• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier

    2022-10-26 09:50:38YinzheLiu劉寅哲KeweiLiu劉可為JialinYang楊佳霖ZhenCheng程禎DongyangHan韓冬陽QiuAi艾秋XingChen陳星YongxueZhu朱勇學(xué)BinghuiLi李炳輝LeiLiu劉雷andDezhenShen申德振
    Chinese Physics B 2022年10期

    Yinzhe Liu(劉寅哲) Kewei Liu(劉可為) Jialin Yang(楊佳霖) Zhen Cheng(程禎)Dongyang Han(韓冬陽) Qiu Ai(艾秋) Xing Chen(陳星) Yongxue Zhu(朱勇學(xué))Binghui Li(李炳輝) Lei Liu(劉雷) and Dezhen Shen(申德振)

    1State Key Laboratory of Luminescence and Applications,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: ZnO microwire,interface,potential barrier,dark current,photocurrent-to-dark current ratio

    1. Introduction

    Ultraviolet(UV)photodetectors based on wide band gap semiconductors(GaN,ZnO,Ga2O3,etc.) have attracted considerable attention in recent years due to their great potential in both military and civilian applications.[1–9]Owing to the high crystalline quality,large surface-to-volume ratio and effective charges separation, one-dimensional (1D) micro/nanowires have become one of the most promising building blocks for high-performance photodetectors.[10–18]Up to now, numerous UV photodetectors have been realized based on individual 1D micro/nanowire of different wide band gap semiconductors, such as ZnO, SnO2, GaN and so on.[19–28]Most of the reported devices are built on a simple metal–semiconductor–metal(MSM)structure with a single 1D micro/nanowire as the active light-collecting region.It has been demonstrated that individual 1D micro/nanowire photodetectors usually have ultrahigh photocurrent gains(105–109).[19–28]And these high gains are generally considered to be related to the trapping effect and the enhanced electron–hole separation due to the energy band bending induced by surface states in the radial direction of micro/nanowires.[25,26]However,in the axial direction of micro/nanowires,the carriers can transport freely under the drive of an external electric field, which often produce large dark current and low detectivity.[24,29–32]One of the most common approaches to resolve the above problem is constructing axial heterojunctions, such as pn junction,[33,34]quantum well,[35]superlattice[36–38]and inserting a barrier layer,[39–41]which could effectively modulate the carriers separation and transport in the axial direction. However,it remains a challenge to obtain high-quality and abrupt heterojunction interface along the growth axis.[42–44]

    In this work, taking ZnO microwire as an example, we demonstrate a significant performance enhancement of ZnO microwire UV photodetector by introducing mechanical contact homo-interfaces. 1D ZnO micro/nanowires are excellent candidates for UV photodetectors due to their wide direct band gap,easy fabrication,high radiation hardness and high saturation electron drift velocity.[23,25,26,45]The UV photodetector is built from three cross-intersecting ZnO microwires with double microwire–microwire homo-interfaces. Compared with the no-interface reference device, the double-interface photodetector not only exhibits lower dark current and higher detectivity,but also has a faster response speed. The systematic comparative studies reveal that the potential barriers formed at the intersections of ZnO microwires could modulate the carrier transport along the axial direction of the microwires,thereby significantly reducing the dark current and increasing the normalized photocurrent-to-dark current ratio(NPDR).Moreover,the quick change of barrier heights induced by turning on or off the UV light could promote the response speed of the device.

    2. Experimental details

    2.1. Preparation of ZnO microwires

    ZnO microwires were synthesized via a simple one-step chemical vapor deposition(CVD)method,[46,47]using a mixture of ZnO powders and graphite powders(1:1 in weight ratio) as the reactant source material. The alumina boat containing the mixed powders was placed in the center of the furnace. After that, the temperature of the boat was increased to 1030°C, and maintained at this temperature for 60 min to fabricate ZnO microwires. Ar(4N)and O2(5N)were used as the carrier gas and oxygen source at flow rates of 100 sccm and 10 sccm, respectively. After the growth, the furnace was naturally cooled to room temperature and continuously vented with oxygen and argon.

    2.2. Characterizations of the materials and devices

    The morphology of the samples was characterized by scanning electron microscope(SEM,Hitachi S-4800)and helium ion microscope (HIM, Zeiss Orion NanoFab). And the crystalline structure was tested by x-ray diffraction (XRD,Bruker D8GADDS). Photoluminescence (PL) measurement was carried out with a laser Raman spectrometer (VVLABRAM). The current–voltage (I–V) and time-dependent current(I–t)characteristics of the device were measured using a semiconductor device analyzer (Agilent B1500A). The response spectra were measured by using a 200 W UV-enhanced Xe lamp and a monochromator.

    3. Results and discussion

    Schematic fabrication process of the crossed ZnO microwire photodetectors is shown in Fig.1. Highly crystallized ZnO microwires were formed at the downstream end of the alumina boat. A sharp tweezer was used to pick up ZnO microwires one by one from the ceramic boat and place them on a glass substrate to build a cross-stacked architecture. After that, indium ball electrodes were drop cast manually on both ends of each microwire and heated on a hotplate at 200°C to improve the contact property. In this cross-stacked architecture, three ZnO microwires have the similar diameter and properties.

    Fig.1. Schematic fabrication process of the crossed ZnO microwire photodetectors.

    Figure 2(a) shows the SEM image of single ZnO microwire. It can be seen that the morphology of ZnO microwires is a quadrangular prism with a diameter of~10 μm.Moreover, the surface of the microwires is very smooth and flat. Figure 2(b) presents the HIM image of the crossed microwire architecture. Obviously, the microwires are in close physical contact with each other. The XRD spectrum of the ZnO microwires dispersed on a glass substrate is shown in Fig. 2(c). The sharp diffraction peaks at 32°, 34.7°, 36.5°and 47.8°can be assigned to (100), (002), (101) and (102)planes of wurtzite ZnO. All the peaks are matching with the ZnO hexagonal phase of JCPDF No. 36-1451. Figure 2(d)presents the PL spectrum of ZnO microwires at room temperature. A strong UV emission is clearly observed at~380 nm,which can be attributed to the near-band edge (NBE) emission of ZnO.[29,32,47,48]Besides, a shoulder signal is also observed near the NBE emission, which can be originated from the phonon replica of free exciton luminescence.[49]In addition, a weak and broad visible emission band centered at~520 nm is generally considered to come from the oxygen vacancy defect in ZnO.[29,47]The PL spectrum suggests that the ZnO microwires fabricated in this work have a few oxygen vacancy defects.

    Fig. 2. (a) SEM image of single ZnO microwire. (b) HIM image of the crossed microwire architecture. (c)XRD and(d)PL results of ZnO microwires.

    Fig.3. (a)Schematic diagram of no-interface,single-interface,and double-interface ZnO microwire photodetectors. The I–V characteristics of(b)no-interface,(c)single-interface,and(d)double-interface devices in the dark(black line)and under 365 nm illumination at a power density of ~0.8 mW/cm2 (red line).

    To investigate the interface effect on the photodetection performance,in addition to the ZnO double-interface UV photodetector, the reference devices without interface and with single interface were also prepared as shown in Fig. 3(a).To avoid the influence of device length, the lengths of the three devices are similar (~1 cm). In addition, because adsorbed gas molecules, such as O2and H2O, have a great impact on the photoelectric performance of microwires,[50]the three devices are tested in the air environment with same humidity. Figures 3(b), 3(c) and 3(d) show theI–Vcurves in the dark and under the 365 nm illumination(~0.8 mW/cm2)of the no-interface, single-interface and double-interface devices, respectively. In Fig. 3(b), a relatively large dark current of~1.11×10-7A can be observed at 45 V bias for the reference device without interface due to the large number of background carriers in the ZnO microwire. Under the UV illumination, the current of the device increases to about 4.06×10-7A at 45 V.With the introduction of the microwire–microwire interface,the dark current of ZnO UV photodetector with single and double interfaces has been significantly reduced as shown in Figs.3(c)and 3(d), respectively. Notably,the double-interface device exhibits an ultra-low dark current of~3.52×10-12A at 45 V bias,which is nearly 5 orders of magnitude lower than that of no-interface reference device.

    Figure 4 shows the spectral response of ZnO microwire photodetectors with and without interface at 45 V bias in the wavelength range from 340 nm to 700 nm. All three devices exhibit a broad response peak centered at~370 nm and a sharp-3 dB cutoff wavelength of~380 nm, which precisely corresponds to the band gap of ZnO (~3.37 eV at room temperature). The peak responsivities of no-interface,single-interface,and double-interface ZnO photodetectors are 120 mA/W, 90 mA/W and 80 mA/W, respectively. In addition,the UV/visible rejection ratio(Rpeak/R550nm)of all three devices can reach nearly 103.

    Fig. 4. The photoresponse spectra of no-interface (black line), singleinterface(red line),and double-interface(blue line)ZnO microwire UV photodetectors on a log scale.

    The normalized photocurrent-to-dark current ratio(NPDR), defined as the ratio of responsivity to dark current, is an important parameter to evaluate the weak signal detection ability of a photodetector.[51]TheI–Vcharacteristic curves (Fig. 3) and the photoresponse spectra (Fig. 4)show that although the microwire–microwire interfaces can slightly reduce the UV responsivity of the device,their reduction in dark current is more obvious. Therefore, the NPDR of double-interface ZnO microwire UV photodetector reaches 2.3×1010W-1,which is nearly 5 orders of magnitude higher than that of no-interface device.

    The time-dependent photoresponse properties of the ZnO microwire UV photodetectors were investigated at 45 V bias by periodically switching on and off 365 nm illumination with a power intensity of 0.8 mW/cm2. Figure 5(a)presents theI–tcurves of no-interface, single-interface, and double-interface ZnO microwire UV photodetectors. Obviously, all three devices exhibit reproducible and stable photoresponse to periodic UV illumination. It should be noticeable that the current of the double-interface device rapidly decreases by more than 4 orders of magnitude after switching off the illumination, reaching the level of the initial dark current. According to the single normalized on/off cycle of the time response curves (Fig. 5(b)), the decay times (the time required for the photocurrent to decrease from 90% to 10% of its maximum value) of no-interface, single-interface, and double-interface ZnO microwire devices could be estimated to be~95 s,~3 s and~0.65 s, respectively. Interestingly, the introduction of the microwire–microwire interfaces significantly improves the response speed.

    Fig.5. (a) The I–t curves of no-interface (black line), single-interface(red line),and double-interface(blue line)ZnO microwire UV photodetectors on a log scale under 365 nm light illumination at a bias voltage of 45 V.(b)Transient photocurrents of three devices normalized at their peak value.

    To better understand the mechanism of the photodetection performance enhancement, the energy band diagram of the ZnO microwire photodetector with double wire–wire interfaces is illustrated in Fig.6. In the dark condition, the potential barriers formed at the wire–wire interfaces could inhibit the transport of free carriers between ZnO microwires,resulting in a lower dark current (Fig. 6(a)). Under illumination,photogenerated electron–hole pairs are generated in ZnO microwires and subsequently separated and drifted by the applied electric field. Meanwhile,when the photogenerated holes drift to the wire–wire interfaces,they would be trapped by the interface states,thereby reducing the barrier height(Fig.6(b)).And the decreased wire–wire barrier under UV light illumination produces a large photocurrent. After switching off the illumination,the trapped holes at the wire–wire interfaces would be dispersed rapidly and the barrier height would be recovered to its initial dark state value,leading to a small dark current and a relatively fast response speed.

    Fig.6.The energy band diagram of the double-interface ZnO microwire photodetector(a)in the dark and(b)under UV light illumination.

    4. Conclusion

    In summary,highly crystallized ZnO microwires are synthesized by a simple one-step CVD method.The UV photodetector is built from three cross-intersecting ZnO microwires on a glass substrate with double microwire–microwire homointerfaces. The dark current of this double-interface device is only about 3.52×10-12A at 45 V, which is almost 5 orders of magnitude lower than that of no-interface reference device. Moreover, compared with no-interface reference device, the NPDR of the double-interface ZnO microwire UV photodetector is improved by nearly 5 orders of magnitude,reaching about 2.3×1010W-1. Meanwhile,the 90%to 10%decay time of this double-interface device is only about 0.65 s.Our analysis shows that the giant performance enhancement for the double-interface device originates from the mechanical contact homo-interfaces. The existence of potential barriers at the interfaces leads to highly suppressed dark current of the device, and it also produces a fast and sensitive photoelectric response due to the barrier height modulation. The results in this work not only provide the insights into the regulation of efficient carrier transport in photodetectors, but also open up tremendous opportunities for the design and development of high-performance optoelectronic devices.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.62074148,61875194,11727902,12074372, 11774341, 11974344, 61975204, and 11804335),the National Ten Thousand Talent Program for Young Topnotch Talents, the Key Research and Development Program of Changchun City (Grant No. 21ZY05), the 100 Talents Program of the Chinese Academy of Sciences, Youth Innovation Promotion Association, CAS (Grant No. 2020225),Jilin Province Science Fund(Grant No.20210101145JC),and XuGuang Talents Plan of CIOMP.

    757午夜福利合集在线观看| 成人特级黄色片久久久久久久| 黄片播放在线免费| 欧美丝袜亚洲另类 | 叶爱在线成人免费视频播放| av有码第一页| 久久精品人人爽人人爽视色| 黑人巨大精品欧美一区二区蜜桃| 亚洲天堂国产精品一区在线| 黑丝袜美女国产一区| 99久久久亚洲精品蜜臀av| 麻豆久久精品国产亚洲av| 欧美 亚洲 国产 日韩一| 亚洲国产欧美网| 国产高清videossex| 黄片播放在线免费| 高清在线国产一区| 国产欧美日韩综合在线一区二区| 丝袜美腿诱惑在线| 长腿黑丝高跟| 女生性感内裤真人,穿戴方法视频| 亚洲精品一区av在线观看| 男人舔女人的私密视频| www.熟女人妻精品国产| 亚洲情色 制服丝袜| 日韩欧美一区视频在线观看| 国产精品国产高清国产av| 成人18禁在线播放| 国产高清videossex| 制服人妻中文乱码| 男男h啪啪无遮挡| 激情视频va一区二区三区| 老汉色∧v一级毛片| 亚洲国产毛片av蜜桃av| 黄色视频不卡| 嫩草影院精品99| 欧美在线一区亚洲| 国产欧美日韩综合在线一区二区| 欧美日韩亚洲国产一区二区在线观看| 正在播放国产对白刺激| 午夜福利成人在线免费观看| 色综合欧美亚洲国产小说| 国内精品久久久久久久电影| 一进一出抽搐动态| 两性夫妻黄色片| 亚洲五月婷婷丁香| 免费在线观看完整版高清| 国产一区二区三区综合在线观看| 99国产精品一区二区蜜桃av| 最近最新中文字幕大全免费视频| 国产精品 国内视频| 老鸭窝网址在线观看| 又大又爽又粗| 在线观看免费午夜福利视频| 国产av又大| 亚洲成av片中文字幕在线观看| 一级黄色大片毛片| 国产精品亚洲av一区麻豆| 久久久国产成人免费| 黄色视频不卡| 久久精品成人免费网站| tocl精华| 亚洲精品国产色婷婷电影| 午夜免费鲁丝| 欧美乱码精品一区二区三区| 免费在线观看视频国产中文字幕亚洲| 不卡av一区二区三区| 亚洲 欧美 日韩 在线 免费| 97碰自拍视频| 亚洲激情在线av| 香蕉丝袜av| 久久性视频一级片| 99精品久久久久人妻精品| 免费在线观看亚洲国产| 麻豆av在线久日| 人人妻人人澡人人看| 午夜久久久在线观看| 中文字幕av电影在线播放| 黄网站色视频无遮挡免费观看| 日韩欧美国产一区二区入口| 嫩草影视91久久| 国产高清视频在线播放一区| 波多野结衣av一区二区av| 最好的美女福利视频网| 国产精品香港三级国产av潘金莲| 天堂√8在线中文| 少妇裸体淫交视频免费看高清 | 一二三四社区在线视频社区8| 精品电影一区二区在线| 精品少妇一区二区三区视频日本电影| 色在线成人网| 亚洲人成77777在线视频| 国产精品久久视频播放| 久久草成人影院| 久久久久久久久免费视频了| 国产精品国产高清国产av| 日韩免费av在线播放| 亚洲成人国产一区在线观看| videosex国产| 自线自在国产av| 精品国产国语对白av| 亚洲国产高清在线一区二区三 | 正在播放国产对白刺激| 中文字幕久久专区| 国产成人精品久久二区二区免费| 无限看片的www在线观看| 亚洲熟女毛片儿| av天堂在线播放| 男人舔女人的私密视频| 曰老女人黄片| 99香蕉大伊视频| 免费高清视频大片| 韩国精品一区二区三区| 精品少妇一区二区三区视频日本电影| 久热爱精品视频在线9| 波多野结衣av一区二区av| www.999成人在线观看| 一边摸一边抽搐一进一小说| 可以免费在线观看a视频的电影网站| 在线播放国产精品三级| 又黄又粗又硬又大视频| 九色亚洲精品在线播放| 亚洲熟女毛片儿| 亚洲伊人色综图| 日韩欧美一区二区三区在线观看| 亚洲性夜色夜夜综合| 欧美日韩一级在线毛片| 淫妇啪啪啪对白视频| 性少妇av在线| 久久天躁狠狠躁夜夜2o2o| 性色av乱码一区二区三区2| 搡老岳熟女国产| 精品国产超薄肉色丝袜足j| 亚洲av成人不卡在线观看播放网| 最好的美女福利视频网| 欧美av亚洲av综合av国产av| 在线天堂中文资源库| cao死你这个sao货| 很黄的视频免费| 国产成人av激情在线播放| 国产精品98久久久久久宅男小说| 黄色视频不卡| 亚洲国产精品久久男人天堂| 国产一区二区三区视频了| av有码第一页| 午夜久久久在线观看| 在线观看www视频免费| 国产午夜精品久久久久久| 国产区一区二久久| 变态另类成人亚洲欧美熟女 | 亚洲国产精品久久男人天堂| 少妇粗大呻吟视频| cao死你这个sao货| 免费观看精品视频网站| 国产真人三级小视频在线观看| 亚洲人成电影观看| 国产亚洲精品综合一区在线观看 | 亚洲伊人色综图| 亚洲av熟女| 久久影院123| 少妇粗大呻吟视频| cao死你这个sao货| 久久久久久久久中文| 在线观看一区二区三区| 后天国语完整版免费观看| 黑人操中国人逼视频| 成人三级黄色视频| 亚洲色图 男人天堂 中文字幕| 久久精品国产综合久久久| 精品国产一区二区三区四区第35| 99久久国产精品久久久| 少妇 在线观看| 天堂动漫精品| 色av中文字幕| 精品一区二区三区视频在线观看免费| 亚洲七黄色美女视频| 中文字幕最新亚洲高清| 亚洲国产精品999在线| 十八禁人妻一区二区| 看片在线看免费视频| 精品国产一区二区三区四区第35| av福利片在线| 在线观看66精品国产| 十八禁网站免费在线| 女人精品久久久久毛片| 久久婷婷成人综合色麻豆| 丝袜美腿诱惑在线| 99精品在免费线老司机午夜| 日韩欧美一区视频在线观看| 女人精品久久久久毛片| 亚洲成人久久性| 中文字幕另类日韩欧美亚洲嫩草| 可以在线观看毛片的网站| 无遮挡黄片免费观看| 久久久久国内视频| 日韩国内少妇激情av| 深夜精品福利| 欧美另类亚洲清纯唯美| av中文乱码字幕在线| 电影成人av| 黄色毛片三级朝国网站| 久久天堂一区二区三区四区| 欧美丝袜亚洲另类 | 老司机午夜十八禁免费视频| 在线观看www视频免费| 久久中文字幕一级| 免费一级毛片在线播放高清视频 | 中文字幕久久专区| 黄色女人牲交| 性欧美人与动物交配| 中文亚洲av片在线观看爽| 午夜福利免费观看在线| 精品第一国产精品| 精品国产一区二区三区四区第35| 日本一区二区免费在线视频| 激情视频va一区二区三区| 免费观看人在逋| 久久人人爽av亚洲精品天堂| 久热这里只有精品99| 国产国语露脸激情在线看| 女性被躁到高潮视频| 国产精品二区激情视频| 成人三级做爰电影| 亚洲精品一区av在线观看| 亚洲精品久久国产高清桃花| 少妇熟女aⅴ在线视频| 窝窝影院91人妻| 国产亚洲精品久久久久久毛片| 天天添夜夜摸| 国产激情欧美一区二区| 久久精品aⅴ一区二区三区四区| 99久久国产精品久久久| 亚洲精品国产区一区二| 国产av精品麻豆| 99久久精品国产亚洲精品| 欧美精品亚洲一区二区| 国产精品一区二区三区四区久久 | 非洲黑人性xxxx精品又粗又长| 在线观看66精品国产| 国产av精品麻豆| 国产在线精品亚洲第一网站| 国产蜜桃级精品一区二区三区| 精品人妻1区二区| 91国产中文字幕| 欧美 亚洲 国产 日韩一| 在线天堂中文资源库| 亚洲国产精品久久男人天堂| 欧美av亚洲av综合av国产av| 国产麻豆69| 亚洲午夜精品一区,二区,三区| 成人18禁在线播放| 大陆偷拍与自拍| 最好的美女福利视频网| 成年女人毛片免费观看观看9| 免费人成视频x8x8入口观看| 一本久久中文字幕| 日本vs欧美在线观看视频| 色综合欧美亚洲国产小说| 精品电影一区二区在线| 涩涩av久久男人的天堂| 亚洲欧美日韩无卡精品| 纯流量卡能插随身wifi吗| 午夜免费观看网址| 男人的好看免费观看在线视频 | 波多野结衣一区麻豆| 日韩一卡2卡3卡4卡2021年| 亚洲精品av麻豆狂野| 国产欧美日韩一区二区三区在线| 一二三四在线观看免费中文在| 国产99白浆流出| 国产不卡一卡二| 国产精品自产拍在线观看55亚洲| tocl精华| 脱女人内裤的视频| 又紧又爽又黄一区二区| 国产亚洲精品第一综合不卡| 在线天堂中文资源库| 免费看十八禁软件| 免费在线观看黄色视频的| 夜夜躁狠狠躁天天躁| 国产一区二区三区视频了| АⅤ资源中文在线天堂| 亚洲 欧美 日韩 在线 免费| 日韩欧美国产一区二区入口| 琪琪午夜伦伦电影理论片6080| 热99re8久久精品国产| 窝窝影院91人妻| 日本免费一区二区三区高清不卡 | 国产人伦9x9x在线观看| 亚洲欧美日韩另类电影网站| 久久国产精品男人的天堂亚洲| 69av精品久久久久久| 国产精品久久电影中文字幕| 久久久久国产精品人妻aⅴ院| 成年版毛片免费区| 国产男靠女视频免费网站| 99在线人妻在线中文字幕| 久久午夜亚洲精品久久| 可以在线观看毛片的网站| 日韩精品青青久久久久久| 99在线人妻在线中文字幕| 麻豆av在线久日| 欧美国产日韩亚洲一区| 亚洲中文字幕日韩| 亚洲男人天堂网一区| 麻豆国产av国片精品| 啦啦啦观看免费观看视频高清 | 视频区欧美日本亚洲| 一边摸一边抽搐一进一小说| e午夜精品久久久久久久| 成人国产综合亚洲| 精品国产美女av久久久久小说| 69av精品久久久久久| 校园春色视频在线观看| 亚洲午夜精品一区,二区,三区| 国产一区在线观看成人免费| 免费人成视频x8x8入口观看| 色av中文字幕| 又紧又爽又黄一区二区| ponron亚洲| 国产主播在线观看一区二区| 亚洲av第一区精品v没综合| 极品教师在线免费播放| 国产av一区二区精品久久| 男女下面插进去视频免费观看| 久久伊人香网站| 亚洲三区欧美一区| 国产一区二区激情短视频| 精品一区二区三区四区五区乱码| 国产人伦9x9x在线观看| 欧美日韩精品网址| 美女免费视频网站| 一个人观看的视频www高清免费观看 | 9色porny在线观看| 黄网站色视频无遮挡免费观看| 国产黄a三级三级三级人| 波多野结衣一区麻豆| 脱女人内裤的视频| 亚洲精品中文字幕在线视频| 成人国产一区最新在线观看| 国产又爽黄色视频| 日本a在线网址| 自拍欧美九色日韩亚洲蝌蚪91| 变态另类成人亚洲欧美熟女 | 色播亚洲综合网| 9色porny在线观看| 91成人精品电影| 中亚洲国语对白在线视频| 久久午夜综合久久蜜桃| 中文亚洲av片在线观看爽| 国产精品二区激情视频| 国产一区二区三区在线臀色熟女| 久久精品国产99精品国产亚洲性色 | 成人永久免费在线观看视频| av欧美777| 一区二区三区精品91| 国产一区二区在线av高清观看| 国产精品久久视频播放| 久久青草综合色| 国产成人系列免费观看| 99在线人妻在线中文字幕| 亚洲欧美激情综合另类| 丝袜美足系列| 国产三级在线视频| 黄片大片在线免费观看| 啦啦啦观看免费观看视频高清 | 国产单亲对白刺激| 女人爽到高潮嗷嗷叫在线视频| 女人高潮潮喷娇喘18禁视频| 一边摸一边抽搐一进一小说| 99久久99久久久精品蜜桃| 欧美在线黄色| 午夜亚洲福利在线播放| 黄色片一级片一级黄色片| 日韩国内少妇激情av| 欧美在线黄色| 大香蕉久久成人网| 九色国产91popny在线| 久久久久久人人人人人| 少妇裸体淫交视频免费看高清 | 亚洲色图av天堂| 国产欧美日韩精品亚洲av| 国产单亲对白刺激| 国产精品99久久99久久久不卡| 亚洲国产毛片av蜜桃av| 国产成人精品无人区| 亚洲avbb在线观看| 久久婷婷成人综合色麻豆| 亚洲七黄色美女视频| 国产aⅴ精品一区二区三区波| 亚洲 国产 在线| 少妇裸体淫交视频免费看高清 | 成人三级黄色视频| 青草久久国产| 91九色精品人成在线观看| 波多野结衣高清无吗| 一个人免费在线观看的高清视频| 色综合欧美亚洲国产小说| 不卡一级毛片| 日本 欧美在线| 咕卡用的链子| 精品乱码久久久久久99久播| 首页视频小说图片口味搜索| 精品高清国产在线一区| 国产主播在线观看一区二区| 免费在线观看亚洲国产| 成人特级黄色片久久久久久久| 黄色视频不卡| 亚洲av电影不卡..在线观看| 亚洲熟女毛片儿| 91精品三级在线观看| 亚洲一区高清亚洲精品| 手机成人av网站| 丝袜美腿诱惑在线| 淫妇啪啪啪对白视频| 午夜影院日韩av| 后天国语完整版免费观看| 成人精品一区二区免费| 久热这里只有精品99| 国产欧美日韩综合在线一区二区| 亚洲色图av天堂| 免费看美女性在线毛片视频| 淫妇啪啪啪对白视频| 亚洲少妇的诱惑av| 国产成人精品在线电影| 精品日产1卡2卡| 久久婷婷成人综合色麻豆| 性色av乱码一区二区三区2| 亚洲欧美日韩无卡精品| 青草久久国产| 黄色成人免费大全| 国产精品九九99| 91国产中文字幕| 黑人欧美特级aaaaaa片| 亚洲全国av大片| 日韩欧美免费精品| 一级毛片高清免费大全| 91麻豆精品激情在线观看国产| 黄色片一级片一级黄色片| 欧美不卡视频在线免费观看 | 黑人巨大精品欧美一区二区mp4| 久久久国产成人免费| 中文字幕精品免费在线观看视频| 国产蜜桃级精品一区二区三区| 亚洲欧美激情综合另类| 少妇 在线观看| 久久久久久久午夜电影| 最近最新中文字幕大全电影3 | 久久久国产欧美日韩av| 欧美成狂野欧美在线观看| 91九色精品人成在线观看| 久久久久久国产a免费观看| 久久午夜综合久久蜜桃| 村上凉子中文字幕在线| 性少妇av在线| 18禁观看日本| 免费在线观看黄色视频的| 12—13女人毛片做爰片一| а√天堂www在线а√下载| 免费在线观看日本一区| 国产高清激情床上av| 国产成人一区二区三区免费视频网站| 亚洲一区二区三区色噜噜| 91av网站免费观看| 少妇被粗大的猛进出69影院| 国产麻豆69| 国产精品乱码一区二三区的特点 | 9色porny在线观看| 国产一卡二卡三卡精品| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看影片大全网站| 最近最新免费中文字幕在线| 真人做人爱边吃奶动态| 免费在线观看完整版高清| 多毛熟女@视频| 国产又色又爽无遮挡免费看| 亚洲精品国产一区二区精华液| 免费少妇av软件| 性少妇av在线| 999久久久国产精品视频| 大香蕉久久成人网| 国产一区二区三区视频了| 如日韩欧美国产精品一区二区三区| 欧美日韩瑟瑟在线播放| 久久精品人人爽人人爽视色| svipshipincom国产片| 国产91精品成人一区二区三区| 国产av一区在线观看免费| 美女免费视频网站| 国产精品亚洲av一区麻豆| 免费看a级黄色片| 日韩有码中文字幕| 在线观看www视频免费| 国产亚洲av嫩草精品影院| 成人特级黄色片久久久久久久| 亚洲人成电影观看| 精品一区二区三区视频在线观看免费| 午夜免费激情av| 一本综合久久免费| 国内毛片毛片毛片毛片毛片| 亚洲国产欧美网| 久久久久久国产a免费观看| 波多野结衣巨乳人妻| 成人亚洲精品一区在线观看| 好看av亚洲va欧美ⅴa在| 亚洲av成人av| 九色国产91popny在线| 久久精品aⅴ一区二区三区四区| 人妻久久中文字幕网| 亚洲成人精品中文字幕电影| 国产亚洲欧美98| 啦啦啦免费观看视频1| 成熟少妇高潮喷水视频| av在线播放免费不卡| 亚洲欧美精品综合久久99| 亚洲精品在线美女| 亚洲一卡2卡3卡4卡5卡精品中文| 悠悠久久av| 国产麻豆成人av免费视频| 精品电影一区二区在线| 精品无人区乱码1区二区| 亚洲精品在线观看二区| 97超级碰碰碰精品色视频在线观看| 免费一级毛片在线播放高清视频 | 97超级碰碰碰精品色视频在线观看| av中文乱码字幕在线| 日本vs欧美在线观看视频| 亚洲国产毛片av蜜桃av| 亚洲av电影不卡..在线观看| 久久婷婷人人爽人人干人人爱 | 精品国产美女av久久久久小说| 久久人人爽av亚洲精品天堂| 亚洲视频免费观看视频| www.熟女人妻精品国产| 亚洲成人国产一区在线观看| 亚洲欧美日韩高清在线视频| 天堂√8在线中文| 日日摸夜夜添夜夜添小说| 91成年电影在线观看| 我的亚洲天堂| 日本欧美视频一区| 国产熟女午夜一区二区三区| 天天躁夜夜躁狠狠躁躁| 午夜精品在线福利| 亚洲 欧美 日韩 在线 免费| 国产精品 国内视频| 亚洲电影在线观看av| 如日韩欧美国产精品一区二区三区| 黄色 视频免费看| 18禁黄网站禁片午夜丰满| 国产精品久久久久久亚洲av鲁大| 狂野欧美激情性xxxx| 国产精品综合久久久久久久免费 | 人妻丰满熟妇av一区二区三区| 在线天堂中文资源库| 国产亚洲精品一区二区www| 久久久国产精品麻豆| 亚洲va日本ⅴa欧美va伊人久久| 18禁美女被吸乳视频| 中文字幕av电影在线播放| 亚洲性夜色夜夜综合| 亚洲自偷自拍图片 自拍| 国产成人精品无人区| 国产一区二区三区视频了| 真人一进一出gif抽搐免费| 成人国产一区最新在线观看| 久久精品国产99精品国产亚洲性色 | 亚洲全国av大片| 午夜老司机福利片| 久久国产精品男人的天堂亚洲| 级片在线观看| 美女高潮到喷水免费观看| 女人爽到高潮嗷嗷叫在线视频| a级毛片在线看网站| 悠悠久久av| 久9热在线精品视频| 每晚都被弄得嗷嗷叫到高潮| 中文字幕人妻熟女乱码| 亚洲av成人不卡在线观看播放网| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国产一区最新在线观看| 日本vs欧美在线观看视频| 伊人久久大香线蕉亚洲五| 中出人妻视频一区二区| 亚洲 欧美 日韩 在线 免费| 18禁黄网站禁片午夜丰满| 巨乳人妻的诱惑在线观看| 99久久精品国产亚洲精品| 巨乳人妻的诱惑在线观看| 伦理电影免费视频| 亚洲中文av在线| 久久精品亚洲熟妇少妇任你| 桃红色精品国产亚洲av| 韩国精品一区二区三区| 精品欧美一区二区三区在线| 色综合亚洲欧美另类图片| 法律面前人人平等表现在哪些方面| 亚洲,欧美精品.| 欧美最黄视频在线播放免费| 男女床上黄色一级片免费看| 国内精品久久久久精免费| 精品久久久久久久毛片微露脸| 丁香六月欧美| 丝袜美腿诱惑在线| 国产亚洲av高清不卡| x7x7x7水蜜桃| 波多野结衣高清无吗| 国产av一区在线观看免费| 亚洲av电影在线进入| 亚洲专区国产一区二区| 久久久精品国产亚洲av高清涩受| 久久亚洲精品不卡| 免费一级毛片在线播放高清视频 | 99国产精品99久久久久| 久久精品国产亚洲av高清一级|