• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor

    2022-10-26 09:54:00LiPingZhang張麗萍YangLiu劉洋ZhouChaoWei魏周超HaiBoJiang姜海波WeiPengLyu呂偉鵬andQinShengBi畢勤勝
    Chinese Physics B 2022年10期
    關鍵詞:張麗萍劉洋海波

    Li-Ping Zhang(張麗萍) Yang Liu(劉洋) Zhou-Chao Wei(魏周超) Hai-Bo Jiang(姜海波)Wei-Peng Lyu(呂偉鵬) and Qin-Sheng Bi(畢勤勝)

    1Faculty of Civil Engineering and Mechanics,Jiangsu University,Zhenjiang 212013,China

    2School of Mathematics and Statistics,Yancheng Teachers University,Yancheng 224002,China

    3Engineering Department,Mathematics and Physical Sciences,University of Exeter,Exeter EX4 4QF,UK

    4School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China

    Keywords: two-dimensional maps,memristive maps,hidden attractors,bifurcation analysis,extremely hidden multi-stability

    1. Introduction

    Since memristor was regarded as a fourth circuit component by Chua in 1971[1]and physically implemented by HP laboratory in 2008,[2]it has been intensively studied in the literature and extensively applied in many fields.[3]Very recently, discrete memristor has begun to receive many researchers’ attention.[4–20]For instance, Penget al.presented a model of discrete memristor via the difference theory and derived a memristive H′enon map in Ref.[4]. Then they gave a higher-dimensional map containing the discrete memristor and studied the dynamical behaviors of the map in Ref.[5]. Meanwhile, Baoet al.constructed a two-dimensional (2D) memristive map based on the method of sampling and showed the chaotic and hyper-chaotic behaviors of the map in Ref. [6].Liet al.provided several examples of 2D memristive maps and investigated complex dynamics by considering their coupling strengths and initial values in Ref.[7].In Ref.[8],Baoet al.gave four representations of the discrete memristor model and studied the complex behaviors of their corresponding 2D memristive maps. Baoet al.proposed a memristive Logistic map and investigated the dynamical behaviors of the proposed map in Ref. [9]. In Ref. [10], Baoet al.presented a class of three-dimensional (3D) memristive maps and studied the application of these maps. Liet al.investigated the effect of magnetic induction on the constructed memristive Rulkov neuron map in Ref. [11]. In Ref. [12], Deng and Li established a class of 2D non-autonomous memristive maps that can display hyper-chaotic, periodic, and bursting oscillations. Deng and Li yielded a memristive sine map and studied non-parametric bifurcation and hyper-chaotic behaviors of the map in Ref. [13]. In Ref. [14], Konget al.put forward a 2D memristive map by introducing a discrete sinusoidal memristor. Liu gave and investigated a memristive map by couping the discrete memristor with nonlinear maps of sine and cosine functions in Ref. [15]. In Ref. [16], Liet al.presented a memristor-type chaotic mapping whose parameters could be considered as partial and total amplitude controllers. Fuet al.constructed a class of discrete quadratic memristors and implemented the memristor by using Simulink in Ref. [17]. In Ref. [18], Maet al.put forward a memristive hyper-chaotic map by introducing the proposed discrete memristor into a class of 2D generalized square maps. Ramakrishnan proposed a new memristive neuron map and investigated the complex dynamics of the networked maps by hybrid electrical and chemical synapses in Ref.[19]. In Ref.[20],Lai and Lai presented a 2D memristive hyper-chaotic map with a line of fixed points by coupling a discrete memristor into an enhanced Logistic map. Laiet al.proposed a memristive neuron map by introducing a discrete memristor into an existing neuron map in Ref.[21]. In Ref.[22],Ronget al.constructed a 3D memristive map by coupling a discrete tangent memristor to the H′enon map. Penget al.gave three 2D memristive sine maps by introducing three discrete memristor models into the sine map in Ref.[23]. In Ref.[24],Baoet al.presented a 2D memristive map by implementing sine transformation for the memristor. The memristive maps proposed in Refs.[4–24]usually have several fixed points or a line of fixed points.

    If the map has no fixed points,the map belongs to the category of maps with hidden attractors according to the classification of self-excited and hidden attractors given by Leonov and Kuznetsov.[25–27]The basin of attraction of the attractor does not contain any small neighborhoods of fixed points of the map, so it is called a hidden attractor. Otherwise, if the basin of attraction of the attractor intersects with small neighborhoods of any fixed points of the map, it is called a selfexcited attractor.[28]Hidden attractors are difficult to be located and may lead to unexpected responses, so the hidden attractors of continuous and discrete-time systems have been extensively investigated in the literature.[29–33]In Ref. [34],Ramadosset al.obtained several memristive maps without any fixed points by introducing a tiny perturbation and showed hidden attractors in these maps. If a dynamical system generates more than one attractor for a set of fixed parameters using different initial conditions, the system has multi-stability. If the number of the coexisting attractors of the dynamical system for a set of fixed parameters and different initial conditions is infinite, this phenomenon is called extreme multi-stability.Multi-stability and extreme multi-stability of dynamical systems have been found in many disciplines,including physics,chemistry, biology, and economics.[35,36]Very recently, extreme multi-stability of nonlinear maps has received much attention.[37–40]In Ref.[37],Zhanget al.presented a class of 2D chaotic maps with extreme multi-stability by introducing a sine term. Baoet al.proposed a 2D hyper-chaotic map with extreme multi-stability in Ref.[38]. In Ref.[39], Konget al.proposed a 2D hyper-chaotic map with conditional symmetry and attractor growth by introducing two sine terms. Liet al.constructed a 2D map with a sine function to show the selfreproducing dynamics of the map,i.e., reproducing infinitely many coexisting attractors of the same structure but in a different position in Ref.[40].

    If a nonlinear map exhibits coexisting hidden attractors(or infinitely many coexisting hidden attractors), we say the map has hidden multi-stability (or extremely hidden multistability). When the map generates infinitely many coexisting hidden attractors having the same shape but different amplitudes, frequencies, or positions, the map has homogenous extreme hidden multi-stability. While the map has infinitely many coexisting hidden attractors of different types, the map has heterogeneous extreme multi-stability. In Ref. [41], Zhanget al.formulated a class of 2D rational maps showing hidden attractors and hidden multi-stability.Then Zhanget al.studied hidden attractors and hidden multistability of a class of 2D rational memristive maps without fixed points in Ref. [42]. However, to the best of our knowledge, the work on memristive maps with extremely hidden multi-stability is limited, which motivates the present study.The main novelties and contributions of this paper are as follows: (i)A new class of 2D maps with a cosine memristor is presented to show extremely hidden multi-stability. (ii) The nonlinear dynamics of the memristive map is numerically analyzed by using several numerical tools including phase portraits, basins of attraction, bifurcation diagram, and the Lyapunov exponent spectrums(Les). (iii)The two-parameter bifurcation analysis of the memristive map in the regions concerned has been carried out to reveal the bifurcation mechanism of the nonlinear dynamics. (iv)The memristive map can display different types of infinitely many coexisting attractors.

    The rest of this paper is organized as follows. In Section 2, we formulate the mathematical model of this class of 2D maps with a cosine memristor and study the existence of their fixed points. In Section 3,we investigate the rich dynamics of the memristive map by using numerical analysis tools.Finally,we draw conclusions in Section 4.

    2. System model

    The equation of the cosine memristor[7]is given by

    wherevk,ik, andqk(k=0,1,2,...) denote the output, input,and internal state of the cosine memristor at stepk, respectively.M(qk)=c(cos(dqk))represents the memristance of the cosine memristor.

    In this paper,the discrete cosine memristor is coupled to a one-dimensional constant map,and a class of 2D memristive maps is formulated as

    wherexkandyk(k=0,1,2,...)are the states at stepk,the coefficientsa,b,c,d,andeare the parameters. In this paper,we assume that the parameters are all not equal to zero,i.e., the map contains the constant term and the cosine memristor.

    Remark 1 In Ref.[7],if the parametersc,d,andeof the cosine memristor are chosen as(c,d,e)=(1,1,1),“8”-shaped tight hysteresis loop and the characteristic of the fingerprint and memory can be shown in the cosine memristor.

    Remark 2 In Ref. [34], the constantawas considered as a tiny perturbation,i.e.,a=0.001 and only the dynamics of the memristive map with fixed parameters was shown. In this paper,the parameterawill be taken as a varying parameter,and the extremely hidden multi-stability of the memristive map with a cosine memristor will be demonstrated.

    One can get the fixed points (x*,y*) of the memristive map(2)by solving the following equations:

    Sincea/=0, there is no solution in Eq.(4), so the memristive map (2) has no fixed points. Then the mathematical model of the memristive map with no fixed points is formulated,which is scarcely seen in the memristive map. Since the memristive map(2)has no fixed points,the basin of the attractors in the memristive maps does not contain any fixed points.According to Definition 1 given in Ref.[28],the attractors of the memristive map(2)are all hidden.

    By the translational symmetry,i.e.,S(x,y+2mπ) =S(x,y), whereS(x,y) = (a+b(c(cos(dy)))x-x,ex),m=1,2,..., the memristive map(2)may produce infinitely many coexisting hidden attractors having the same shape but in different positions.So the map may display homogenous extreme hidden multi-stability, which is rarely studied in the memristive maps before.

    3. Complex dynamics of the 2D map with a cosine memristor

    In this section, the complex dynamics of the memristive map (2) will be explored by utilizing numerical analysis tools. The Lyapunov exponent spectrums of the attractors of the memristive map (2) will be calculated by using the Wolf methods.[44,45]The iteration length of the memristive map(2)is chosen as 105.

    3.1. Dynamical region

    Figure 1 presents a two-parameter dynamical region of the memristive map(2), which can show the effect of the parametersaandbon the dynamics of the map.The period of the periodic solutions and Lyapunov exponent spectrums(Les)of other solutions were used to determine the dynamical regions.Denote the largest Lyapunov exponent and the smallest Lyapunov exponent by Le1 and Le2,respectively.The memristive map(2)is in hyper-chaotic state if Le1>Le2>0. The map is in chaotic state if Le1>0 and Le2<0. The map is in quasiperiodic state if Le1=0 and Le2<0. The map is in periodic state if Le1<0. We run the compute program in parallel for the parametera. In each parallel,we fix the parametera,and vary the parameterbin the interval [-3,3]. The initial states were selected randomly in the region{(x,y)|x,y ∈[-15,15]}if there is no steady attractor.We use the last state of the steady attractor for the initial state for the next step of the parameterb.In Fig. 1, the regions of different dynamical behaviors are marked with different colors, where the regions of period-2 to period-16 solutions are shown in different colors labeled by the numbers ‘2’ to ‘16’, and the region of periodic solutions whose period is more than 16 is indicated in the gray color labeled by ‘M’. And the regions of quasi-periodic (T),chaotic(C),hyper-chaotic(H),and divergent(D)solutions are denoted by the light blue,black,dark black,and white colors,respectively. From Fig.1,we can observe complex dynamics,including hidden periodic,quasi-periodic,chaotic,and hyperchaotic solutions. Moreover,the cascades of period-doubling bifurcations of the memristive map(2)are seen clearly. Note that the dynamical regions are symmetric about the horizontal linea=0 and the vertical lineb=0.

    Fig.1. The two-parameter dynamical regions of the memristive map(2)calculated for a ∈[-3,3], b ∈[-3,3], and(c,d,e)=(1,1,1). Different colors labeled by the numbers‘2’to‘16’represent period-2 to period-16 solutions.The gray color labeled by‘M’indicates the periodic solutions whose period is more than 16. The light blue, black, dark black, and white colors denote the quasi-periodic(T),chaotic(C),hyper-chaotic(H),and divergent(D)solutions,respectively.

    Fig.2. The two-parameter bifurcation curves of the memristive map(2)calculated for a ∈[-0.7,0.7], b ∈[-0.95,1.75], and (c,d,e)=(1,1,1). The two-parameter bifurcation curves are denoted by different color lines,where PDi represents the period-doubling bifurcation of period-i solution, LPi indicates the saddle-node bifurcation of period-i solution, i=2,4,8. LPPD denotes the codimension-2 bifurcation point, which is the intersection of saddle-node bifurcation and period-doubling bifurcation.

    To show the bifurcation mechanism of dynamical transition of the memristive map(2),the two-parameter bifurcation analysis are carried out fora ∈[-0.7,0.7],b ∈[-0.95,1.75]and(c,d,e)=(1,1,1). Figure 2 presents several two-parameter bifurcation curves of main low-periodic solutions. Different color lines are used to denote the two-parameter bifurcation curves,where the period-doubling bifurcation of period-isolution is represented by PDi,the saddle-node bifurcation of period-isolution is indicated by LPi,i=2,4,8. The intersection of saddle-node bifurcation and period-doubling bifurcation is labeled by LPPD,which is a codimension-2 bifurcation point.

    3.2. The bifurcation analysis of parameter a

    The one-parameter bifurcation diagram can be classified into three categories,i.e., bifurcation diagram using random initial values, bifurcation diagram using a fixed initial value,and bifurcation diagram using the last state of the steady solutions. The bifurcation diagram using random initial values can be called a random bifurcation diagram. Many initial values are selected randomly in an interval for each bifurcation parameter value in the random bifurcation diagram. So the interval where the initial values are randomly taken from has a certain influence on the bifurcation diagram. The random bifurcation diagram may exhibit all possible attractors if the interval is chosen appropriately. To show the phenomena of extreme homogenous hidden multi-stability, we adopted the random bifurcation diagrams of the memristive map(2)by selecting its initial values randomly in an interval.

    3.2.1. The case: b=1.6

    Fig.3. Random bifurcation diagrams of(a)x, (b)y(y ∈[-12,12]), and(c)Lyapunov exponents spectrum (Les) of the memristive map (2) calculated for a ∈[-0.7,0.7]and(b,c,d,e)=(1.6,1,1,1). The black dots represent the states of the attractors. The red and blue dots indicate the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line denotes the zero value of the Lyapunov exponents.

    Figure 3 depicts random bifurcation diagrams and Lyapunov exponent spectrum (Les) diagram of the memristive map(2)with the parameter(b,c,d,e)=(1.6,1,1,1),whereawas used as a bifurcation parameter,and the initial states were randomly chosen in[-15,15].In Figs.3(a)and 3(b),the states of the attractors are denoted by black dots. In Fig. 3(c), the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent (Le2) are indicated by red and blue dots, respectively. Since there are infinitely many coexisting attractors,the range ofyis set asy ∈[-12,12]in Fig.3(b). From Fig.3,we can show the influence of the parameteraon the hidden dynamics of the memristive map (2) and a good agreement between the Lyapunov exponent diagram and the bifurcation diagram.Figure 4 presents the phase portraits of the coexisting solutions for the memristive map(2). Since there are infinitely many coexisting attractors, we only gave the phase portraits in the region{(x,y)|x ∈[-2.5,2.5],y ∈[-12,12]}. Whena=0, two different cases of hidden period-2 solutions coexist. Since the memristive map (2) is invariant for the transformation (x,y,a,b,c,d,e)→(-x,y,-a,b,c,d,e), the bifurcation diagram shows symmetrical about the diagonal line. So we only consider the case thata >0. From Fig. 3, when 0<a <0.015, the memristive map (2) shows two different cases of hidden period-2 solution (Fig. 4(a)). Asaincreases to 0.015, one case of hidden period-2 solutions disappears. Ata=0.192, the memristive map (2) encounters a period-doubling bifurcation,and the hidden period-4 solutions(Fig. 4(b)) bifurcate to hidden period-8 solutions (Fig. 4(c)).Whena=0.265,another period-doubling bifurcation occurs,converting these hidden period-8 solutions into hidden period-16 solutions. Then these hidden period-16 solutions become multiple-piece chaos(Figs.4(d)and 4(e))via a perioddoubling bifurcation cascade. Hereafter, we can observe a small window of hidden periodic solutions(Fig.4(f)),and the memristive map(2)goes into chaotic states(Fig.4(g))again.After that,we can observe another small window of hidden periodic solutions(Fig.4(h)). Then the memristive map(2)enters into chaotic states(Fig.4(i)). Whena=0.667,the memristive map(2)displays a two-piece chaotic attractor.Based on our numerical computation,the Lyapunov exponent spectrum(Les)of the chaotic attractor are 0.2040,-0.1387. Since the sum of the Lyapunov exponent spectrum of the chaotic attractor is larger than zero, its Lyapunov (Kaplan–Yorke) dimension (Dky)[46]is 2, which demonstrates the chaotic property of the memristive map (2). The correlation dimension of the chaotic attractor of the memristive map(2)is 1.6566 by using the method proposed in Ref. [46]. Finally, whena=0.669,the hidden two-piece chaotic attractors terminate to emerge.

    Fig.4. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-2.5,2.5],y ∈[-12,12]},(b,c,d,e)=(1.6,1,1,1)and(a)a=0.001(two different cases of hidden period-4 solutions),(b)a=0.015(hidden period-4 solutions),(c)a=0.25(hidden period-8 solutions),(d)a=0.29(hidden multiple-piece chaotic solutions),(e)a=0.304(hidden four-piece chaotic solutions),(f)a=0.331(hidden period-12 solutions),(g)a=0.369(hidden two-piece chaotic solutions),(h)a=0.427(hidden period-10 solutions),(i)a=0.667(hidden two-piece chaotic solutions),respectively.

    3.2.2. The case: b=1.7

    Figure 5 exhibits random bifurcation and Lyapunov exponent spectrum(Les)diagrams of the memristive map(2)with the parameter(b,c,d,e)=(1.7,1,1,1),whereawas taken as a branch parameter, and the initial states were randomly selected in[-15,15]. In Figs.5(a)and 5(b),the states of the attractors are represented by black dots. In Fig.5(c),the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent(Le2)are shown by red and blue dots,respectively. Since there are infinitely many coexisting attractors,the range ofyis limited asy ∈[-12,12] in Fig. 5(b). From Fig. 5, we can observe the effect of the parameteraon the hidden multistability of the memristive map (2) and the good accordance between the Lyapunov exponent (Les) diagram and the bifurcation diagram. Figure 6 shows the phase portraits of the coexisting solutions of the memristive map (2) in the range{(x,y)|x ∈[-3,2.5],y ∈[-12,12]}.

    From Fig.5,when 0<a <0.034,different cases of hidden solutions coexist. Whena=0.034, the hidden chaotic solutions vanish, and there are only hidden period-16 solutions. Asaincreases to 0.079, there is a period-halving bifurcation, leading the hidden period-16 solutions to hidden period-8 solutions (Fig. 6(a)). Ata= 0.115, the appearance of a period-doubling bifurcation turns the hidden period-8 solutions into hidden period-16 solutions. Then hidden multiple-piece chaotic solutions (Fig. 6(b)) take place after a period-doubling bifurcation cascade. Hereafter, the memristive map (2) exhibits several small windows of hidden periodic solutions (Fig. 6(c)). Then the memristive map (2)goes into chaotic states (Fig. 6(d)) again. After that, we can observe another small window of hidden periodic solutions(Fig. 6(e)), and the memristive map (2) evolves into chaotic states (Fig. 6(f)) again via a period-doubling bifurcation cascade. Finally, whena=0.519, the hidden two-piece chaotic solutions cease to exist.

    Fig.5. Random bifurcation diagrams of(a)x,(b)y(y ∈[-12,12]),and(c)Lyapunov exponent spectrum(Les)diagram of the memristive map(2)calculated for a ∈[-0.55,0.55]and(b,c,d,e)=(1.7,1,1,1). The black dots denote the states of the attractors. The red and blue dots represent the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line refers to the zero value of the Lyapunov exponents.

    Fig.6. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-3,2.5],y ∈[-12,12]},(b,c,d,e)=(1.7,1,1,1)and(a)a=0.079(hidden period-8 solutions),(b)a=0.156(hidden four-piece chaotic solutions),(c)a=0.191(hidden period-12 solutions),(d)a=0.21(hidden two-piece chaotic solutions),(e)a=0.241(hidden period-6 solutions),(f)a=0.518(hidden two-piece chaotic solutions),respectively.

    3.3. Bifurcation analysis of parameter b

    3.3.1. The case: a=0.1

    Figure 7 gives random bifurcation and Lyapunov exponent spectrum diagrams of the memristive map (2) with the parameter(a,c,d,e)=(0.1,1,1,1), wherebwas chosen as a control parameter and the initial states were randomly selected in[-15,15]. In Figs.7(a)and 7(b),the states of the attractors are indicated by black dots. In Fig.7(c),the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2)are represented by red and blue dots, respectively. Since there are infinitely many coexisting attractors,the range ofyis chosen asy ∈[-15,15] in Fig. 7(b). From Fig. 7, we can manifest the impact of the parameterbon the hidden dynamics of the memristive map (2) and a perfect accord between the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent(Le2). Figure 8 illustrates the phase portraits of the coexisting solutions of the memristive map (2) in the range{(x,y)|x ∈[-3,3],y ∈[-12,12]}.

    From Fig. 7, whenb= 1.133, the memristive map (2)shows hidden period-2 solutions (Fig. 8(a)). Asaincreases to 1.491, a period-doubling bifurcation occurs, yielding hidden period-4 solutions (Fig. 8(b)). Whenb= 1.681, another period-doubling bifurcation appears, resulting in hidden period-8 solutions (Fig. 8(c)). Atb=1.702, these hidden period-8 solutions turn into hidden period-16 solutions and then evolve into multiple-piece chaos(Figs.8(d)and 8(e))after a period-doubling bifurcation cascade. After that, one can observe a small window of hidden period-6 solutions(Fig. 8(f)) and hidden period-12 solutions. Then the memristive map(2)settles into hidden chaotic solutions(Fig.8(g)).Finally,whenb=1.82,the hidden two-piece chaotic solutions(Fig. 8(h)) are jointed together into hidden one-piece chaotic solutions(Fig.8(i)),which disappear atb=1.942.

    Fig.7. Random bifurcation diagrams of(a)x,(b)y(y ∈[-15,15]),and(c)Lyapunov exponent spectrum(Les)diagram of the memristive map(2)calculated for b ∈[-2,2]and(a,c,d,e)=(0.1,1,1,1). The black dots indicate the states of the attractors. The red and blue dots denote the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line stands for the zero value of the Lyapunov exponents.

    Fig.8. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-3,3],y ∈[-12,12]}, (a,c,d,e)=(0.1,1,1,1)and(a)b=1.14(hidden period-2 solutions),(b)b=1.5(hidden period-4 solutions),(c)b=1.7(hidden period-8 solutions),(d)b=1.709(hidden five-piece chaotic solutions),(e)b=1.722(hidden two-piece chaotic solutions),(f)b=1.756(hidden period-6 solutions),(g)b=1.766(hidden six-piece chaotic solutions),(h)b=1.8(hidden two-piece chaotic solutions),(i)b=1.835(hidden one-piece chaotic solutions),respectively.

    To show the hidden homogenous multi-stability of the memristive map (2), we calculated the basin of attraction of the map whena=0.1,b=1.14,c=1,d=1, ande=1,as demonstrated in Fig.9,respectively. Four hidden period-2 solutions were represented by red, blue, magenta, and black dots,respectively. The basins of these period-2 solutions were colored in orange,yellow,cyan,and green,respectively. From Fig. 9, the basins of attraction of the period-2 attractors are similar.

    Fig. 9. Basin of attraction of the memristive map (2) with (a,b,c,d,e)=(0.1,1.14,1,1,1). The unbounded basin of attraction which is the set of initial points going into the region({(x,y)||x|+|y|>100})is shown in white.The hidden period-2 solutions are denoted by red,blue,magenta,and black dots, respectively. The basins of these period-2 solutions are shown in orange,yellow,cyan,and green,respectively.

    3.3.2. The case: a=0.01

    Figure 10 displays random bifurcation diagrams and Lyapunov exponent spectrum diagram of the memristive map(2)with the parameter (a,c,d,e) = (0.01,1,1,1), wherebwas treated as a varying parameter and the initial states were randomly taken in[-15,15]. In Figs.10(a)and 10(b), the states of the attractors are denoted by black dots. In Fig. 10(c), the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent (Le2) are indicated by red and blue dots, respectively. Since there are infinitely many coexisting attractors,the range ofyis selected asy ∈[-15,15]in Fig.10(b). From Fig. 10, we can depict the impact of the parameterbon the hidden multi-stability of the memristive map (2) and a good coherence between the Lyapunov exponent diagram and the bifurcation diagram.

    Whenb=1.024, there exists hidden period-4 solutions,which become hidden period-8 solutions through the perioddoubling bifurcation. Whenb=1.028, hidden period-2 solutions arise. So a tiny range of hidden multi-stability is observed. The hidden period-2 solutions continue to exist.However,the hidden period-8 solutions turn to hidden period-16 solutions and finally to chaos via the cascades of perioddoubling bifurcations. The chaotic solutions run away atb=1.01. The hidden period-2 solutions (Fig. 11(a)) bifurcate to hidden period-4 solutions(Fig.11(b))after the perioddoubling bifurcation atb=1.529. Whenb=1.583, another hidden period-4 solutions appear. Then a new range of hidden multi-stability is shown. The two branches of hidden period-4 solutions convert into hidden period-8 solutions, period-16 solutions, and finally into hidden chaotic solutions. So the coexistence of hidden period-8 solution, period-16 solution,and chaotic solutions is observed. In the coexisting region,different types of solutions coexist. Whenb=1.728, there are only hidden two-piece chaotic solutions (Fig. 11(c)). After that, a window of hidden period-6 solutions (Fig. 11(d))and hidden six-piece chaotic solutions (Fig. 11(e)) is found.Whenb=1.812,there are only hidden two-piece chaotic solutions. Whenb=1.847,the two-piece chaotic solutions merge into one-piece chaotic solutions (Fig. 11(f)) which disappear atb=1.928.

    Fig. 10. Random bifurcation diagrams of (a) x, (b) y (y ∈[-15,15]), and(b)Lyapunov exponents(Les)diagram of the memristive map(2)calculated for b ∈[-2,-2]and(a,c,d,e)=(0.01,1,1,1). The black dots indicate the states of the attractors. The red and blue dots represent the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line corresponds to the zero value of the Lyapunov exponents.

    Fig.11. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-3,3],y ∈[-12,12]},(a,c,d,e)=(0.01,1,1,1)and(a)b=1.11(hidden period-2 solutions), (b) b=1.58 (hidden period-4 solutions), (c) b=1.728 (hidden two-piece chaotic solutions), (d) b=1.784 (hidden period-6 solutions),(e)b=1.81(hidden six-piece chaotic solutions),(f)b=1.865(hidden one-piece chaotic solutions),respectively.

    4. Conclusions

    A new class of 2D maps with a cosine memristor was presented and investigated in this paper. We discussed the existence of fixed points of these memristive maps first. Then we employed several numerical analysis tools to demonstrate their complex dynamics, including hidden periodic, chaotic,and hyper-chaotic solutions. The two-parameter bifurcation analysis of the proposed memristive map has been carried out to reveal the bifurcation mechanism of the complex dynamics.The proposed memristive maps can generate infinitely coexisting hidden attractors with the same shape but at different positions. So the map can exhibit the phenomena of extreme homogenous hidden multi-stability. They can potentially be applied to some real applications in secure communication,such as data and image encryptions. Future works will concentrate on investigating the high-dimensional memristive maps with extreme hidden heterogeneous multi-stability.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.11972173 and 12172340).

    猜你喜歡
    張麗萍劉洋海波
    搏浪
    科教新報(2023年25期)2023-07-10 05:59:40
    汽車ABS控制仿真分析
    A class of two-dimensional rational maps with self-excited and hidden attractors
    又見劉洋
    海峽姐妹(2020年6期)2020-07-25 01:26:10
    Three dimensional nonlinear shock waves in inhomogeneous plasmas with different size dust grains and external magnetized field
    山清水秀
    科教新報(2020年2期)2020-02-14 05:57:58
    劉洋作品
    藝術家(2019年9期)2019-12-17 08:28:19
    說海波
    劉洋 藏石欣賞
    寶藏(2018年8期)2018-08-31 07:28:00
    張麗萍 勿忘初心 立己達人
    日韩大片免费观看网站| 精品少妇久久久久久888优播| 又大又黄又爽视频免费| 国产精品一区二区性色av| 成人午夜精彩视频在线观看| 黄色配什么色好看| 亚洲电影在线观看av| 极品少妇高潮喷水抽搐| 久久精品久久久久久噜噜老黄| 久久久成人免费电影| 欧美一级a爱片免费观看看| 亚洲高清免费不卡视频| 中国国产av一级| 七月丁香在线播放| 亚洲av国产av综合av卡| 免费av不卡在线播放| 日韩国内少妇激情av| 亚洲丝袜综合中文字幕| 亚洲第一av免费看| 麻豆精品久久久久久蜜桃| 在线亚洲精品国产二区图片欧美 | 男男h啪啪无遮挡| 韩国高清视频一区二区三区| 午夜免费鲁丝| 国产亚洲最大av| 精品一区二区免费观看| 国产一区二区在线观看日韩| 久久国产乱子免费精品| 汤姆久久久久久久影院中文字幕| 亚洲av中文av极速乱| 草草在线视频免费看| 中国国产av一级| 精品人妻熟女av久视频| 亚洲第一av免费看| 高清黄色对白视频在线免费看 | 大片免费播放器 马上看| 一区二区三区免费毛片| 26uuu在线亚洲综合色| 一区二区三区精品91| av在线观看视频网站免费| 亚洲,欧美,日韩| 亚洲人成网站在线观看播放| 久久这里有精品视频免费| 午夜免费观看性视频| 成人综合一区亚洲| 精品熟女少妇av免费看| 性高湖久久久久久久久免费观看| 国产精品国产三级专区第一集| 久久毛片免费看一区二区三区| 女性生殖器流出的白浆| 色综合色国产| 亚洲av二区三区四区| 高清午夜精品一区二区三区| 插逼视频在线观看| 久久亚洲国产成人精品v| 久久久欧美国产精品| 美女中出高潮动态图| 少妇人妻精品综合一区二区| 国产女主播在线喷水免费视频网站| 亚洲久久久国产精品| 国产白丝娇喘喷水9色精品| 国产免费福利视频在线观看| 国产黄频视频在线观看| 免费观看a级毛片全部| 看非洲黑人一级黄片| 精品久久久久久久久av| 国产老妇伦熟女老妇高清| 观看免费一级毛片| 天天躁夜夜躁狠狠久久av| 国产精品三级大全| 亚洲欧美日韩另类电影网站 | 老司机影院毛片| 久久99蜜桃精品久久| 免费久久久久久久精品成人欧美视频 | 亚洲av.av天堂| 91精品国产国语对白视频| 亚洲精品456在线播放app| 久久鲁丝午夜福利片| 亚洲天堂av无毛| 国产高清有码在线观看视频| 国产精品伦人一区二区| 看十八女毛片水多多多| 成人国产av品久久久| 日日撸夜夜添| 免费观看的影片在线观看| 国产 一区 欧美 日韩| 成人亚洲精品一区在线观看 | 蜜桃亚洲精品一区二区三区| 三级经典国产精品| 中国三级夫妇交换| 国产片特级美女逼逼视频| 日日啪夜夜爽| 成年美女黄网站色视频大全免费 | 亚洲av.av天堂| 夜夜骑夜夜射夜夜干| 国产精品麻豆人妻色哟哟久久| 欧美三级亚洲精品| 我要看日韩黄色一级片| 在线亚洲精品国产二区图片欧美 | 欧美人与善性xxx| 免费观看a级毛片全部| 久久国产亚洲av麻豆专区| 成年av动漫网址| 久久国产精品大桥未久av | 大片免费播放器 马上看| av黄色大香蕉| 亚洲av欧美aⅴ国产| 日本wwww免费看| 九草在线视频观看| 久久久精品94久久精品| 久久久午夜欧美精品| 国产免费福利视频在线观看| 免费人妻精品一区二区三区视频| 国产精品久久久久久av不卡| 九九在线视频观看精品| tube8黄色片| av视频免费观看在线观看| 又爽又黄a免费视频| 在线观看免费视频网站a站| 少妇的逼水好多| 91狼人影院| 久久婷婷青草| 国产在线男女| 女人十人毛片免费观看3o分钟| 国产高潮美女av| 精品午夜福利在线看| 一本一本综合久久| 人人妻人人爽人人添夜夜欢视频 | 在线观看免费日韩欧美大片 | 91久久精品国产一区二区三区| 久久久久性生活片| 精品国产乱码久久久久久小说| 久久久精品94久久精品| 亚洲国产成人一精品久久久| 国产女主播在线喷水免费视频网站| 国产精品爽爽va在线观看网站| 少妇 在线观看| 日韩国内少妇激情av| 日韩制服骚丝袜av| 国产人妻一区二区三区在| 日韩电影二区| 日韩中字成人| 女性被躁到高潮视频| 日韩成人伦理影院| 亚洲av男天堂| 国产免费一区二区三区四区乱码| 国产日韩欧美亚洲二区| 国产极品天堂在线| 久久6这里有精品| 一个人免费看片子| 亚洲欧美精品专区久久| 久久韩国三级中文字幕| 成人午夜精彩视频在线观看| 日韩制服骚丝袜av| 国产中年淑女户外野战色| 免费看光身美女| 七月丁香在线播放| 久久人人爽人人片av| 国产成人精品福利久久| 免费av中文字幕在线| 妹子高潮喷水视频| 久久人妻熟女aⅴ| 日韩大片免费观看网站| 国产白丝娇喘喷水9色精品| 欧美日韩视频精品一区| 免费观看在线日韩| 男女边摸边吃奶| 亚洲av.av天堂| av在线播放精品| 性色av一级| 18+在线观看网站| 伦理电影大哥的女人| 七月丁香在线播放| 亚洲av综合色区一区| 国产av精品麻豆| 国产亚洲午夜精品一区二区久久| 欧美成人午夜免费资源| 亚洲精品自拍成人| 欧美日韩视频高清一区二区三区二| 国产高清国产精品国产三级 | 国产伦理片在线播放av一区| 成人亚洲欧美一区二区av| 欧美精品一区二区免费开放| 啦啦啦在线观看免费高清www| 国产成人免费观看mmmm| 国产精品欧美亚洲77777| 久久 成人 亚洲| 日韩亚洲欧美综合| av线在线观看网站| 亚洲欧美日韩东京热| av在线观看视频网站免费| 狂野欧美激情性xxxx在线观看| 深爱激情五月婷婷| av黄色大香蕉| 免费观看a级毛片全部| 能在线免费看毛片的网站| 精品视频人人做人人爽| 最新中文字幕久久久久| 免费黄色在线免费观看| 高清午夜精品一区二区三区| 久久6这里有精品| 日韩电影二区| 七月丁香在线播放| 亚洲国产成人一精品久久久| 我的老师免费观看完整版| 最近中文字幕高清免费大全6| 乱码一卡2卡4卡精品| 亚洲av中文av极速乱| 美女内射精品一级片tv| 国产精品99久久久久久久久| 国产亚洲91精品色在线| 久久久久久久久久久丰满| 日韩人妻高清精品专区| 美女cb高潮喷水在线观看| 亚洲性久久影院| 日韩三级伦理在线观看| 免费黄网站久久成人精品| 永久免费av网站大全| 日本av手机在线免费观看| 国产色爽女视频免费观看| 国产精品福利在线免费观看| 久久久久网色| 亚洲色图av天堂| 精品久久久久久久久av| av在线老鸭窝| 日韩不卡一区二区三区视频在线| 一级黄片播放器| 久久国产精品大桥未久av | 午夜激情福利司机影院| 亚洲国产高清在线一区二区三| 天美传媒精品一区二区| 少妇的逼水好多| 久久久久久久久大av| 99热这里只有是精品在线观看| 九九在线视频观看精品| 在线观看免费高清a一片| 日韩一区二区视频免费看| 3wmmmm亚洲av在线观看| 国产亚洲一区二区精品| 你懂的网址亚洲精品在线观看| 青青草视频在线视频观看| 欧美极品一区二区三区四区| 国产日韩欧美亚洲二区| 色哟哟·www| 老司机影院成人| 高清毛片免费看| 久久毛片免费看一区二区三区| 欧美区成人在线视频| 亚洲av男天堂| 一本久久精品| 国产成人精品一,二区| 人妻夜夜爽99麻豆av| 日韩中文字幕视频在线看片 | 肉色欧美久久久久久久蜜桃| 高清日韩中文字幕在线| 18禁动态无遮挡网站| 中文字幕av成人在线电影| 丰满少妇做爰视频| 欧美激情国产日韩精品一区| 国产高清国产精品国产三级 | 国产精品精品国产色婷婷| 免费黄频网站在线观看国产| 亚洲美女视频黄频| 在线亚洲精品国产二区图片欧美 | 三级国产精品欧美在线观看| av国产久精品久网站免费入址| 国产毛片在线视频| 精品午夜福利在线看| 蜜桃久久精品国产亚洲av| 又爽又黄a免费视频| 久久女婷五月综合色啪小说| 日日摸夜夜添夜夜爱| 欧美老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 内地一区二区视频在线| 久久99蜜桃精品久久| 下体分泌物呈黄色| 免费观看在线日韩| 一本久久精品| 免费大片黄手机在线观看| 丰满乱子伦码专区| a级一级毛片免费在线观看| 成人国产av品久久久| 国产免费视频播放在线视频| 国产精品国产av在线观看| 亚洲精品色激情综合| 成年av动漫网址| 街头女战士在线观看网站| 精品一区二区三区视频在线| 欧美三级亚洲精品| 最近手机中文字幕大全| 黄色日韩在线| 嫩草影院入口| 亚洲经典国产精华液单| 卡戴珊不雅视频在线播放| 久久亚洲国产成人精品v| 久久久国产一区二区| 97在线人人人人妻| 少妇人妻久久综合中文| 大香蕉97超碰在线| 亚洲av中文字字幕乱码综合| 欧美最新免费一区二区三区| 极品教师在线视频| h视频一区二区三区| 99国产精品免费福利视频| 又爽又黄a免费视频| 97超碰精品成人国产| 亚洲欧美一区二区三区黑人 | 99久久精品热视频| 国产成人免费观看mmmm| 狂野欧美白嫩少妇大欣赏| 日本黄色日本黄色录像| 99久久中文字幕三级久久日本| 丝袜脚勾引网站| 久久精品国产a三级三级三级| 亚洲精品aⅴ在线观看| 午夜福利视频精品| 欧美激情极品国产一区二区三区 | 久久久久国产网址| 欧美日韩视频高清一区二区三区二| 午夜免费男女啪啪视频观看| a级毛片免费高清观看在线播放| 亚洲av成人精品一区久久| 国产成人91sexporn| 韩国高清视频一区二区三区| 免费看光身美女| 国产 一区 欧美 日韩| 99热全是精品| 久久久欧美国产精品| 欧美bdsm另类| 亚洲aⅴ乱码一区二区在线播放| 免费在线观看成人毛片| 涩涩av久久男人的天堂| 九草在线视频观看| 久久久久精品久久久久真实原创| 18禁在线无遮挡免费观看视频| 黄色欧美视频在线观看| 蜜臀久久99精品久久宅男| 亚洲高清免费不卡视频| 国产在线男女| 成人国产麻豆网| 欧美精品亚洲一区二区| 99国产精品免费福利视频| 国产亚洲最大av| 久久久精品免费免费高清| 国产一区亚洲一区在线观看| 直男gayav资源| 精华霜和精华液先用哪个| 建设人人有责人人尽责人人享有的 | 在线看a的网站| 一本久久精品| 国产成人精品久久久久久| 丰满少妇做爰视频| 欧美三级亚洲精品| 在线 av 中文字幕| 日韩人妻高清精品专区| 国产中年淑女户外野战色| 精品人妻偷拍中文字幕| 少妇熟女欧美另类| 国产午夜精品久久久久久一区二区三区| 最近的中文字幕免费完整| 1000部很黄的大片| 国产黄色视频一区二区在线观看| 亚洲精品久久久久久婷婷小说| 国产精品99久久99久久久不卡 | 免费观看av网站的网址| 亚洲av免费高清在线观看| 国产精品久久久久久久电影| 老司机影院成人| 日本黄大片高清| 久久久色成人| 交换朋友夫妻互换小说| 免费黄色在线免费观看| 中文欧美无线码| 婷婷色av中文字幕| 欧美日韩精品成人综合77777| 美女视频免费永久观看网站| 亚洲欧美日韩无卡精品| 黄色视频在线播放观看不卡| 看十八女毛片水多多多| 天天躁夜夜躁狠狠久久av| 成人美女网站在线观看视频| 你懂的网址亚洲精品在线观看| 国产亚洲91精品色在线| 干丝袜人妻中文字幕| 在线天堂最新版资源| 精品久久国产蜜桃| 丝瓜视频免费看黄片| 日韩一本色道免费dvd| 我要看黄色一级片免费的| 成人美女网站在线观看视频| 2022亚洲国产成人精品| 国产亚洲精品久久久com| 日韩国内少妇激情av| 九九久久精品国产亚洲av麻豆| videossex国产| 中文在线观看免费www的网站| 日本与韩国留学比较| 最近的中文字幕免费完整| 在线天堂最新版资源| 日本av手机在线免费观看| h视频一区二区三区| 久久久成人免费电影| 99热全是精品| 久久久久久九九精品二区国产| 国产精品一区www在线观看| 成人毛片a级毛片在线播放| 人妻少妇偷人精品九色| 亚洲精品,欧美精品| 一级av片app| 26uuu在线亚洲综合色| 亚洲不卡免费看| 99热网站在线观看| 久久国产精品男人的天堂亚洲 | 91精品一卡2卡3卡4卡| 超碰av人人做人人爽久久| 日韩,欧美,国产一区二区三区| 国产黄片视频在线免费观看| av天堂中文字幕网| 亚洲欧美清纯卡通| 久久热精品热| 麻豆精品久久久久久蜜桃| 久久国产乱子免费精品| 国产v大片淫在线免费观看| 少妇被粗大猛烈的视频| 伊人久久国产一区二区| 国产亚洲欧美精品永久| 国产伦理片在线播放av一区| 91精品国产国语对白视频| 最近中文字幕2019免费版| 在现免费观看毛片| 2022亚洲国产成人精品| 狠狠精品人妻久久久久久综合| 国产精品秋霞免费鲁丝片| 高清在线视频一区二区三区| 高清av免费在线| 赤兔流量卡办理| 天堂8中文在线网| 精品酒店卫生间| 国语对白做爰xxxⅹ性视频网站| 人妻夜夜爽99麻豆av| 秋霞在线观看毛片| 26uuu在线亚洲综合色| 精品亚洲成a人片在线观看 | 国产伦精品一区二区三区四那| 亚洲av电影在线观看一区二区三区| 亚洲欧美日韩东京热| 好男人视频免费观看在线| 欧美xxⅹ黑人| a级毛色黄片| 国产一区二区在线观看日韩| 九九爱精品视频在线观看| 日日撸夜夜添| 欧美变态另类bdsm刘玥| 最近中文字幕高清免费大全6| 日韩,欧美,国产一区二区三区| 超碰av人人做人人爽久久| 久久久精品免费免费高清| 大码成人一级视频| 丰满少妇做爰视频| 大香蕉97超碰在线| 免费人成在线观看视频色| 午夜福利网站1000一区二区三区| 成人毛片60女人毛片免费| 日本av手机在线免费观看| 成人国产av品久久久| 日本av手机在线免费观看| 少妇高潮的动态图| 国产亚洲精品久久久com| 日韩av在线免费看完整版不卡| 一级av片app| 日本vs欧美在线观看视频 | 边亲边吃奶的免费视频| a级毛色黄片| 日韩不卡一区二区三区视频在线| 美女中出高潮动态图| 欧美一区二区亚洲| 黄色日韩在线| 国产美女午夜福利| 亚洲精品日韩av片在线观看| 久久久a久久爽久久v久久| 国产精品欧美亚洲77777| 伊人久久精品亚洲午夜| 毛片女人毛片| 国产精品福利在线免费观看| 熟妇人妻不卡中文字幕| 欧美bdsm另类| 国产欧美日韩一区二区三区在线 | 精品人妻偷拍中文字幕| 日本爱情动作片www.在线观看| 一个人免费看片子| 国产精品秋霞免费鲁丝片| 欧美成人精品欧美一级黄| 中文字幕av成人在线电影| 国产淫片久久久久久久久| 高清午夜精品一区二区三区| 97热精品久久久久久| 色网站视频免费| 欧美xxxx黑人xx丫x性爽| h日本视频在线播放| 在线观看免费高清a一片| 波野结衣二区三区在线| 国精品久久久久久国模美| 亚洲中文av在线| 日本欧美国产在线视频| 欧美日韩在线观看h| 国产亚洲av片在线观看秒播厂| 91久久精品国产一区二区三区| 国产精品.久久久| 亚洲国产色片| 3wmmmm亚洲av在线观看| 男女无遮挡免费网站观看| 国产精品女同一区二区软件| 全区人妻精品视频| 色视频www国产| 久久久久久久久大av| 久久久欧美国产精品| 亚洲成人手机| 亚洲精品自拍成人| 亚洲图色成人| 国产精品欧美亚洲77777| 少妇高潮的动态图| 国产 精品1| 久久久久精品久久久久真实原创| 亚洲人成网站高清观看| 一级二级三级毛片免费看| 久久久久久久久久人人人人人人| 在线免费观看不下载黄p国产| 搡女人真爽免费视频火全软件| 中文字幕久久专区| 校园人妻丝袜中文字幕| 亚洲欧美一区二区三区黑人 | 狠狠精品人妻久久久久久综合| 国产一区亚洲一区在线观看| 97超碰精品成人国产| 国产av国产精品国产| 国产av码专区亚洲av| 国产亚洲一区二区精品| 爱豆传媒免费全集在线观看| 国产探花极品一区二区| 精品一区二区三区视频在线| 少妇丰满av| 国产伦精品一区二区三区四那| 久久韩国三级中文字幕| 男人舔奶头视频| 九九爱精品视频在线观看| 一级a做视频免费观看| 黄色一级大片看看| 水蜜桃什么品种好| 亚洲av成人精品一二三区| 小蜜桃在线观看免费完整版高清| 国精品久久久久久国模美| 1000部很黄的大片| 99热这里只有精品一区| 91久久精品国产一区二区三区| 黑丝袜美女国产一区| 国产精品一二三区在线看| 日日撸夜夜添| 99国产精品免费福利视频| 在线 av 中文字幕| 久久精品久久久久久噜噜老黄| 人妻 亚洲 视频| 欧美成人一区二区免费高清观看| 日本与韩国留学比较| 一级爰片在线观看| 久久6这里有精品| 国产永久视频网站| 亚洲不卡免费看| 搡老乐熟女国产| 久久人妻熟女aⅴ| 如何舔出高潮| 九色成人免费人妻av| h日本视频在线播放| 日韩一区二区三区影片| 久久久久视频综合| 欧美激情极品国产一区二区三区 | 精品人妻视频免费看| 国产成人精品一,二区| 国精品久久久久久国模美| 久久精品人妻少妇| 国产大屁股一区二区在线视频| 综合色丁香网| 欧美精品人与动牲交sv欧美| 国产久久久一区二区三区| 伦理电影免费视频| .国产精品久久| 韩国高清视频一区二区三区| 中文精品一卡2卡3卡4更新| 九草在线视频观看| 亚洲精品第二区| 黑人高潮一二区| 少妇高潮的动态图| 国产乱来视频区| 又粗又硬又长又爽又黄的视频| 看十八女毛片水多多多| 国产视频内射| 亚洲av福利一区| 岛国毛片在线播放| 美女内射精品一级片tv| 亚洲精品亚洲一区二区| 丝袜喷水一区| 久久6这里有精品| 亚洲精品久久久久久婷婷小说| 国产成人a区在线观看| 啦啦啦视频在线资源免费观看| 久久久午夜欧美精品| 久久国产精品男人的天堂亚洲 | 大陆偷拍与自拍| 久久久久精品性色| 少妇丰满av| 欧美日本视频| 久久国内精品自在自线图片| 亚洲精品日韩av片在线观看| 欧美变态另类bdsm刘玥| 99久久精品国产国产毛片|