲欧美色中文字幕在线| 国产成人一区二区在线| 欧美激情高清一区二区三区| 欧美亚洲 丝袜 人妻 在线| 国产精品亚洲av一区麻豆| 精品第一国产精品| 精品卡一卡二卡四卡免费| 日韩一区二区三区影片| 午夜精品国产一区二区电影| 久久狼人影院| 国产男女超爽视频在线观看| 久久精品成人免费网站| 亚洲欧美成人综合另类久久久| 亚洲精品国产色婷婷电影| 人妻人人澡人人爽人人| 午夜两性在线视频| 美女午夜性视频免费| 捣出白浆h1v1| 亚洲黑人精品在线| 18禁裸乳无遮挡动漫免费视频| 黑人欧美特级aaaaaa片| 亚洲欧美清纯卡通| 亚洲成人免费电影在线观看 | 性少妇av在线| 久久久久久久久免费视频了| 丝袜脚勾引网站| 少妇精品久久久久久久| 亚洲精品一卡2卡三卡4卡5卡 | 国产片内射在线| 午夜日韩欧美国产| 亚洲三区欧美一区| 男人添女人高潮全过程视频| 黄色一级大片看看| 视频在线观看一区二区三区| 99久久精品国产亚洲精品| 在线观看国产h片| 大片免费播放器 马上看| 一级黄片播放器| 人人妻,人人澡人人爽秒播 | 色婷婷av一区二区三区视频| 激情五月婷婷亚洲| 精品久久久精品久久久| 激情视频va一区二区三区| av在线老鸭窝| 午夜福利免费观看在线| 嫁个100分男人电影在线观看 | 国产在线观看jvid| 成年人免费黄色播放视频| 日韩电影二区| 成人亚洲精品一区在线观看| 亚洲五月婷婷丁香| 91麻豆av在线| 一本久久精品| 国产无遮挡羞羞视频在线观看| 精品国产一区二区三区四区第35| 捣出白浆h1v1| 男的添女的下面高潮视频| 99久久精品国产亚洲精品| 亚洲精品av麻豆狂野| 亚洲专区国产一区二区| 国产亚洲精品第一综合不卡| 国产一区二区三区综合在线观看| 亚洲人成电影观看| 久久久久国产一级毛片高清牌| 黄色毛片三级朝国网站| 精品少妇一区二区三区视频日本电影| 国产日韩欧美在线精品| 你懂的网址亚洲精品在线观看| 亚洲伊人久久精品综合| 国产成人av激情在线播放| 99热全是精品| h视频一区二区三区| 国产熟女欧美一区二区| 又大又黄又爽视频免费| 啦啦啦在线免费观看视频4| 国产精品一二三区在线看| 1024香蕉在线观看| 纵有疾风起免费观看全集完整版| 国产一区二区在线观看av| 黄色怎么调成土黄色| 一级a爱视频在线免费观看| 日韩 欧美 亚洲 中文字幕| 叶爱在线成人免费视频播放| 又大又黄又爽视频免费| 亚洲,一卡二卡三卡| 777久久人妻少妇嫩草av网站| 十八禁高潮呻吟视频| 国产亚洲欧美在线一区二区| 国产精品一国产av| 欧美国产精品一级二级三级| 又黄又粗又硬又大视频| 嫩草影视91久久| 19禁男女啪啪无遮挡网站| 最新的欧美精品一区二区| 色综合欧美亚洲国产小说| 夜夜骑夜夜射夜夜干| 黑人巨大精品欧美一区二区蜜桃| 精品人妻熟女毛片av久久网站| 亚洲精品久久久久久婷婷小说| 黑人猛操日本美女一级片| 免费在线观看视频国产中文字幕亚洲 | 亚洲中文日韩欧美视频| 亚洲精品第二区| 欧美变态另类bdsm刘玥| 欧美在线一区亚洲| 最新在线观看一区二区三区 | 97在线人人人人妻| 美女高潮到喷水免费观看| 波多野结衣一区麻豆| 亚洲欧洲精品一区二区精品久久久| 在现免费观看毛片| 91成人精品电影| 日韩熟女老妇一区二区性免费视频| 午夜av观看不卡| 国产高清国产精品国产三级| 下体分泌物呈黄色| 免费在线观看影片大全网站 | 制服诱惑二区| 免费av中文字幕在线| 精品福利观看| 欧美97在线视频| av网站免费在线观看视频| 狂野欧美激情性xxxx| 女人爽到高潮嗷嗷叫在线视频| 十八禁高潮呻吟视频| 看十八女毛片水多多多| 别揉我奶头~嗯~啊~动态视频 | 99九九在线精品视频| 嫩草影视91久久| 最近中文字幕2019免费版| 国产精品秋霞免费鲁丝片| netflix在线观看网站| 人人妻,人人澡人人爽秒播 | 成人国语在线视频| 亚洲av片天天在线观看| 91字幕亚洲| 女性生殖器流出的白浆| 别揉我奶头~嗯~啊~动态视频 | 色网站视频免费| 国产精品一区二区在线观看99| 一二三四社区在线视频社区8| videosex国产| 国产精品二区激情视频| 久久久欧美国产精品| 久久亚洲精品不卡| 80岁老熟妇乱子伦牲交| 久久久欧美国产精品| 亚洲成色77777| 亚洲精品乱久久久久久| 在线 av 中文字幕| 久久国产精品男人的天堂亚洲| 黄频高清免费视频| 国产一区亚洲一区在线观看| 夜夜骑夜夜射夜夜干| 精品人妻一区二区三区麻豆| 黄色视频不卡| 欧美日韩福利视频一区二区| 午夜免费鲁丝| 美女视频免费永久观看网站| 精品少妇黑人巨大在线播放| 国产精品成人在线| 高潮久久久久久久久久久不卡| 老司机靠b影院| 久久精品国产亚洲av涩爱| 别揉我奶头~嗯~啊~动态视频 | 一级毛片女人18水好多 | 青草久久国产| 天堂8中文在线网| 国产无遮挡羞羞视频在线观看| 欧美人与善性xxx| 国产精品偷伦视频观看了| 精品第一国产精品| 秋霞在线观看毛片| 亚洲成人国产一区在线观看 | 少妇 在线观看| kizo精华| 这个男人来自地球电影免费观看| 欧美精品av麻豆av| 一级黄片播放器| 蜜桃在线观看..| 久久天躁狠狠躁夜夜2o2o | 久热这里只有精品99| 一级片免费观看大全| av网站在线播放免费| 亚洲国产精品成人久久小说| 精品一品国产午夜福利视频| 两个人免费观看高清视频| 亚洲国产精品一区二区三区在线| 婷婷丁香在线五月| 老司机在亚洲福利影院| a级片在线免费高清观看视频| 国产黄频视频在线观看| 成人18禁高潮啪啪吃奶动态图| 99热全是精品| 尾随美女入室| 亚洲一卡2卡3卡4卡5卡精品中文| 日日爽夜夜爽网站| 韩国精品一区二区三区| 精品国产乱码久久久久久男人| 日韩中文字幕视频在线看片| 不卡av一区二区三区| 精品国产一区二区三区四区第35| 久久免费观看电影| 搡老乐熟女国产| 国产日韩欧美视频二区| 亚洲,欧美,日韩| 操出白浆在线播放| 亚洲国产欧美网| 无遮挡黄片免费观看| 51午夜福利影视在线观看| 啦啦啦在线观看免费高清www| 国产亚洲av高清不卡| 久久精品国产亚洲av涩爱| 精品国产乱码久久久久久小说| 美国免费a级毛片| 人妻 亚洲 视频| 日本色播在线视频| av国产久精品久网站免费入址| 精品人妻1区二区| 久久免费观看电影| 亚洲情色 制服丝袜| 欧美 日韩 精品 国产| 成人亚洲精品一区在线观看| 国产一区亚洲一区在线观看| 国产精品免费视频内射| 国产精品二区激情视频| 极品人妻少妇av视频| 国产精品久久久久久精品电影小说| 久久av网站| 国产精品秋霞免费鲁丝片| 亚洲午夜精品一区,二区,三区| 蜜桃在线观看..| 亚洲天堂av无毛| 欧美乱码精品一区二区三区| 男女无遮挡免费网站观看| 欧美精品一区二区免费开放| 王馨瑶露胸无遮挡在线观看| 国产精品麻豆人妻色哟哟久久| 男的添女的下面高潮视频| 亚洲精品久久午夜乱码| 丝袜喷水一区| 汤姆久久久久久久影院中文字幕| 亚洲 欧美一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美亚洲 丝袜 人妻 在线| 热re99久久国产66热| 青春草视频在线免费观看| 欧美日韩成人在线一区二区| 高潮久久久久久久久久久不卡| 韩国精品一区二区三区| 性色av乱码一区二区三区2| 亚洲欧洲日产国产| 啦啦啦啦在线视频资源| 女人久久www免费人成看片| 国产成人欧美在线观看 | 韩国高清视频一区二区三区| 成年人免费黄色播放视频| 久久久久久亚洲精品国产蜜桃av| 又黄又粗又硬又大视频| 人人妻人人爽人人添夜夜欢视频| 国产麻豆69| a 毛片基地| 国产欧美日韩精品亚洲av| 国产一区二区在线观看av| 亚洲欧美中文字幕日韩二区| 99re6热这里在线精品视频| 精品欧美一区二区三区在线| 日韩欧美一区视频在线观看| 欧美xxⅹ黑人| 校园人妻丝袜中文字幕| avwww免费| 成人黄色视频免费在线看| netflix在线观看网站| 另类亚洲欧美激情| 中文字幕人妻熟女乱码| 亚洲自偷自拍图片 自拍| 高清视频免费观看一区二区| 色婷婷av一区二区三区视频| 日韩 亚洲 欧美在线| 国产免费现黄频在线看| 亚洲综合色网址| 女人被躁到高潮嗷嗷叫费观| 免费女性裸体啪啪无遮挡网站| 国产一区二区 视频在线| 极品少妇高潮喷水抽搐| 久久久久久久久久久久大奶| 久久久久久久精品精品| 少妇精品久久久久久久| 只有这里有精品99| 国产在视频线精品| 尾随美女入室| 国产成人91sexporn| 亚洲精品第二区| 99国产综合亚洲精品| 天堂8中文在线网| 天天躁狠狠躁夜夜躁狠狠躁| 一区在线观看完整版| 99久久99久久久精品蜜桃| 搡老岳熟女国产| 国产精品国产三级专区第一集| 女人爽到高潮嗷嗷叫在线视频| 一区福利在线观看| 日韩一卡2卡3卡4卡2021年| 99热全是精品| 人体艺术视频欧美日本| 亚洲av电影在线观看一区二区三区| videos熟女内射| 欧美成狂野欧美在线观看| 五月天丁香电影| 久久精品人人爽人人爽视色| 黑人猛操日本美女一级片| 亚洲精品一区蜜桃| 国产成人影院久久av| 中文字幕高清在线视频| av视频免费观看在线观看| 亚洲av男天堂| 天堂俺去俺来也www色官网| 免费观看av网站的网址| 国产99久久九九免费精品| 欧美97在线视频| 18禁黄网站禁片午夜丰满| 国产精品99久久99久久久不卡| videosex国产| 青春草亚洲视频在线观看| 国产在线观看jvid| 在线观看免费午夜福利视频| 亚洲欧美一区二区三区国产| 国产高清不卡午夜福利| 亚洲欧洲精品一区二区精品久久久| 97在线人人人人妻| 久久九九热精品免费| 下体分泌物呈黄色| 国产精品一区二区在线观看99| 丰满迷人的少妇在线观看| 一个人免费看片子| 麻豆国产av国片精品| 99国产精品一区二区三区| 性高湖久久久久久久久免费观看| 久久ye,这里只有精品| 日本91视频免费播放| 成年人黄色毛片网站| 久久久久网色| 国产男女超爽视频在线观看| 91老司机精品| 久久精品熟女亚洲av麻豆精品| 少妇人妻 视频| 国产精品一二三区在线看| 叶爱在线成人免费视频播放| 久久99热这里只频精品6学生| 国产精品国产av在线观看| 七月丁香在线播放| 另类精品久久| 男的添女的下面高潮视频| 丁香六月欧美| 国产一卡二卡三卡精品| 日韩中文字幕视频在线看片| 三上悠亚av全集在线观看| 亚洲一区二区三区欧美精品| 无限看片的www在线观看| 国产亚洲欧美在线一区二区| 男女边吃奶边做爰视频| 精品人妻1区二区| 香蕉国产在线看| 少妇精品久久久久久久| 人妻 亚洲 视频| 爱豆传媒免费全集在线观看| 国产高清视频在线播放一区 | 亚洲av电影在线进入| 天堂8中文在线网| 人妻 亚洲 视频| 精品欧美一区二区三区在线| 伊人久久大香线蕉亚洲五| 青草久久国产| 亚洲欧美一区二区三区国产| 免费观看人在逋| 亚洲国产欧美网| 啦啦啦 在线观看视频| 在线观看国产h片| 日韩 欧美 亚洲 中文字幕| 国产成人免费观看mmmm| 伊人久久大香线蕉亚洲五| 亚洲av国产av综合av卡| 亚洲午夜精品一区,二区,三区| 你懂的网址亚洲精品在线观看| 99九九在线精品视频| 午夜福利免费观看在线| 黄色a级毛片大全视频| 午夜免费男女啪啪视频观看| 女人精品久久久久毛片| 亚洲 国产 在线| 日本色播在线视频| 日韩一区二区三区影片| 交换朋友夫妻互换小说| 日韩免费高清中文字幕av| 欧美激情极品国产一区二区三区| 两个人看的免费小视频| 午夜免费观看性视频| 中文字幕色久视频| 亚洲 国产 在线| 中文欧美无线码| 97精品久久久久久久久久精品| 男女下面插进去视频免费观看| 亚洲精品国产av成人精品| 午夜福利免费观看在线| 亚洲天堂av无毛| 99久久99久久久精品蜜桃| 国产欧美亚洲国产| 黄片播放在线免费| 国产精品久久久人人做人人爽| 大码成人一级视频| 少妇精品久久久久久久| 亚洲免费av在线视频| 国产亚洲av片在线观看秒播厂| 精品国产一区二区久久| 亚洲 国产 在线| 又大又黄又爽视频免费| 午夜视频精品福利| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品国产av成人精品| 夫妻性生交免费视频一级片| 9色porny在线观看| 99九九在线精品视频| 麻豆乱淫一区二区| 欧美xxⅹ黑人| 一级毛片我不卡| 亚洲av日韩精品久久久久久密 | 国产片特级美女逼逼视频| 肉色欧美久久久久久久蜜桃| 王馨瑶露胸无遮挡在线观看| videosex国产| 国产1区2区3区精品| 在线天堂中文资源库| 两个人看的免费小视频| 深夜精品福利| 搡老乐熟女国产| 久久亚洲国产成人精品v| 欧美另类一区| avwww免费| 多毛熟女@视频| 午夜福利一区二区在线看| 国产激情久久老熟女| 亚洲av成人不卡在线观看播放网 | 国产熟女午夜一区二区三区| 婷婷色av中文字幕| 观看av在线不卡| 久久久久久久大尺度免费视频| 国产熟女午夜一区二区三区| 丝袜在线中文字幕| 成人手机av| 超碰97精品在线观看| 成人黄色视频免费在线看| 欧美日韩黄片免| 国产一区二区三区av在线| 热re99久久精品国产66热6| 日本色播在线视频| 欧美成人精品欧美一级黄| 一区在线观看完整版| 女人被躁到高潮嗷嗷叫费观| 久久这里只有精品19| 人人妻,人人澡人人爽秒播 | 一二三四在线观看免费中文在| 国产精品 国内视频| 秋霞在线观看毛片| 这个男人来自地球电影免费观看| 久久久久国产精品人妻一区二区| 亚洲激情五月婷婷啪啪| 亚洲精品第二区| 国产黄频视频在线观看| 欧美亚洲日本最大视频资源| 欧美日韩视频精品一区| 在线观看www视频免费| 久9热在线精品视频| 午夜视频精品福利| 一区二区av电影网| 久久精品国产a三级三级三级| 亚洲国产av影院在线观看| 亚洲少妇的诱惑av| 日韩大片免费观看网站| 男人添女人高潮全过程视频| 美女扒开内裤让男人捅视频| 午夜福利乱码中文字幕| 黑人猛操日本美女一级片| 午夜福利,免费看| 一区二区三区四区激情视频| 看十八女毛片水多多多| 一级毛片我不卡| 亚洲七黄色美女视频| 一级a爱视频在线免费观看| 这个男人来自地球电影免费观看| 国产精品一二三区在线看| 波多野结衣一区麻豆| 午夜精品国产一区二区电影| 精品一区二区三区四区五区乱码 | 丝袜美腿诱惑在线| 美女国产高潮福利片在线看| 视频在线观看一区二区三区| 欧美成人午夜精品| 婷婷色综合大香蕉| av天堂在线播放| 精品欧美一区二区三区在线| 国产午夜精品一二区理论片| 我的亚洲天堂| 久久中文字幕一级| 久久国产精品影院| 中文字幕人妻熟女乱码| 国产精品久久久av美女十八| 青春草亚洲视频在线观看| 国产亚洲欧美在线一区二区| 亚洲欧美一区二区三区久久| 大型av网站在线播放| 九色亚洲精品在线播放| 国产精品偷伦视频观看了| 亚洲精品国产区一区二| 色婷婷av一区二区三区视频| 美女午夜性视频免费| 国产精品一区二区在线不卡| 日本黄色日本黄色录像| 午夜福利视频精品| 免费观看人在逋| 久久国产精品影院| 观看av在线不卡| 亚洲成人免费av在线播放| 欧美少妇被猛烈插入视频| 一二三四社区在线视频社区8| 99久久99久久久精品蜜桃| 国产福利在线免费观看视频| 国产视频一区二区在线看| 观看av在线不卡| 在线观看人妻少妇| 丰满人妻熟妇乱又伦精品不卡| 高清视频免费观看一区二区| 王馨瑶露胸无遮挡在线观看|