• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control

    2022-10-26 09:48:14HongweiZhang張紅偉RanCheng程然andDaweiDing丁大為
    Chinese Physics B 2022年10期

    Hongwei Zhang(張紅偉), Ran Cheng(程然), and Dawei Ding(丁大為)

    School of Electronics and Information Engineering,Anhui University,Hefei 230601,China

    Keywords: fractional-order complex networks, uncertain parameter, finite-time synchronization, quantized control

    1. Introduction

    In the last decade,as a new discipline of complexity science,complex networks(CNs)have attracted extensive attention and discussion in the academic field. The theories of CNs have been applied in biology,[1]social science,[2]computer science[3]and power system,[4,5]and some excellent achievements have been obtained. In real life,the connection among network nodes is often multi-weighted.[6,7]For example,in the information exchange between persons,in addition to the use of mobile phones to send messages, people also use e-mail,network chat software, and other party for information communication. It can be seen that the CNs with multi-weighted node connection have more practical significance and application value. However, at present, most of the studies only consider the dynamical behavior of CNs with a single weight and lack the in-depth study of multi-weighted CNs. Given the importance of this issue,some researchers have focused on it and achieved some results.[8–10]

    Synchronization,as a crucial behavioral feature in the dynamic system, is a hot research field in CNs. In general, network synchronization refers to the process in which the states of all coupled dynamical systems tend to behave together over time.[11]Over the last several years,researchers have explored a variety of synchronization in CNs, such as complete synchronization,[12]projective synchronization,[13,14]quasi synchronization,[15,16]cluster synchronization,[17–19]and exponential synchronization.[20]In engineering applications,due to the requirements of security and efficiency,it is important to know the maximum synchronization time of the network.[21]Therefore, compared with the general synchronization mode without the upper limit of synchronization time,the finite-time synchronization is more meaningful and can be used in a wider range of scenarios.[22–25]In Ref. [23], Yinget al.articulated a new method to solve the problem of CNs synchronization within a limited time with Markovian switching topologies. In Ref.[24],Heet al.established a synchronization criterion for input delay CNs in limited time via non-fragile controller. In Ref. [25], Zhang researched the synchronization problem of CNs with disturbances in finite time when the node states are uncertain.

    It is worth mentioning that in the above literature, some parameters of CNs are assumed to be known. But in practical applications, these parameters are often uncertain because of the constraints of some actual conditions. Furthermore, these parameters often have a significant effect on the whole network synchronization process.[26]Therefore, considering the synchronization of CNs with uncertain parameters has stronger practical significance.[27–29]In Ref. [27], Meiet al.investigated the identification and synchronization of finitetime structures in drive-response systems with uncertain parameters in finite time. In the case of delayed coupling networks, the Lyapunov stability theory has been used to obtain the outer synchronization criterion while the uncertain parameters were considered in Ref.[28].

    Fractional calculus is an extension of calculus in the real number field. Compared to integer-order calculation, it takes into account the historical and non-local distributed influence. In other words,fractional calculus has the characteristics of memory and inheritance.[30,31]Because of this satisfactory property,fractional calculus can describe the physical model in practical applications more accurately,such as neural network[32,33]and chaotic memristor circuit.[34,35]Therefore,it is more valuable to consider the dynamic behavior of CNs under fractional-order perspective.[36–38]In Ref.[36],Liet al.studied the synchronization phenomenon of fractional order CNs using the method of graph theory and proposed a new finite-time synchronization theorem. In Ref. [37], the author accomplished finite-time synchronization and parameter identification of uncertain fractional-order CNs using fractional calculus principles and certain analytical approaches.

    To make the network reach synchronization, many effective control methods have been proposed, such as pinning control,[39]intermittent control,[40]and event-triggered control.[41]However,there are few studies on quantitative control at present. As is well known, the signal transmission between network nodes depends on the transmission channel and channel bandwidth. Sometimes, due to the limitation of the channel itself,the signal in the transmission process results in the decline of the performance of the network.[42,43]Therefore, the quantification of the signal before transmission is an effective method to improve the transmission performance and enhance the stability of network communication.[44–46]In Ref. [44], authors considered the finite-time quantized synchronization for CNs with quantized time-varying delayed coupling. In Ref. [45], according to the use quantized output control method,the synchronization of the neural network with output coupling was realized.

    Motivated by the aforementioned considerations, the issue of finite-time synchronization of FMCNs under adaptive quantization control is mainly studied. At the same time,uncertain parameters, coupling delay, and external interference are also taken into account, which makes the results of the study more practical. The main contributions of this paper are listed as follows:

    (i) Different from Refs.[20,22,23],this paper not only considers the synchronization of CNs under the properties of fractional calculus,but also considers the influence of multiple weights on the synchronization of CNs, which is more practical.

    (ii) Based on the logarithmic quantizer, this paper designs a new adaptive quantized controller, which enables the network to achieve synchronization in finite time,and the upper bound of synchronization time can be calculated.This paper also considers the finite-time synchronization problem of adaptive quantized control under no-coupling delay and coupling delay conditions, making the theory obtained in this paper more universal.

    (iii) Uncertain parameters and external disturbances are taken into account simultaneously in the FMCNs studied in this paper. Under the conditions of coupling delay and no-coupling delay, through the logarithmic quantizer,we obtain parameter update laws and control methods,which can accurately identify the uncertain parameters of the system and eliminate the influence of external disturbances.

    The remainder content is structured as follows. In Section 2,some necessary definitions and lemmas are given,and the FMCNs model is established.In Section 3,finite-time synchronization theorems for no-coupling delay and coupling delay are given, respectively. The correctness of the theorem is shown in Section 4 via illustrations of numerical simulation.Finally,the conclusion is given in Section 5.

    Notions The rational set of real numbers is denoted by R, Rm×ndenotes the set of allm×nreal matrices, and Rmrepresents them-dimensional Euclidean space.‖·‖=(∑mp=1|x2p|)1/2denotes Euclidean norm.Imdenotes themorder identity matrix. For any matrixA,A >0 represent the matrixAis positive whileA <0 represents the matrixAis negative. Besides, theλmaxdenotes the maximun eigenvalue of the matrix.

    2. Preliminaries

    In this section, with the purpose of setting the problem preferably,some essential definitions of logarithmic quantizer and Caputo fractional calculus are reviewed, some helpful lemmas are presented,and the mathematical model of FMCNs is developed.

    2.1. Logarithmic quantizer and Caputo fractional calculus

    Definition 1[22]The logarithmic quantizerχ(τ):R→Π is built in the following way:

    2.2. Model description

    Consider FMCNs with time-delay coulped byMnodes,which would be summarized by the following mathematical formula:

    3. Main result

    In this section,fractional calculus and the Lyapunov stability theory are used to establish the CNs model,and the sufficient synchronization criteria of FMCNs with uncertain parameters in finite time are obtained.

    3.1. Finite-time synchronization of FMCNs with uncertain parameter

    Theorem 1 Suppose that Assumptions 1 and 2 are satisfied. If there exist constantε1>0 and gainm*>0 such that

    thenV(t)≡0 fort >t1, and the drive and response network can be synchronized in finite timet1, which can be estimated as follows:

    This completes the proof.

    3.2. Finite-time synchronization of FMCNs with coupling delay and uncertain parameter

    Consider the following FMCNs composing ofMidentical nodes with uncertain parameter and coupling delay described by

    whereγ ∈(0,1),xp(t) = (xp1(t),xp2(t),...,xpm(t))T∈Rm,(p= 1,2,...,M) represents the state vector ofp-th node,f(xp(t)) : Rm →Rmare continuous functions andz(xp(t)) :Rm →Rmare continuous function matrix.Ξ ∈Rmrepresents the vector of system uncertain parameters,and ?f(xp(t)):Rm →Rmare continuous vector functions which consists of two parts.hkrepresents the coupling weight value of thekth weight network, andL(k)=(l(k)pq) is the weight matrix ofk-th weight network. If a connection betweenq-th node top-th node (p/=q) exist, thenlpq ≥0, otherwiselpq=0, and the diagonal elementslpp=-∑Mq=1,q/=p lpq,(p=1,2,...,M),G=diag(g1,g2,...,gm)∈Rmis the internal coupling strength matrix andgp ≥0,andκrepresents the coupling delays.

    The system (16) can be used as a drive system, and the system(17)can be used as a response system with controller and external disturbance,which is formulated in the following way:

    where ?Ξ(t) denote the estimations of uncertain parameterΞ,ε2anddpare positive constants,andσ ∈(0,γ),then the finite timet2is estimated by

    thenV(t)≡0 fort >t2, and drive and response network can be synchronized in finite timet2, which can be estimated as follows

    4. Numerical simulations

    This section contains two simulation examples that demonstrate the correctness of Theorem 1 and Theorem 2 respectively.

    Example 1 Consider the driver network composed of 4 nodes,each of which is a fractional-order Lorenze system

    whereγ=0.995,G=diag(1,1,1),h1=0.1,h2=0.2, andh3=0.3,then the chaotic attractor of Lorenze system is shown in Fig. 1. System parameterΞ= (a,b,c)T= (10,8/3,28),xp(0)=(6.2+0.2p,6.4+0.2p,6.6+0.2p)T, (p=1,2,3,4),where three weighted matrices are listed as follows:

    Figure 2 depicts the topological structures of network,then the corresponding response network is constructed by the following formula:

    where ?Ξ(t)is the estimation for vectorΞ,and external disturbanceρ(t)=(sin(t),cos(t),sin(t)cos(t)).

    Fig.1. Phase plot of the Lorenze system(γ =0.995).

    Fig.2. The topological structures of weighted matrices L(k), k=1,2,3. (a)is matrices L(1),(b)is matrices L(1),and(c)is matrices L(3).

    Figure 3 depicts the synchronization errorsep(t)converge to zero, which indicates that synchronization has been realized. Figure 4 shows the synchronization quantized errorsχ(ep(t))converge to zero. Figure 5 displays the identification curve of the uncertain system parameter vectorΞ(t). We can see that the uncertain parameters of the system are successfully identified in finite time. Figure 6 shows the trajectory of adaptive feedback gainmp(t), which converges to zero eventually. Figure 11(a) describes the surface graph of maximum synchronization timet1of Theorem 1 with the change of parameterσand parameterγ.

    Fig.3. The ep(t)of the error system.

    Fig.4. The χ(ep(t))of the error system.

    Fig.5. The feedback gain mp(t), p=1,2,3,4 of the adaptive controller.

    Fig.6. Identification of the system parameter Ξ.

    Example 2 The uncertain FMCNs with coupling delayκ=0.1 are considered, and the drive network can be shown as

    By Theorem 2, whent >t2, the response network (17)can synchronize with drive network (16), and the timet2can be estimated as follows:

    When synchronization is implemented, both synchronization errorep(t) and synchronization quantization errorχ(ep(t))converge to zero, as shown in Figs.7 and 8,respectively. Figure 9 shows the identification curve of the uncertain system parameter vectorΞ(t), and it can be seen that in the case of coupling delay,the uncertain parameters of the system are still identified correctly. Figure 10 shows the trajectory of adaptive feedback gainmp(t), which also converges to zero eventually. Figure 11(b)describes the surface graph of maximum synchronization timet2of Theorem 2 with the change of parameterσand parameterγ.

    Fig.7. The ep(t)of the error system with coupling delay κ =0.1.

    Fig.8. The χ(ep(t))of the error system with coupling delay κ =0.1.

    Fig.9. The feedback gain mp(t), p=1,2,3,4 of the adaptive controller with coupling delay κ =0.1.

    Fig. 10. Identification of the system parameter Ξ with coupling delay κ =0.1.

    Fig.11. (a)Setting time t1 of Theorem 1,(b)setting time t2 of Theorem 2.

    5. Conclusion

    This paper is engaged in the finite-time synchronization problem of FMCNs with uncertain parameters and external disturbances.Firstly,considering the two different cases of nocoupling delay and coupling delay,the corresponding adaptive quantized controller is designed to solve this problem. Then fractional calculus and Lyapunov stability theory are used to obtain theoretical results related to finite-time synchronization and parameter identification.It is worth noting that the time required for parameter identification and network synchronization can be estimated. Finally, numerical simulations of several chaotic systems are given, demonstrating the correctness and effectiveness of the theorem we obtained.Our future work will focus on designing appropriate quantization controllers to solve exponential synchronization problems of multi-layer networks.

    18禁在线无遮挡免费观看视频 | 高清午夜精品一区二区三区 | a级毛片a级免费在线| 丝袜美腿在线中文| 欧美3d第一页| 国产精品一区二区免费欧美| 黄色日韩在线| 丰满的人妻完整版| 久久午夜福利片| 欧美中文日本在线观看视频| 在线播放无遮挡| 在线a可以看的网站| 又粗又爽又猛毛片免费看| 美女黄网站色视频| 禁无遮挡网站| 亚洲第一电影网av| 日韩精品中文字幕看吧| 黄片wwwwww| 亚洲最大成人av| 日本欧美国产在线视频| 直男gayav资源| 搞女人的毛片| 黄片wwwwww| 免费看美女性在线毛片视频| 啦啦啦啦在线视频资源| 国产精品不卡视频一区二区| 国产男靠女视频免费网站| 久久精品影院6| 日韩欧美精品免费久久| 老女人水多毛片| 婷婷亚洲欧美| 久久精品久久久久久噜噜老黄 | 国产精品人妻久久久影院| 夜夜爽天天搞| 国产av一区在线观看免费| 色5月婷婷丁香| 日韩av不卡免费在线播放| 日本精品一区二区三区蜜桃| 禁无遮挡网站| 欧美最黄视频在线播放免费| 人妻夜夜爽99麻豆av| 久久久久久伊人网av| 色播亚洲综合网| 欧美丝袜亚洲另类| 国产伦在线观看视频一区| 日韩av不卡免费在线播放| 免费av毛片视频| 男女边吃奶边做爰视频| 夜夜爽天天搞| 久久精品国产亚洲网站| 99久久成人亚洲精品观看| 91狼人影院| 成人特级黄色片久久久久久久| 午夜福利18| 国产一区二区在线av高清观看| 嫩草影院入口| 国产精品一区www在线观看| 一进一出抽搐动态| av黄色大香蕉| 亚洲精华国产精华液的使用体验 | 麻豆久久精品国产亚洲av| 欧美日韩精品成人综合77777| 色综合亚洲欧美另类图片| 精品人妻偷拍中文字幕| 男女啪啪激烈高潮av片| 变态另类成人亚洲欧美熟女| 久久欧美精品欧美久久欧美| 日韩欧美一区二区三区在线观看| 欧美性感艳星| 日韩欧美精品免费久久| 最新在线观看一区二区三区| 久久久久精品国产欧美久久久| 中文字幕av在线有码专区| av天堂中文字幕网| 97碰自拍视频| 日韩精品有码人妻一区| 男女做爰动态图高潮gif福利片| 日本精品一区二区三区蜜桃| 深爱激情五月婷婷| 岛国在线免费视频观看| 俺也久久电影网| 一进一出抽搐动态| 级片在线观看| 99热精品在线国产| 亚洲精华国产精华液的使用体验 | 日韩欧美在线乱码| 中文资源天堂在线| 国产中年淑女户外野战色| 极品教师在线视频| 看免费成人av毛片| 国产精品一及| 午夜爱爱视频在线播放| 亚洲,欧美,日韩| 亚洲真实伦在线观看| 最近视频中文字幕2019在线8| 亚洲最大成人手机在线| 男人狂女人下面高潮的视频| 99热只有精品国产| 久久人人精品亚洲av| 久久99热这里只有精品18| 国产蜜桃级精品一区二区三区| 日本精品一区二区三区蜜桃| or卡值多少钱| 中国美女看黄片| 桃色一区二区三区在线观看| 在线播放国产精品三级| av专区在线播放| 中国美白少妇内射xxxbb| 亚洲av中文字字幕乱码综合| 日韩欧美国产在线观看| 女人被狂操c到高潮| 亚洲国产精品成人久久小说 | 女人十人毛片免费观看3o分钟| 欧美成人一区二区免费高清观看| 免费看av在线观看网站| 午夜久久久久精精品| 青春草视频在线免费观看| 欧美日本视频| 两个人的视频大全免费| 草草在线视频免费看| 亚洲国产欧洲综合997久久,| 少妇猛男粗大的猛烈进出视频 | 国产精品一区二区三区四区久久| 精品免费久久久久久久清纯| 久久精品夜色国产| 亚洲天堂国产精品一区在线| 两性午夜刺激爽爽歪歪视频在线观看| 91久久精品电影网| 欧美日韩在线观看h| 亚洲综合色惰| 99九九线精品视频在线观看视频| 一级av片app| 黄色配什么色好看| 精品乱码久久久久久99久播| 麻豆精品久久久久久蜜桃| 特级一级黄色大片| 久久久久久伊人网av| 免费观看的影片在线观看| 日韩大尺度精品在线看网址| 午夜福利18| 99国产精品一区二区蜜桃av| 丝袜喷水一区| 日产精品乱码卡一卡2卡三| 免费观看人在逋| 欧美另类亚洲清纯唯美| 国产高潮美女av| 欧美性猛交黑人性爽| 麻豆精品久久久久久蜜桃| 免费看光身美女| 草草在线视频免费看| 久久久久九九精品影院| 亚洲精华国产精华液的使用体验 | 天美传媒精品一区二区| 欧美高清性xxxxhd video| 在线观看免费视频日本深夜| 五月玫瑰六月丁香| 久久人人爽人人片av| 人妻制服诱惑在线中文字幕| 亚洲av.av天堂| 好男人在线观看高清免费视频| 亚洲av中文字字幕乱码综合| 国产精品av视频在线免费观看| 久久久久九九精品影院| 久久久久久久亚洲中文字幕| 国产精品1区2区在线观看.| 男女啪啪激烈高潮av片| 在线播放国产精品三级| 国产精品野战在线观看| 亚洲国产精品合色在线| 午夜福利高清视频| 亚洲欧美精品自产自拍| 日日啪夜夜撸| 亚洲av.av天堂| 丝袜美腿在线中文| 麻豆乱淫一区二区| 亚洲中文日韩欧美视频| 午夜福利高清视频| 亚洲国产欧洲综合997久久,| 日日干狠狠操夜夜爽| 久久久国产成人免费| 在线免费观看不下载黄p国产| 级片在线观看| 精品不卡国产一区二区三区| 亚洲欧美日韩无卡精品| 色吧在线观看| 18禁在线播放成人免费| 一区二区三区免费毛片| 欧美xxxx性猛交bbbb| 午夜精品国产一区二区电影 | 夜夜看夜夜爽夜夜摸| 亚洲精品亚洲一区二区| 久久精品国产亚洲av香蕉五月| 激情 狠狠 欧美| 在线看三级毛片| 久久精品国产亚洲av涩爱 | 男女视频在线观看网站免费| 日韩一区二区视频免费看| 人人妻人人澡欧美一区二区| 美女cb高潮喷水在线观看| 国产伦精品一区二区三区四那| 亚洲国产精品sss在线观看| 看黄色毛片网站| 18禁黄网站禁片免费观看直播| 中国美女看黄片| 看片在线看免费视频| 国产一区二区在线观看日韩| 可以在线观看的亚洲视频| 搞女人的毛片| 国产一区二区在线av高清观看| 男人狂女人下面高潮的视频| 精品熟女少妇av免费看| 欧美zozozo另类| 男女那种视频在线观看| 精品人妻偷拍中文字幕| 亚洲av免费在线观看| 99久久无色码亚洲精品果冻| 别揉我奶头 嗯啊视频| 久久久久久久久久成人| 一级a爱片免费观看的视频| 久久久久久久午夜电影| 日本撒尿小便嘘嘘汇集6| 青春草视频在线免费观看| 99视频精品全部免费 在线| av国产免费在线观看| 免费高清视频大片| 毛片女人毛片| 欧美潮喷喷水| 男女啪啪激烈高潮av片| 亚洲最大成人av| 亚洲欧美中文字幕日韩二区| 久久久久久久亚洲中文字幕| 亚洲第一区二区三区不卡| 国产蜜桃级精品一区二区三区| 亚洲国产精品成人综合色| 免费看av在线观看网站| 日韩欧美在线乱码| 美女大奶头视频| 免费大片18禁| 欧美极品一区二区三区四区| av天堂在线播放| 最后的刺客免费高清国语| 中国美白少妇内射xxxbb| 99久久中文字幕三级久久日本| 桃色一区二区三区在线观看| 午夜福利高清视频| 禁无遮挡网站| 天天一区二区日本电影三级| 国产精品爽爽va在线观看网站| 高清毛片免费看| 99国产极品粉嫩在线观看| 午夜老司机福利剧场| 黄色欧美视频在线观看| 亚洲激情五月婷婷啪啪| 久久久久久久亚洲中文字幕| 伦理电影大哥的女人| 亚洲人成网站在线播放欧美日韩| 五月伊人婷婷丁香| 最近中文字幕高清免费大全6| 国产91av在线免费观看| 三级经典国产精品| 亚洲欧美成人综合另类久久久 | 日日摸夜夜添夜夜添av毛片| 波多野结衣高清无吗| 亚洲最大成人av| 亚洲成a人片在线一区二区| 亚洲精华国产精华液的使用体验 | 人人妻人人澡欧美一区二区| 中文字幕熟女人妻在线| 桃色一区二区三区在线观看| 国产伦一二天堂av在线观看| 久久人人精品亚洲av| 成人午夜高清在线视频| 内地一区二区视频在线| av天堂中文字幕网| 亚洲国产欧美人成| 亚洲在线观看片| 久久精品久久久久久噜噜老黄 | 给我免费播放毛片高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 黄色视频,在线免费观看| av黄色大香蕉| 久久亚洲精品不卡| 韩国av在线不卡| 亚洲欧美精品自产自拍| 俺也久久电影网| 久久久久国产网址| 亚洲av一区综合| 成人欧美大片| 99热网站在线观看| 国产v大片淫在线免费观看| 国产高清视频在线播放一区| 日韩亚洲欧美综合| 日本黄色视频三级网站网址| 中国美女看黄片| 国产成人freesex在线 | 国产视频一区二区在线看| 综合色丁香网| 国产伦在线观看视频一区| 亚洲精品粉嫩美女一区| 欧美一级a爱片免费观看看| 国产精品av视频在线免费观看| 夜夜夜夜夜久久久久| 国产高潮美女av| 亚洲va在线va天堂va国产| 又黄又爽又免费观看的视频| 观看美女的网站| 成人精品一区二区免费| 国产一区二区亚洲精品在线观看| 青春草视频在线免费观看| 日日撸夜夜添| 亚洲国产精品国产精品| 久久精品国产亚洲av香蕉五月| 久久精品国产99精品国产亚洲性色| 欧美一区二区精品小视频在线| 日韩高清综合在线| 在线a可以看的网站| av在线播放精品| 亚洲欧美成人精品一区二区| 亚洲精品国产成人久久av| 午夜精品一区二区三区免费看| 国产精品久久久久久精品电影| 欧美成人免费av一区二区三区| 久久久午夜欧美精品| av女优亚洲男人天堂| 天天一区二区日本电影三级| 99久久精品热视频| 两个人视频免费观看高清| 99国产精品一区二区蜜桃av| 卡戴珊不雅视频在线播放| 天堂影院成人在线观看| 神马国产精品三级电影在线观看| 91久久精品国产一区二区三区| 男人的好看免费观看在线视频| 亚洲av电影不卡..在线观看| 亚洲成人av在线免费| 免费不卡的大黄色大毛片视频在线观看 | 国产精品伦人一区二区| 色综合色国产| av免费在线看不卡| 久久久色成人| 久久久久久久久中文| 欧美+日韩+精品| 丰满人妻一区二区三区视频av| 最近在线观看免费完整版| 久久久久久久久久成人| 久久中文看片网| 日本黄色片子视频| 日本黄色视频三级网站网址| 超碰av人人做人人爽久久| 乱码一卡2卡4卡精品| 国产精品亚洲一级av第二区| 在线观看免费视频日本深夜| 久久精品国产亚洲av涩爱 | 国产伦精品一区二区三区视频9| 国内精品宾馆在线| 久久久久国产精品人妻aⅴ院| 99在线人妻在线中文字幕| 欧美极品一区二区三区四区| av在线蜜桃| 嫩草影院入口| 日韩大尺度精品在线看网址| 在线观看一区二区三区| 99久国产av精品国产电影| 欧美激情国产日韩精品一区| 久久精品影院6| 亚洲天堂国产精品一区在线| 黄片wwwwww| 美女 人体艺术 gogo| 高清午夜精品一区二区三区 | 国产亚洲av嫩草精品影院| 国产精品乱码一区二三区的特点| 露出奶头的视频| 乱码一卡2卡4卡精品| 亚洲av中文av极速乱| 18禁裸乳无遮挡免费网站照片| 国产精品国产高清国产av| 狂野欧美激情性xxxx在线观看| 久久精品国产鲁丝片午夜精品| 欧美日韩在线观看h| 国产人妻一区二区三区在| 免费无遮挡裸体视频| 中国国产av一级| 午夜久久久久精精品| 18禁黄网站禁片免费观看直播| 午夜激情欧美在线| av天堂中文字幕网| 综合色丁香网| 人妻丰满熟妇av一区二区三区| 久久这里只有精品中国| 国产视频内射| 精品一区二区三区视频在线观看免费| 日韩欧美免费精品| 欧美最黄视频在线播放免费| 国产伦精品一区二区三区视频9| 麻豆乱淫一区二区| 熟女电影av网| 亚洲av一区综合| 国产精品电影一区二区三区| 国产精品av视频在线免费观看| 国产中年淑女户外野战色| av.在线天堂| av视频在线观看入口| 小蜜桃在线观看免费完整版高清| 亚洲av免费在线观看| 亚洲精品乱码久久久v下载方式| 自拍偷自拍亚洲精品老妇| 免费搜索国产男女视频| 久久亚洲国产成人精品v| 五月玫瑰六月丁香| 国产精品永久免费网站| 亚洲自拍偷在线| 日韩 亚洲 欧美在线| 欧美区成人在线视频| 少妇裸体淫交视频免费看高清| 啦啦啦观看免费观看视频高清| 成人国产麻豆网| 97超级碰碰碰精品色视频在线观看| 日本-黄色视频高清免费观看| 日日干狠狠操夜夜爽| 联通29元200g的流量卡| 亚洲美女视频黄频| 久久精品夜色国产| 午夜福利在线观看免费完整高清在 | 亚洲乱码一区二区免费版| 成人性生交大片免费视频hd| 日本成人三级电影网站| 嫩草影院新地址| 国产av麻豆久久久久久久| 色吧在线观看| 精品日产1卡2卡| 一进一出抽搐gif免费好疼| 卡戴珊不雅视频在线播放| 美女被艹到高潮喷水动态| avwww免费| 最近的中文字幕免费完整| 亚洲av五月六月丁香网| 亚洲国产欧美人成| 国产 一区 欧美 日韩| 国产精品无大码| 亚洲国产精品成人久久小说 | 亚洲性久久影院| 91在线精品国自产拍蜜月| 一级黄片播放器| 国产亚洲精品久久久久久毛片| 成人特级av手机在线观看| 国产成人a区在线观看| www.色视频.com| 真实男女啪啪啪动态图| 一级毛片电影观看 | 中文字幕精品亚洲无线码一区| 日本与韩国留学比较| 久久草成人影院| 男女做爰动态图高潮gif福利片| 久久人妻av系列| 在线免费观看的www视频| 联通29元200g的流量卡| 偷拍熟女少妇极品色| 国产精品一区二区三区四区免费观看 | 小蜜桃在线观看免费完整版高清| 舔av片在线| 欧美激情国产日韩精品一区| videossex国产| 麻豆久久精品国产亚洲av| 国产中年淑女户外野战色| 少妇人妻一区二区三区视频| 日本三级黄在线观看| 日韩欧美三级三区| 日韩欧美在线乱码| 免费搜索国产男女视频| 亚洲一区二区三区色噜噜| 精品无人区乱码1区二区| 美女免费视频网站| 尤物成人国产欧美一区二区三区| 有码 亚洲区| 久久久久久久久久成人| 在线观看午夜福利视频| 久久热精品热| 人妻久久中文字幕网| 国产精品,欧美在线| 日韩一区二区视频免费看| 在线观看美女被高潮喷水网站| 看十八女毛片水多多多| 麻豆国产av国片精品| 日本五十路高清| 校园春色视频在线观看| 国产男人的电影天堂91| 成人永久免费在线观看视频| 日韩欧美精品免费久久| 欧美+亚洲+日韩+国产| 老司机午夜福利在线观看视频| 久久精品国产亚洲av香蕉五月| 啦啦啦观看免费观看视频高清| av在线天堂中文字幕| 一个人看的www免费观看视频| 亚洲人成网站在线播| av免费在线看不卡| 日韩欧美在线乱码| 天天躁日日操中文字幕| 成人毛片a级毛片在线播放| 99热6这里只有精品| 国产不卡一卡二| 淫妇啪啪啪对白视频| 听说在线观看完整版免费高清| 三级经典国产精品| 国产精品久久久久久av不卡| 日本熟妇午夜| 五月伊人婷婷丁香| 亚洲最大成人av| 国产精品野战在线观看| 色综合亚洲欧美另类图片| 成人二区视频| 日本五十路高清| 麻豆乱淫一区二区| 日本黄大片高清| 精品欧美国产一区二区三| av.在线天堂| 免费观看的影片在线观看| av.在线天堂| 高清毛片免费观看视频网站| 老熟妇乱子伦视频在线观看| 国产精品精品国产色婷婷| 国产色爽女视频免费观看| 一进一出好大好爽视频| 国产乱人偷精品视频| 色综合亚洲欧美另类图片| 别揉我奶头 嗯啊视频| 亚洲美女视频黄频| 国产精品永久免费网站| 九九久久精品国产亚洲av麻豆| 国内久久婷婷六月综合欲色啪| 99久久精品热视频| 精品人妻一区二区三区麻豆 | 97在线视频观看| 真人做人爱边吃奶动态| 色综合站精品国产| 波多野结衣巨乳人妻| 欧美一区二区国产精品久久精品| 午夜视频国产福利| 丰满人妻一区二区三区视频av| 色视频www国产| 日本免费一区二区三区高清不卡| 国产麻豆成人av免费视频| 插逼视频在线观看| 国产日本99.免费观看| 久久99热这里只有精品18| 午夜久久久久精精品| 亚洲av美国av| 亚洲中文日韩欧美视频| 久久天躁狠狠躁夜夜2o2o| 精品熟女少妇av免费看| 亚洲欧美中文字幕日韩二区| 久久欧美精品欧美久久欧美| 精品久久久久久久久久久久久| 91久久精品国产一区二区三区| 黄色日韩在线| 韩国av在线不卡| 久久精品国产清高在天天线| 色5月婷婷丁香| 禁无遮挡网站| 97人妻精品一区二区三区麻豆| 午夜精品一区二区三区免费看| 男女之事视频高清在线观看| 国产免费一级a男人的天堂| 精品日产1卡2卡| 麻豆国产97在线/欧美| 国产精品一区二区三区四区免费观看 | 国产探花极品一区二区| 国产欧美日韩一区二区精品| 少妇被粗大猛烈的视频| 99久久精品一区二区三区| 丝袜美腿在线中文| 日韩av不卡免费在线播放| 亚洲国产精品国产精品| 99九九线精品视频在线观看视频| 免费观看在线日韩| 亚洲精品456在线播放app| 免费高清视频大片| 老熟妇乱子伦视频在线观看| 三级毛片av免费| 久久久久久久久大av| 中国美白少妇内射xxxbb| 禁无遮挡网站| eeuss影院久久| a级一级毛片免费在线观看| 久久午夜福利片| 日本与韩国留学比较| 精品一区二区三区av网在线观看| av在线播放精品| 国产乱人视频| 乱码一卡2卡4卡精品| 校园人妻丝袜中文字幕| 国产精品综合久久久久久久免费| 色尼玛亚洲综合影院| 美女xxoo啪啪120秒动态图| av.在线天堂| 色av中文字幕| a级毛片a级免费在线| 日本黄色视频三级网站网址| 女的被弄到高潮叫床怎么办| 久久久久久久午夜电影| 国产熟女欧美一区二区| 如何舔出高潮| 欧美性猛交黑人性爽| 亚洲中文字幕日韩| 精品午夜福利视频在线观看一区| 欧美一区二区国产精品久久精品| 九九在线视频观看精品| 蜜桃亚洲精品一区二区三区| 天堂动漫精品| 人人妻人人澡人人爽人人夜夜 | 寂寞人妻少妇视频99o| 成人亚洲精品av一区二区| 91久久精品国产一区二区三区| 亚洲电影在线观看av| 成熟少妇高潮喷水视频|