• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor

    2022-10-26 09:54:00LiPingZhang張麗萍YangLiu劉洋ZhouChaoWei魏周超HaiBoJiang姜海波WeiPengLyu呂偉鵬andQinShengBi畢勤勝
    Chinese Physics B 2022年10期
    關鍵詞:張麗萍劉洋海波

    Li-Ping Zhang(張麗萍) Yang Liu(劉洋) Zhou-Chao Wei(魏周超) Hai-Bo Jiang(姜海波)Wei-Peng Lyu(呂偉鵬) and Qin-Sheng Bi(畢勤勝)

    1Faculty of Civil Engineering and Mechanics,Jiangsu University,Zhenjiang 212013,China

    2School of Mathematics and Statistics,Yancheng Teachers University,Yancheng 224002,China

    3Engineering Department,Mathematics and Physical Sciences,University of Exeter,Exeter EX4 4QF,UK

    4School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China

    Keywords: two-dimensional maps,memristive maps,hidden attractors,bifurcation analysis,extremely hidden multi-stability

    1. Introduction

    Since memristor was regarded as a fourth circuit component by Chua in 1971[1]and physically implemented by HP laboratory in 2008,[2]it has been intensively studied in the literature and extensively applied in many fields.[3]Very recently, discrete memristor has begun to receive many researchers’ attention.[4–20]For instance, Penget al.presented a model of discrete memristor via the difference theory and derived a memristive H′enon map in Ref.[4]. Then they gave a higher-dimensional map containing the discrete memristor and studied the dynamical behaviors of the map in Ref.[5]. Meanwhile, Baoet al.constructed a two-dimensional (2D) memristive map based on the method of sampling and showed the chaotic and hyper-chaotic behaviors of the map in Ref. [6].Liet al.provided several examples of 2D memristive maps and investigated complex dynamics by considering their coupling strengths and initial values in Ref.[7].In Ref.[8],Baoet al.gave four representations of the discrete memristor model and studied the complex behaviors of their corresponding 2D memristive maps. Baoet al.proposed a memristive Logistic map and investigated the dynamical behaviors of the proposed map in Ref. [9]. In Ref. [10], Baoet al.presented a class of three-dimensional (3D) memristive maps and studied the application of these maps. Liet al.investigated the effect of magnetic induction on the constructed memristive Rulkov neuron map in Ref. [11]. In Ref. [12], Deng and Li established a class of 2D non-autonomous memristive maps that can display hyper-chaotic, periodic, and bursting oscillations. Deng and Li yielded a memristive sine map and studied non-parametric bifurcation and hyper-chaotic behaviors of the map in Ref. [13]. In Ref. [14], Konget al.put forward a 2D memristive map by introducing a discrete sinusoidal memristor. Liu gave and investigated a memristive map by couping the discrete memristor with nonlinear maps of sine and cosine functions in Ref. [15]. In Ref. [16], Liet al.presented a memristor-type chaotic mapping whose parameters could be considered as partial and total amplitude controllers. Fuet al.constructed a class of discrete quadratic memristors and implemented the memristor by using Simulink in Ref. [17]. In Ref. [18], Maet al.put forward a memristive hyper-chaotic map by introducing the proposed discrete memristor into a class of 2D generalized square maps. Ramakrishnan proposed a new memristive neuron map and investigated the complex dynamics of the networked maps by hybrid electrical and chemical synapses in Ref.[19]. In Ref.[20],Lai and Lai presented a 2D memristive hyper-chaotic map with a line of fixed points by coupling a discrete memristor into an enhanced Logistic map. Laiet al.proposed a memristive neuron map by introducing a discrete memristor into an existing neuron map in Ref.[21]. In Ref.[22],Ronget al.constructed a 3D memristive map by coupling a discrete tangent memristor to the H′enon map. Penget al.gave three 2D memristive sine maps by introducing three discrete memristor models into the sine map in Ref.[23]. In Ref.[24],Baoet al.presented a 2D memristive map by implementing sine transformation for the memristor. The memristive maps proposed in Refs.[4–24]usually have several fixed points or a line of fixed points.

    If the map has no fixed points,the map belongs to the category of maps with hidden attractors according to the classification of self-excited and hidden attractors given by Leonov and Kuznetsov.[25–27]The basin of attraction of the attractor does not contain any small neighborhoods of fixed points of the map, so it is called a hidden attractor. Otherwise, if the basin of attraction of the attractor intersects with small neighborhoods of any fixed points of the map, it is called a selfexcited attractor.[28]Hidden attractors are difficult to be located and may lead to unexpected responses, so the hidden attractors of continuous and discrete-time systems have been extensively investigated in the literature.[29–33]In Ref. [34],Ramadosset al.obtained several memristive maps without any fixed points by introducing a tiny perturbation and showed hidden attractors in these maps. If a dynamical system generates more than one attractor for a set of fixed parameters using different initial conditions, the system has multi-stability. If the number of the coexisting attractors of the dynamical system for a set of fixed parameters and different initial conditions is infinite, this phenomenon is called extreme multi-stability.Multi-stability and extreme multi-stability of dynamical systems have been found in many disciplines,including physics,chemistry, biology, and economics.[35,36]Very recently, extreme multi-stability of nonlinear maps has received much attention.[37–40]In Ref.[37],Zhanget al.presented a class of 2D chaotic maps with extreme multi-stability by introducing a sine term. Baoet al.proposed a 2D hyper-chaotic map with extreme multi-stability in Ref.[38]. In Ref.[39], Konget al.proposed a 2D hyper-chaotic map with conditional symmetry and attractor growth by introducing two sine terms. Liet al.constructed a 2D map with a sine function to show the selfreproducing dynamics of the map,i.e., reproducing infinitely many coexisting attractors of the same structure but in a different position in Ref.[40].

    If a nonlinear map exhibits coexisting hidden attractors(or infinitely many coexisting hidden attractors), we say the map has hidden multi-stability (or extremely hidden multistability). When the map generates infinitely many coexisting hidden attractors having the same shape but different amplitudes, frequencies, or positions, the map has homogenous extreme hidden multi-stability. While the map has infinitely many coexisting hidden attractors of different types, the map has heterogeneous extreme multi-stability. In Ref. [41], Zhanget al.formulated a class of 2D rational maps showing hidden attractors and hidden multi-stability.Then Zhanget al.studied hidden attractors and hidden multistability of a class of 2D rational memristive maps without fixed points in Ref. [42]. However, to the best of our knowledge, the work on memristive maps with extremely hidden multi-stability is limited, which motivates the present study.The main novelties and contributions of this paper are as follows: (i)A new class of 2D maps with a cosine memristor is presented to show extremely hidden multi-stability. (ii) The nonlinear dynamics of the memristive map is numerically analyzed by using several numerical tools including phase portraits, basins of attraction, bifurcation diagram, and the Lyapunov exponent spectrums(Les). (iii)The two-parameter bifurcation analysis of the memristive map in the regions concerned has been carried out to reveal the bifurcation mechanism of the nonlinear dynamics. (iv)The memristive map can display different types of infinitely many coexisting attractors.

    The rest of this paper is organized as follows. In Section 2, we formulate the mathematical model of this class of 2D maps with a cosine memristor and study the existence of their fixed points. In Section 3,we investigate the rich dynamics of the memristive map by using numerical analysis tools.Finally,we draw conclusions in Section 4.

    2. System model

    The equation of the cosine memristor[7]is given by

    wherevk,ik, andqk(k=0,1,2,...) denote the output, input,and internal state of the cosine memristor at stepk, respectively.M(qk)=c(cos(dqk))represents the memristance of the cosine memristor.

    In this paper,the discrete cosine memristor is coupled to a one-dimensional constant map,and a class of 2D memristive maps is formulated as

    wherexkandyk(k=0,1,2,...)are the states at stepk,the coefficientsa,b,c,d,andeare the parameters. In this paper,we assume that the parameters are all not equal to zero,i.e., the map contains the constant term and the cosine memristor.

    Remark 1 In Ref.[7],if the parametersc,d,andeof the cosine memristor are chosen as(c,d,e)=(1,1,1),“8”-shaped tight hysteresis loop and the characteristic of the fingerprint and memory can be shown in the cosine memristor.

    Remark 2 In Ref. [34], the constantawas considered as a tiny perturbation,i.e.,a=0.001 and only the dynamics of the memristive map with fixed parameters was shown. In this paper,the parameterawill be taken as a varying parameter,and the extremely hidden multi-stability of the memristive map with a cosine memristor will be demonstrated.

    One can get the fixed points (x*,y*) of the memristive map(2)by solving the following equations:

    Sincea/=0, there is no solution in Eq.(4), so the memristive map (2) has no fixed points. Then the mathematical model of the memristive map with no fixed points is formulated,which is scarcely seen in the memristive map. Since the memristive map(2)has no fixed points,the basin of the attractors in the memristive maps does not contain any fixed points.According to Definition 1 given in Ref.[28],the attractors of the memristive map(2)are all hidden.

    By the translational symmetry,i.e.,S(x,y+2mπ) =S(x,y), whereS(x,y) = (a+b(c(cos(dy)))x-x,ex),m=1,2,..., the memristive map(2)may produce infinitely many coexisting hidden attractors having the same shape but in different positions.So the map may display homogenous extreme hidden multi-stability, which is rarely studied in the memristive maps before.

    3. Complex dynamics of the 2D map with a cosine memristor

    In this section, the complex dynamics of the memristive map (2) will be explored by utilizing numerical analysis tools. The Lyapunov exponent spectrums of the attractors of the memristive map (2) will be calculated by using the Wolf methods.[44,45]The iteration length of the memristive map(2)is chosen as 105.

    3.1. Dynamical region

    Figure 1 presents a two-parameter dynamical region of the memristive map(2), which can show the effect of the parametersaandbon the dynamics of the map.The period of the periodic solutions and Lyapunov exponent spectrums(Les)of other solutions were used to determine the dynamical regions.Denote the largest Lyapunov exponent and the smallest Lyapunov exponent by Le1 and Le2,respectively.The memristive map(2)is in hyper-chaotic state if Le1>Le2>0. The map is in chaotic state if Le1>0 and Le2<0. The map is in quasiperiodic state if Le1=0 and Le2<0. The map is in periodic state if Le1<0. We run the compute program in parallel for the parametera. In each parallel,we fix the parametera,and vary the parameterbin the interval [-3,3]. The initial states were selected randomly in the region{(x,y)|x,y ∈[-15,15]}if there is no steady attractor.We use the last state of the steady attractor for the initial state for the next step of the parameterb.In Fig. 1, the regions of different dynamical behaviors are marked with different colors, where the regions of period-2 to period-16 solutions are shown in different colors labeled by the numbers ‘2’ to ‘16’, and the region of periodic solutions whose period is more than 16 is indicated in the gray color labeled by ‘M’. And the regions of quasi-periodic (T),chaotic(C),hyper-chaotic(H),and divergent(D)solutions are denoted by the light blue,black,dark black,and white colors,respectively. From Fig.1,we can observe complex dynamics,including hidden periodic,quasi-periodic,chaotic,and hyperchaotic solutions. Moreover,the cascades of period-doubling bifurcations of the memristive map(2)are seen clearly. Note that the dynamical regions are symmetric about the horizontal linea=0 and the vertical lineb=0.

    Fig.1. The two-parameter dynamical regions of the memristive map(2)calculated for a ∈[-3,3], b ∈[-3,3], and(c,d,e)=(1,1,1). Different colors labeled by the numbers‘2’to‘16’represent period-2 to period-16 solutions.The gray color labeled by‘M’indicates the periodic solutions whose period is more than 16. The light blue, black, dark black, and white colors denote the quasi-periodic(T),chaotic(C),hyper-chaotic(H),and divergent(D)solutions,respectively.

    Fig.2. The two-parameter bifurcation curves of the memristive map(2)calculated for a ∈[-0.7,0.7], b ∈[-0.95,1.75], and (c,d,e)=(1,1,1). The two-parameter bifurcation curves are denoted by different color lines,where PDi represents the period-doubling bifurcation of period-i solution, LPi indicates the saddle-node bifurcation of period-i solution, i=2,4,8. LPPD denotes the codimension-2 bifurcation point, which is the intersection of saddle-node bifurcation and period-doubling bifurcation.

    To show the bifurcation mechanism of dynamical transition of the memristive map(2),the two-parameter bifurcation analysis are carried out fora ∈[-0.7,0.7],b ∈[-0.95,1.75]and(c,d,e)=(1,1,1). Figure 2 presents several two-parameter bifurcation curves of main low-periodic solutions. Different color lines are used to denote the two-parameter bifurcation curves,where the period-doubling bifurcation of period-isolution is represented by PDi,the saddle-node bifurcation of period-isolution is indicated by LPi,i=2,4,8. The intersection of saddle-node bifurcation and period-doubling bifurcation is labeled by LPPD,which is a codimension-2 bifurcation point.

    3.2. The bifurcation analysis of parameter a

    The one-parameter bifurcation diagram can be classified into three categories,i.e., bifurcation diagram using random initial values, bifurcation diagram using a fixed initial value,and bifurcation diagram using the last state of the steady solutions. The bifurcation diagram using random initial values can be called a random bifurcation diagram. Many initial values are selected randomly in an interval for each bifurcation parameter value in the random bifurcation diagram. So the interval where the initial values are randomly taken from has a certain influence on the bifurcation diagram. The random bifurcation diagram may exhibit all possible attractors if the interval is chosen appropriately. To show the phenomena of extreme homogenous hidden multi-stability, we adopted the random bifurcation diagrams of the memristive map(2)by selecting its initial values randomly in an interval.

    3.2.1. The case: b=1.6

    Fig.3. Random bifurcation diagrams of(a)x, (b)y(y ∈[-12,12]), and(c)Lyapunov exponents spectrum (Les) of the memristive map (2) calculated for a ∈[-0.7,0.7]and(b,c,d,e)=(1.6,1,1,1). The black dots represent the states of the attractors. The red and blue dots indicate the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line denotes the zero value of the Lyapunov exponents.

    Figure 3 depicts random bifurcation diagrams and Lyapunov exponent spectrum (Les) diagram of the memristive map(2)with the parameter(b,c,d,e)=(1.6,1,1,1),whereawas used as a bifurcation parameter,and the initial states were randomly chosen in[-15,15].In Figs.3(a)and 3(b),the states of the attractors are denoted by black dots. In Fig. 3(c), the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent (Le2) are indicated by red and blue dots, respectively. Since there are infinitely many coexisting attractors,the range ofyis set asy ∈[-12,12]in Fig.3(b). From Fig.3,we can show the influence of the parameteraon the hidden dynamics of the memristive map (2) and a good agreement between the Lyapunov exponent diagram and the bifurcation diagram.Figure 4 presents the phase portraits of the coexisting solutions for the memristive map(2). Since there are infinitely many coexisting attractors, we only gave the phase portraits in the region{(x,y)|x ∈[-2.5,2.5],y ∈[-12,12]}. Whena=0, two different cases of hidden period-2 solutions coexist. Since the memristive map (2) is invariant for the transformation (x,y,a,b,c,d,e)→(-x,y,-a,b,c,d,e), the bifurcation diagram shows symmetrical about the diagonal line. So we only consider the case thata >0. From Fig. 3, when 0<a <0.015, the memristive map (2) shows two different cases of hidden period-2 solution (Fig. 4(a)). Asaincreases to 0.015, one case of hidden period-2 solutions disappears. Ata=0.192, the memristive map (2) encounters a period-doubling bifurcation,and the hidden period-4 solutions(Fig. 4(b)) bifurcate to hidden period-8 solutions (Fig. 4(c)).Whena=0.265,another period-doubling bifurcation occurs,converting these hidden period-8 solutions into hidden period-16 solutions. Then these hidden period-16 solutions become multiple-piece chaos(Figs.4(d)and 4(e))via a perioddoubling bifurcation cascade. Hereafter, we can observe a small window of hidden periodic solutions(Fig.4(f)),and the memristive map(2)goes into chaotic states(Fig.4(g))again.After that,we can observe another small window of hidden periodic solutions(Fig.4(h)). Then the memristive map(2)enters into chaotic states(Fig.4(i)). Whena=0.667,the memristive map(2)displays a two-piece chaotic attractor.Based on our numerical computation,the Lyapunov exponent spectrum(Les)of the chaotic attractor are 0.2040,-0.1387. Since the sum of the Lyapunov exponent spectrum of the chaotic attractor is larger than zero, its Lyapunov (Kaplan–Yorke) dimension (Dky)[46]is 2, which demonstrates the chaotic property of the memristive map (2). The correlation dimension of the chaotic attractor of the memristive map(2)is 1.6566 by using the method proposed in Ref. [46]. Finally, whena=0.669,the hidden two-piece chaotic attractors terminate to emerge.

    Fig.4. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-2.5,2.5],y ∈[-12,12]},(b,c,d,e)=(1.6,1,1,1)and(a)a=0.001(two different cases of hidden period-4 solutions),(b)a=0.015(hidden period-4 solutions),(c)a=0.25(hidden period-8 solutions),(d)a=0.29(hidden multiple-piece chaotic solutions),(e)a=0.304(hidden four-piece chaotic solutions),(f)a=0.331(hidden period-12 solutions),(g)a=0.369(hidden two-piece chaotic solutions),(h)a=0.427(hidden period-10 solutions),(i)a=0.667(hidden two-piece chaotic solutions),respectively.

    3.2.2. The case: b=1.7

    Figure 5 exhibits random bifurcation and Lyapunov exponent spectrum(Les)diagrams of the memristive map(2)with the parameter(b,c,d,e)=(1.7,1,1,1),whereawas taken as a branch parameter, and the initial states were randomly selected in[-15,15]. In Figs.5(a)and 5(b),the states of the attractors are represented by black dots. In Fig.5(c),the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent(Le2)are shown by red and blue dots,respectively. Since there are infinitely many coexisting attractors,the range ofyis limited asy ∈[-12,12] in Fig. 5(b). From Fig. 5, we can observe the effect of the parameteraon the hidden multistability of the memristive map (2) and the good accordance between the Lyapunov exponent (Les) diagram and the bifurcation diagram. Figure 6 shows the phase portraits of the coexisting solutions of the memristive map (2) in the range{(x,y)|x ∈[-3,2.5],y ∈[-12,12]}.

    From Fig.5,when 0<a <0.034,different cases of hidden solutions coexist. Whena=0.034, the hidden chaotic solutions vanish, and there are only hidden period-16 solutions. Asaincreases to 0.079, there is a period-halving bifurcation, leading the hidden period-16 solutions to hidden period-8 solutions (Fig. 6(a)). Ata= 0.115, the appearance of a period-doubling bifurcation turns the hidden period-8 solutions into hidden period-16 solutions. Then hidden multiple-piece chaotic solutions (Fig. 6(b)) take place after a period-doubling bifurcation cascade. Hereafter, the memristive map (2) exhibits several small windows of hidden periodic solutions (Fig. 6(c)). Then the memristive map (2)goes into chaotic states (Fig. 6(d)) again. After that, we can observe another small window of hidden periodic solutions(Fig. 6(e)), and the memristive map (2) evolves into chaotic states (Fig. 6(f)) again via a period-doubling bifurcation cascade. Finally, whena=0.519, the hidden two-piece chaotic solutions cease to exist.

    Fig.5. Random bifurcation diagrams of(a)x,(b)y(y ∈[-12,12]),and(c)Lyapunov exponent spectrum(Les)diagram of the memristive map(2)calculated for a ∈[-0.55,0.55]and(b,c,d,e)=(1.7,1,1,1). The black dots denote the states of the attractors. The red and blue dots represent the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line refers to the zero value of the Lyapunov exponents.

    Fig.6. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-3,2.5],y ∈[-12,12]},(b,c,d,e)=(1.7,1,1,1)and(a)a=0.079(hidden period-8 solutions),(b)a=0.156(hidden four-piece chaotic solutions),(c)a=0.191(hidden period-12 solutions),(d)a=0.21(hidden two-piece chaotic solutions),(e)a=0.241(hidden period-6 solutions),(f)a=0.518(hidden two-piece chaotic solutions),respectively.

    3.3. Bifurcation analysis of parameter b

    3.3.1. The case: a=0.1

    Figure 7 gives random bifurcation and Lyapunov exponent spectrum diagrams of the memristive map (2) with the parameter(a,c,d,e)=(0.1,1,1,1), wherebwas chosen as a control parameter and the initial states were randomly selected in[-15,15]. In Figs.7(a)and 7(b),the states of the attractors are indicated by black dots. In Fig.7(c),the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2)are represented by red and blue dots, respectively. Since there are infinitely many coexisting attractors,the range ofyis chosen asy ∈[-15,15] in Fig. 7(b). From Fig. 7, we can manifest the impact of the parameterbon the hidden dynamics of the memristive map (2) and a perfect accord between the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent(Le2). Figure 8 illustrates the phase portraits of the coexisting solutions of the memristive map (2) in the range{(x,y)|x ∈[-3,3],y ∈[-12,12]}.

    From Fig. 7, whenb= 1.133, the memristive map (2)shows hidden period-2 solutions (Fig. 8(a)). Asaincreases to 1.491, a period-doubling bifurcation occurs, yielding hidden period-4 solutions (Fig. 8(b)). Whenb= 1.681, another period-doubling bifurcation appears, resulting in hidden period-8 solutions (Fig. 8(c)). Atb=1.702, these hidden period-8 solutions turn into hidden period-16 solutions and then evolve into multiple-piece chaos(Figs.8(d)and 8(e))after a period-doubling bifurcation cascade. After that, one can observe a small window of hidden period-6 solutions(Fig. 8(f)) and hidden period-12 solutions. Then the memristive map(2)settles into hidden chaotic solutions(Fig.8(g)).Finally,whenb=1.82,the hidden two-piece chaotic solutions(Fig. 8(h)) are jointed together into hidden one-piece chaotic solutions(Fig.8(i)),which disappear atb=1.942.

    Fig.7. Random bifurcation diagrams of(a)x,(b)y(y ∈[-15,15]),and(c)Lyapunov exponent spectrum(Les)diagram of the memristive map(2)calculated for b ∈[-2,2]and(a,c,d,e)=(0.1,1,1,1). The black dots indicate the states of the attractors. The red and blue dots denote the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line stands for the zero value of the Lyapunov exponents.

    Fig.8. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-3,3],y ∈[-12,12]}, (a,c,d,e)=(0.1,1,1,1)and(a)b=1.14(hidden period-2 solutions),(b)b=1.5(hidden period-4 solutions),(c)b=1.7(hidden period-8 solutions),(d)b=1.709(hidden five-piece chaotic solutions),(e)b=1.722(hidden two-piece chaotic solutions),(f)b=1.756(hidden period-6 solutions),(g)b=1.766(hidden six-piece chaotic solutions),(h)b=1.8(hidden two-piece chaotic solutions),(i)b=1.835(hidden one-piece chaotic solutions),respectively.

    To show the hidden homogenous multi-stability of the memristive map (2), we calculated the basin of attraction of the map whena=0.1,b=1.14,c=1,d=1, ande=1,as demonstrated in Fig.9,respectively. Four hidden period-2 solutions were represented by red, blue, magenta, and black dots,respectively. The basins of these period-2 solutions were colored in orange,yellow,cyan,and green,respectively. From Fig. 9, the basins of attraction of the period-2 attractors are similar.

    Fig. 9. Basin of attraction of the memristive map (2) with (a,b,c,d,e)=(0.1,1.14,1,1,1). The unbounded basin of attraction which is the set of initial points going into the region({(x,y)||x|+|y|>100})is shown in white.The hidden period-2 solutions are denoted by red,blue,magenta,and black dots, respectively. The basins of these period-2 solutions are shown in orange,yellow,cyan,and green,respectively.

    3.3.2. The case: a=0.01

    Figure 10 displays random bifurcation diagrams and Lyapunov exponent spectrum diagram of the memristive map(2)with the parameter (a,c,d,e) = (0.01,1,1,1), wherebwas treated as a varying parameter and the initial states were randomly taken in[-15,15]. In Figs.10(a)and 10(b), the states of the attractors are denoted by black dots. In Fig. 10(c), the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent (Le2) are indicated by red and blue dots, respectively. Since there are infinitely many coexisting attractors,the range ofyis selected asy ∈[-15,15]in Fig.10(b). From Fig. 10, we can depict the impact of the parameterbon the hidden multi-stability of the memristive map (2) and a good coherence between the Lyapunov exponent diagram and the bifurcation diagram.

    Whenb=1.024, there exists hidden period-4 solutions,which become hidden period-8 solutions through the perioddoubling bifurcation. Whenb=1.028, hidden period-2 solutions arise. So a tiny range of hidden multi-stability is observed. The hidden period-2 solutions continue to exist.However,the hidden period-8 solutions turn to hidden period-16 solutions and finally to chaos via the cascades of perioddoubling bifurcations. The chaotic solutions run away atb=1.01. The hidden period-2 solutions (Fig. 11(a)) bifurcate to hidden period-4 solutions(Fig.11(b))after the perioddoubling bifurcation atb=1.529. Whenb=1.583, another hidden period-4 solutions appear. Then a new range of hidden multi-stability is shown. The two branches of hidden period-4 solutions convert into hidden period-8 solutions, period-16 solutions, and finally into hidden chaotic solutions. So the coexistence of hidden period-8 solution, period-16 solution,and chaotic solutions is observed. In the coexisting region,different types of solutions coexist. Whenb=1.728, there are only hidden two-piece chaotic solutions (Fig. 11(c)). After that, a window of hidden period-6 solutions (Fig. 11(d))and hidden six-piece chaotic solutions (Fig. 11(e)) is found.Whenb=1.812,there are only hidden two-piece chaotic solutions. Whenb=1.847,the two-piece chaotic solutions merge into one-piece chaotic solutions (Fig. 11(f)) which disappear atb=1.928.

    Fig. 10. Random bifurcation diagrams of (a) x, (b) y (y ∈[-15,15]), and(b)Lyapunov exponents(Les)diagram of the memristive map(2)calculated for b ∈[-2,-2]and(a,c,d,e)=(0.01,1,1,1). The black dots indicate the states of the attractors. The red and blue dots represent the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line corresponds to the zero value of the Lyapunov exponents.

    Fig.11. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-3,3],y ∈[-12,12]},(a,c,d,e)=(0.01,1,1,1)and(a)b=1.11(hidden period-2 solutions), (b) b=1.58 (hidden period-4 solutions), (c) b=1.728 (hidden two-piece chaotic solutions), (d) b=1.784 (hidden period-6 solutions),(e)b=1.81(hidden six-piece chaotic solutions),(f)b=1.865(hidden one-piece chaotic solutions),respectively.

    4. Conclusions

    A new class of 2D maps with a cosine memristor was presented and investigated in this paper. We discussed the existence of fixed points of these memristive maps first. Then we employed several numerical analysis tools to demonstrate their complex dynamics, including hidden periodic, chaotic,and hyper-chaotic solutions. The two-parameter bifurcation analysis of the proposed memristive map has been carried out to reveal the bifurcation mechanism of the complex dynamics.The proposed memristive maps can generate infinitely coexisting hidden attractors with the same shape but at different positions. So the map can exhibit the phenomena of extreme homogenous hidden multi-stability. They can potentially be applied to some real applications in secure communication,such as data and image encryptions. Future works will concentrate on investigating the high-dimensional memristive maps with extreme hidden heterogeneous multi-stability.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.11972173 and 12172340).

    猜你喜歡
    張麗萍劉洋海波
    搏浪
    科教新報(2023年25期)2023-07-10 05:59:40
    汽車ABS控制仿真分析
    A class of two-dimensional rational maps with self-excited and hidden attractors
    又見劉洋
    海峽姐妹(2020年6期)2020-07-25 01:26:10
    Three dimensional nonlinear shock waves in inhomogeneous plasmas with different size dust grains and external magnetized field
    山清水秀
    科教新報(2020年2期)2020-02-14 05:57:58
    劉洋作品
    藝術家(2019年9期)2019-12-17 08:28:19
    說海波
    劉洋 藏石欣賞
    寶藏(2018年8期)2018-08-31 07:28:00
    張麗萍 勿忘初心 立己達人
    大香蕉97超碰在线| 人人妻人人爽人人添夜夜欢视频| 肉色欧美久久久久久久蜜桃| 九九久久精品国产亚洲av麻豆| 国产视频首页在线观看| 一本久久精品| 亚洲欧美中文字幕日韩二区| 久久青草综合色| 日本午夜av视频| 久久久久久久久久久丰满| av又黄又爽大尺度在线免费看| 大又大粗又爽又黄少妇毛片口| 欧美另类一区| 超色免费av| 久久久久久久久大av| 亚洲精品久久午夜乱码| 欧美 日韩 精品 国产| a级片在线免费高清观看视频| 午夜福利网站1000一区二区三区| 国产精品欧美亚洲77777| 老司机影院成人| 亚洲国产毛片av蜜桃av| 狠狠婷婷综合久久久久久88av| 亚洲av成人精品一二三区| 啦啦啦中文免费视频观看日本| 麻豆乱淫一区二区| 91精品三级在线观看| 超色免费av| 亚洲欧洲精品一区二区精品久久久 | 亚洲av电影在线观看一区二区三区| a 毛片基地| 久久国产精品男人的天堂亚洲 | 免费不卡的大黄色大毛片视频在线观看| 久久韩国三级中文字幕| av女优亚洲男人天堂| 视频中文字幕在线观看| 一级毛片黄色毛片免费观看视频| 亚洲欧美一区二区三区国产| a级片在线免费高清观看视频| 人妻人人澡人人爽人人| 熟女电影av网| 国产白丝娇喘喷水9色精品| 欧美+日韩+精品| 欧美精品人与动牲交sv欧美| 搡老乐熟女国产| 秋霞在线观看毛片| 亚洲久久久国产精品| 大香蕉久久成人网| 美女xxoo啪啪120秒动态图| 熟女人妻精品中文字幕| 熟女av电影| 最新的欧美精品一区二区| 97在线视频观看| 亚洲国产精品成人久久小说| 亚洲精品一二三| 日韩av在线免费看完整版不卡| 日韩av免费高清视频| 成年人午夜在线观看视频| 久久国产精品男人的天堂亚洲 | 亚洲国产av新网站| 中文字幕精品免费在线观看视频 | 你懂的网址亚洲精品在线观看| 我的女老师完整版在线观看| 曰老女人黄片| 考比视频在线观看| 国产精品一国产av| 亚洲高清免费不卡视频| 新久久久久国产一级毛片| 成人亚洲欧美一区二区av| 九九久久精品国产亚洲av麻豆| 国产免费一区二区三区四区乱码| 男人添女人高潮全过程视频| 这个男人来自地球电影免费观看 | videosex国产| 亚洲精品乱久久久久久| 九色亚洲精品在线播放| 欧美人与善性xxx| 日本午夜av视频| 啦啦啦视频在线资源免费观看| 三上悠亚av全集在线观看| 亚洲中文av在线| 一区二区av电影网| 国内精品宾馆在线| 国产又色又爽无遮挡免| 大香蕉久久成人网| 王馨瑶露胸无遮挡在线观看| 亚洲三级黄色毛片| 男女边摸边吃奶| 亚洲精品国产色婷婷电影| 一边摸一边做爽爽视频免费| 黄色一级大片看看| 在线观看三级黄色| 精品人妻熟女av久视频| 99re6热这里在线精品视频| 日韩中字成人| 我要看黄色一级片免费的| 亚洲三级黄色毛片| 2022亚洲国产成人精品| 男男h啪啪无遮挡| 国产深夜福利视频在线观看| 亚洲av欧美aⅴ国产| a级毛片免费高清观看在线播放| 秋霞在线观看毛片| 久久女婷五月综合色啪小说| 免费av中文字幕在线| 99热6这里只有精品| 欧美人与善性xxx| 欧美bdsm另类| 亚洲国产精品成人久久小说| 国产在线视频一区二区| 18禁裸乳无遮挡动漫免费视频| 久久国内精品自在自线图片| 欧美激情 高清一区二区三区| 亚洲美女黄色视频免费看| 亚洲精品久久午夜乱码| 国产一区有黄有色的免费视频| 两个人的视频大全免费| 观看美女的网站| 中文字幕亚洲精品专区| 大话2 男鬼变身卡| 国产黄片视频在线免费观看| 国产免费又黄又爽又色| 制服诱惑二区| 午夜91福利影院| 午夜影院在线不卡| 国产精品一国产av| 大香蕉97超碰在线| 国产一区二区三区综合在线观看 | 毛片一级片免费看久久久久| 成年女人在线观看亚洲视频| 观看av在线不卡| 王馨瑶露胸无遮挡在线观看| 久久久欧美国产精品| 国产 一区精品| 大片免费播放器 马上看| 天天影视国产精品| 婷婷色综合大香蕉| 午夜激情av网站| 在线播放无遮挡| 欧美bdsm另类| 亚洲人与动物交配视频| 久久久久久久久久久免费av| 男女国产视频网站| 国产乱人偷精品视频| 大话2 男鬼变身卡| 日日爽夜夜爽网站| 久久久国产欧美日韩av| 如日韩欧美国产精品一区二区三区 | 国产69精品久久久久777片| 欧美激情极品国产一区二区三区 | 午夜福利影视在线免费观看| 日日摸夜夜添夜夜添av毛片| 99热网站在线观看| 另类精品久久| 纵有疾风起免费观看全集完整版| 最近中文字幕高清免费大全6| av在线app专区| 中文天堂在线官网| 在线观看免费高清a一片| 国产免费又黄又爽又色| 久久久久精品久久久久真实原创| 简卡轻食公司| 久久精品人人爽人人爽视色| 亚洲欧洲精品一区二区精品久久久 | 99re6热这里在线精品视频| 少妇人妻久久综合中文| 狂野欧美白嫩少妇大欣赏| 精品人妻熟女毛片av久久网站| 亚洲伊人久久精品综合| 国产亚洲一区二区精品| 青春草亚洲视频在线观看| 在线亚洲精品国产二区图片欧美 | 青春草国产在线视频| 久久久国产精品麻豆| 国产成人精品婷婷| 高清毛片免费看| 纵有疾风起免费观看全集完整版| 亚洲欧美日韩卡通动漫| 秋霞伦理黄片| 精品久久久久久电影网| 建设人人有责人人尽责人人享有的| 少妇高潮的动态图| 狂野欧美激情性xxxx在线观看| 中文字幕免费在线视频6| 精品熟女少妇av免费看| 免费观看性生交大片5| 国产亚洲精品第一综合不卡 | 一级二级三级毛片免费看| 国产爽快片一区二区三区| 永久网站在线| 精品少妇内射三级| 午夜福利,免费看| 亚洲伊人久久精品综合| 成人二区视频| 欧美精品人与动牲交sv欧美| 国模一区二区三区四区视频| 夜夜爽夜夜爽视频| 日韩不卡一区二区三区视频在线| 三级国产精品片| 国产高清不卡午夜福利| 在线观看国产h片| 黑人巨大精品欧美一区二区蜜桃 | 伦理电影免费视频| 精品亚洲成a人片在线观看| 久久久午夜欧美精品| 美女内射精品一级片tv| 久久毛片免费看一区二区三区| 人人妻人人澡人人看| 国产 精品1| 女性生殖器流出的白浆| 免费大片18禁| 亚洲精品久久成人aⅴ小说 | 亚洲精品国产av蜜桃| 高清黄色对白视频在线免费看| 天美传媒精品一区二区| 赤兔流量卡办理| 亚洲欧洲国产日韩| 久久久精品区二区三区| 久久久久久久久久久久大奶| 中文字幕精品免费在线观看视频 | 69精品国产乱码久久久| 免费黄色在线免费观看| 亚洲国产精品一区二区三区在线| 嫩草影院入口| 久久亚洲国产成人精品v| 美女国产视频在线观看| 另类精品久久| 91午夜精品亚洲一区二区三区| 国产成人免费无遮挡视频| 一级毛片aaaaaa免费看小| 国产一区二区在线观看日韩| 99热全是精品| 国产免费福利视频在线观看| 欧美日韩国产mv在线观看视频| 欧美老熟妇乱子伦牲交| 色哟哟·www| 成年av动漫网址| 亚洲av中文av极速乱| 99九九在线精品视频| 久久av网站| 亚洲精品乱久久久久久| 国产爽快片一区二区三区| 亚洲精品自拍成人| 国产片特级美女逼逼视频| 少妇高潮的动态图| 人人妻人人添人人爽欧美一区卜| 另类亚洲欧美激情| xxx大片免费视频| 亚洲av不卡在线观看| 亚洲av欧美aⅴ国产| 好男人视频免费观看在线| 亚洲无线观看免费| 国产亚洲午夜精品一区二区久久| 少妇精品久久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 韩国av在线不卡| 全区人妻精品视频| 18禁在线无遮挡免费观看视频| 国产不卡av网站在线观看| 女人精品久久久久毛片| 亚洲人成网站在线播| 亚洲精品乱码久久久久久按摩| 午夜91福利影院| 91精品三级在线观看| 日本猛色少妇xxxxx猛交久久| 国产深夜福利视频在线观看| 国产一区二区在线观看日韩| 成人二区视频| 91国产中文字幕| 成年人午夜在线观看视频| 亚洲av二区三区四区| 久久影院123| 亚洲欧美色中文字幕在线| 美女主播在线视频| 91精品国产九色| 久久久亚洲精品成人影院| 国产在视频线精品| 最近中文字幕2019免费版| 在线观看美女被高潮喷水网站| 日韩精品免费视频一区二区三区 | √禁漫天堂资源中文www| 亚洲少妇的诱惑av| 最新中文字幕久久久久| 在线亚洲精品国产二区图片欧美 | 国产深夜福利视频在线观看| 制服诱惑二区| 啦啦啦啦在线视频资源| 汤姆久久久久久久影院中文字幕| 亚洲人与动物交配视频| 22中文网久久字幕| 黄色视频在线播放观看不卡| 边亲边吃奶的免费视频| 老司机亚洲免费影院| 亚洲经典国产精华液单| 黄色怎么调成土黄色| 亚洲人成网站在线观看播放| 免费av中文字幕在线| 在线观看一区二区三区激情| 七月丁香在线播放| 99久久人妻综合| 欧美日韩视频精品一区| 国产69精品久久久久777片| 日韩av不卡免费在线播放| 亚洲av免费高清在线观看| 日韩熟女老妇一区二区性免费视频| 国产精品女同一区二区软件| a级片在线免费高清观看视频| 一边亲一边摸免费视频| 大又大粗又爽又黄少妇毛片口| 我的女老师完整版在线观看| 高清在线视频一区二区三区| 国产精品秋霞免费鲁丝片| 亚洲成人一二三区av| 日韩av不卡免费在线播放| 在现免费观看毛片| 三级国产精品欧美在线观看| 国产亚洲精品久久久com| 成人亚洲精品一区在线观看| 国产成人免费无遮挡视频| 亚洲久久久国产精品| 中文字幕最新亚洲高清| 欧美老熟妇乱子伦牲交| 亚洲国产精品一区三区| 欧美老熟妇乱子伦牲交| 一级二级三级毛片免费看| 少妇被粗大的猛进出69影院 | 人人妻人人添人人爽欧美一区卜| 欧美人与善性xxx| 搡老乐熟女国产| 精品人妻在线不人妻| 97超视频在线观看视频| 国产亚洲精品第一综合不卡 | 丰满少妇做爰视频| 国产男女超爽视频在线观看| 能在线免费看毛片的网站| 久久精品国产鲁丝片午夜精品| 日韩中字成人| 免费黄网站久久成人精品| 观看av在线不卡| 亚洲精品中文字幕在线视频| 2022亚洲国产成人精品| 韩国高清视频一区二区三区| 如日韩欧美国产精品一区二区三区 | 国产色婷婷99| 又粗又硬又长又爽又黄的视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲怡红院男人天堂| 免费黄网站久久成人精品| 少妇被粗大猛烈的视频| 国产深夜福利视频在线观看| 久久久久久久久大av| 乱人伦中国视频| 日本wwww免费看| 亚洲成人一二三区av| 中文欧美无线码| 在线观看www视频免费| 亚洲精品久久久久久婷婷小说| 人妻少妇偷人精品九色| 亚洲av国产av综合av卡| 久久久精品区二区三区| av免费观看日本| 91精品国产九色| 一区在线观看完整版| 亚洲精品456在线播放app| 久久久午夜欧美精品| 久久人人爽人人片av| 久久久亚洲精品成人影院| 九色亚洲精品在线播放| 蜜臀久久99精品久久宅男| 亚洲精品成人av观看孕妇| a级毛片在线看网站| 亚洲欧美一区二区三区国产| 蜜臀久久99精品久久宅男| 国产日韩欧美视频二区| 亚洲色图 男人天堂 中文字幕 | 久久久a久久爽久久v久久| 国产成人免费观看mmmm| 又黄又爽又刺激的免费视频.| 爱豆传媒免费全集在线观看| 青春草视频在线免费观看| 少妇的逼好多水| 一区二区日韩欧美中文字幕 | 亚洲,一卡二卡三卡| 国产一区二区三区综合在线观看 | 蜜桃久久精品国产亚洲av| 亚洲欧美成人综合另类久久久| 亚洲人成网站在线播| 国产国语露脸激情在线看| 久久久久久人妻| 成人国产麻豆网| av线在线观看网站| 亚洲精品色激情综合| 日韩视频在线欧美| 亚洲欧洲精品一区二区精品久久久 | 亚洲一区二区三区欧美精品| 久久人人爽人人片av| 一区二区三区精品91| 日本黄色片子视频| 欧美日韩精品成人综合77777| 女的被弄到高潮叫床怎么办| 国产欧美日韩综合在线一区二区| 乱人伦中国视频| 我的女老师完整版在线观看| 国产淫语在线视频| 欧美少妇被猛烈插入视频| 亚洲精品一二三| 观看美女的网站| 国产成人freesex在线| 国产高清有码在线观看视频| 国产av精品麻豆| 亚洲综合精品二区| 在线看a的网站| 亚洲国产色片| 国产精品国产三级专区第一集| 国产视频内射| 日韩精品有码人妻一区| 乱码一卡2卡4卡精品| 亚洲精品色激情综合| 亚洲丝袜综合中文字幕| 在线观看国产h片| 伊人久久精品亚洲午夜| 99九九在线精品视频| 免费观看av网站的网址| 欧美xxxx性猛交bbbb| 免费高清在线观看视频在线观看| 亚洲国产成人一精品久久久| 一级毛片 在线播放| 成人综合一区亚洲| 激情五月婷婷亚洲| 91精品三级在线观看| 亚洲色图综合在线观看| 国产av码专区亚洲av| 五月天丁香电影| 亚洲精品视频女| 另类精品久久| 亚洲伊人久久精品综合| 男女无遮挡免费网站观看| 国产精品欧美亚洲77777| 日日摸夜夜添夜夜添av毛片| 久久 成人 亚洲| av有码第一页| 国内精品宾馆在线| 日韩av在线免费看完整版不卡| 在线观看www视频免费| 26uuu在线亚洲综合色| 乱码一卡2卡4卡精品| 一边亲一边摸免费视频| 高清视频免费观看一区二区| av卡一久久| 亚洲欧美精品自产自拍| 亚洲欧美日韩另类电影网站| 美女主播在线视频| 少妇精品久久久久久久| 日本vs欧美在线观看视频| 精品亚洲成国产av| 国产精品欧美亚洲77777| 伦精品一区二区三区| 黄色毛片三级朝国网站| 亚洲欧美精品自产自拍| 人妻系列 视频| 少妇丰满av| 国产高清三级在线| 制服人妻中文乱码| 欧美激情极品国产一区二区三区 | 一个人免费看片子| 国产精品欧美亚洲77777| 99国产精品免费福利视频| 王馨瑶露胸无遮挡在线观看| 欧美精品一区二区大全| 妹子高潮喷水视频| 国产一区二区在线观看av| 午夜影院在线不卡| 9色porny在线观看| 99精国产麻豆久久婷婷| 狂野欧美白嫩少妇大欣赏| 男人操女人黄网站| 在线观看人妻少妇| 久久ye,这里只有精品| 岛国毛片在线播放| 性色avwww在线观看| 精品人妻偷拍中文字幕| 纯流量卡能插随身wifi吗| av免费在线看不卡| 少妇的逼水好多| 91在线精品国自产拍蜜月| 久久国产精品大桥未久av| 久久久久精品性色| 一区在线观看完整版| 日本91视频免费播放| 男女边吃奶边做爰视频| 久久鲁丝午夜福利片| 国产在视频线精品| 久久99精品国语久久久| 国产在线一区二区三区精| 亚洲综合色网址| 熟女av电影| 国产免费一区二区三区四区乱码| 国产精品 国内视频| 999精品在线视频| 成人国产av品久久久| 亚洲精品日韩av片在线观看| 亚洲国产最新在线播放| 久久久久久久久久久免费av| 久久国产亚洲av麻豆专区| 亚洲国产日韩一区二区| 丝袜美足系列| 美女脱内裤让男人舔精品视频| 性色avwww在线观看| 亚洲欧美精品自产自拍| 色婷婷久久久亚洲欧美| 三级国产精品欧美在线观看| 欧美精品亚洲一区二区| 亚洲av国产av综合av卡| 国产69精品久久久久777片| 国产 一区精品| 九九爱精品视频在线观看| 亚洲欧洲国产日韩| 香蕉精品网在线| 精品一区二区免费观看| 久久久国产欧美日韩av| 国产亚洲午夜精品一区二区久久| 69精品国产乱码久久久| 九色亚洲精品在线播放| a级毛片在线看网站| 亚洲人与动物交配视频| 日韩一本色道免费dvd| 国产免费一区二区三区四区乱码| av.在线天堂| 九色亚洲精品在线播放| 最新的欧美精品一区二区| 欧美 日韩 精品 国产| 国产伦精品一区二区三区视频9| 新久久久久国产一级毛片| 久久久国产一区二区| 美女中出高潮动态图| 国产日韩一区二区三区精品不卡 | 欧美精品人与动牲交sv欧美| 建设人人有责人人尽责人人享有的| 制服诱惑二区| 99热这里只有精品一区| 爱豆传媒免费全集在线观看| 80岁老熟妇乱子伦牲交| 中文字幕最新亚洲高清| 国产成人freesex在线| 日日摸夜夜添夜夜爱| 久久久久久久久久人人人人人人| 亚洲高清免费不卡视频| 欧美xxⅹ黑人| 一本久久精品| 中文天堂在线官网| 久久人人爽人人片av| 哪个播放器可以免费观看大片| 久久精品国产亚洲网站| 免费观看a级毛片全部| 精品亚洲乱码少妇综合久久| 久久久久久久久大av| 国产亚洲精品第一综合不卡 | 伦理电影免费视频| 国产成人午夜福利电影在线观看| 久久午夜综合久久蜜桃| 亚洲国产日韩一区二区| 精品少妇内射三级| 色网站视频免费| 老司机影院成人| 最新的欧美精品一区二区| 欧美成人精品欧美一级黄| 成人国产av品久久久| 欧美3d第一页| 日本午夜av视频| 天堂俺去俺来也www色官网| 国产熟女午夜一区二区三区 | 亚州av有码| 久久久欧美国产精品| 亚洲,一卡二卡三卡| 最近中文字幕2019免费版| 下体分泌物呈黄色| 国产黄频视频在线观看| 少妇熟女欧美另类| 制服诱惑二区| 亚洲av在线观看美女高潮| 国产精品三级大全| 日韩在线高清观看一区二区三区| 日韩成人av中文字幕在线观看| 国产精品一区二区在线观看99| 色婷婷久久久亚洲欧美| 2022亚洲国产成人精品| 亚洲图色成人| 久久久国产一区二区| 18+在线观看网站| 久久韩国三级中文字幕| av网站免费在线观看视频| 蜜桃国产av成人99| 日韩三级伦理在线观看| 在线播放无遮挡| 午夜91福利影院| 亚洲一区二区三区欧美精品| 亚洲不卡免费看| 精品久久国产蜜桃| 欧美+日韩+精品| 亚洲综合精品二区| 亚洲精品自拍成人| 亚洲国产欧美日韩在线播放| www.色视频.com| 久久狼人影院| 黑人欧美特级aaaaaa片| 久久久久久久久久人人人人人人| 男人爽女人下面视频在线观看| 亚洲精品乱码久久久久久按摩| 欧美成人精品欧美一级黄| 亚州av有码| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费黄网站久久成人精品| 国产精品人妻久久久影院| a级片在线免费高清观看视频| 卡戴珊不雅视频在线播放|