• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals

    2022-10-26 09:46:26InesBenAmorLotfiSaadaouiAbdulazizAlharbiTalalAlthagafiandTaoufikSoltani
    Chinese Physics B 2022年10期

    Ines Ben Amor LotfiSaadaoui Abdulaziz N.Alharbi Talal M.Althagafi and Taoufik Soltani

    1Universit′e Tunis El Manar,Laboratoire de Physique de la Mati`ere Molle et de la Mod′elisation Electromagn′etique,2092 Tunis

    2Physics Department,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia

    Keywords: fluorine liquid crystal, polar nematic, ferroelectric nanoparticles, thermal stability, dielectric behavior

    1. Introduction

    The originality of liquid crystals lies in the fact that it is very easy to act on their structure by external physical agents. Liquid crystals were present more than a century ago out of purely academic interest, owing to long efforts,new effects of considerable technological importance have been observed. The study of these materials has experienced rapid development since the 1970s. In the majority of thermotropic liquid crystals generally made up of organic compounds, the cohesion is ensured by Van der Waals, dipolar or hydrophilic/hydrophobic interactions. Relatively lower in energy,these interactions have little or no specificity,no stoichiometry,and no directivity,in contrast to quantum forces,a large part of energy exists in covalent bonds.

    With an intermediate value of energy and a specific and reversible character, other intermolecular interactions such as hydrogen bonds allow self-assembly of complementary molecules, and thus leading the supramolecular liquid crystal to be obtained.[1–12]Aromatic carboxylic acids were often utilized in the preparation of hydrogen bonding liquid crystals (HBLC’s). Nowadays, H-bonded liquid crystal is being widely explored especially for their easy synthetic process and wide potential applications. Indeed, it can be used in various optical and electro-optical devices such as liquid crystal capacitors, optical storage of data, optical filters in the visible and infra-red region.[13]Most of HBLC mesogens are made from symmetric and non-symmetric dimers of molecules showing nematic and smectic phases.[14–20]Several complexes have been obtained through intermolecular hydrogen bonding including systems consisting of derivatives of benzoic acid as hydrogen bond donors and pyridine moieties as hydrogen bond acceptors.[21–23]In addition,hydrogenbonded LC polymers with interesting behaviors have also been obtained.[24–27]Several reports have discussed the influence of the structure on the thermal stability and mesomorphic phase sequence of the material of this type. It has been found that lateral substituent with different sizes and polarities widely improves many properties of liquid crystalline materials.[14]Another element that can affect the mesophase range of the liquid crystals is the chain of the compounds. Hagaret al.[28]have demonstrated that the isotropic–nematic phase transition temperature and the entropy ΔSINincrease with chain length increasing. Another way to create nanomaterials with desired behaviors is to prepare the nanocomposite based on liquid crystal matrix doped with numerous types of nanoparticles including semiconductor,[29–31]ferromagnetic,[32,33]and ferroelectric.[34–36]By doping antiferroelectric liquid crystal with BaTiO3nanoparticles,Laliket al.have obtained ions capturing, low viscosity, a drop in threshold voltage and spontaneous polarization,due to faster molecular switching.[36]Ayebet al.have also used semiconductor nanoparticles to modify liquid crystal properties and have shown that after doping with 5CB with Cu–TiO2nanoparticles,the isotropic–nematic phase transition temperature increases by almost 2°C,and the optical and dielectric anisotropy is also observed.[31]

    Our efforts devote to the understanding of the relationship between the chemical structure and physical properties of the fluorinated liquid crystalline materials.[17,37]This work represents the continuation of the studies of HBLCs with alkyloxy benzoic group, with an aim to obtain the cybotactic nematic phase that can be applied to electro-optical devices and photonics. Synthesis of compounds under the study has been presented earlier.[37]The objective of the present work is to study the effect of the chain length on mesomorphic, dielectric, and structural properties. In addition, we present the influence of LiNbO3nanoparticles with diameter about 150 nm on the physical properties of the 8OBAF (n=8) liquid crystalline matrix.

    2. Materials and methods

    The liquid crystal materials used in the present study were 4-(nalkyloxy)-3-fluoro benzoic acid(nOBAF)withn=7–12(as shown in Fig.1).

    Fig.1.General chemical formula of the compounds under study(n=7–12).

    The general phase sequences of 8OBAF, 10OBAF, and 12OBAF were described in Refs. [17,37]. The complexes were characterized by differential scanning calorimetry(DSC)and POM. The measured DSC thermograms were obtained in heating and cooling cycle with a scan rate of 5°C/min.The mesophases were identified by the POM.The compounds were loaded into ITO electro-optical cells with 8 μm in thickness by capillary action at the isotropic temperature of the LC.The filled cell was cooled slowly and the alignment of the sample was checked under crossed polarizes. Optical textural observations were made with a polarizing optical microscope(POM)(Olympus BX51)equipped with a digital charge coupled device(CCD)camera(Sony). The temperature was controlled within±1°C/min. The LC textures were processed,analyzed and stored with aid of imaging software(Archimed).General chemical formula of the compounds under study is shown in Fig.1.

    The ferroelectric nanoparticles LiNbO3,which purchased from Merck were used in this study as dopant. The LiNbO3has a spherical shape and average size about 150 nm. The mixture of 8OBAF and the NPs with 1 wt%was prepared.

    3. Results and discussion

    3.1. Host liquid crystalline material

    3.1.1. Thermal stability

    The thermal behaviors and the phase transition temperatures are investigated by using the DSC thermograms as shown in Fig. 2. The hydrogen-bonded complex DSC thermograms are obtained during heating and cooling cycles with the same scan rate 10°C/min.For 7OBAF and 8OBAF,the cooling scan of the DSC thermogram reveals four transitions: isotropic(I)–nematic (N), nematic (N)–smectic C (Sm C), smectic C (Sm C)–smectic F(Sm F),and Smectic F(Sm F)–crystal(Cr),with transition temperatures at 118°C,93°C,53°C,and 45°C for 7OBAF and 115.8°C,96.5°C,75.3°C,and 56°C for 8OBAF,respectively. Besides, the heating cycle shows for 7OBAF three distinct transitions from Cr→SmC→N→I at 86°C,101.6°C, 121.8°C, and two transitions for 8OBAF from Cr→N→I at 92°C,respectively. These transition temperatures are in consistence with the POM observations. Figures 3(a)–3(c) show the textures of the nematic phase, the SmC phase,and the SmF phase,respectively. It should be mentioned that the SmF phase is observed only on the cooling scan which is a monotropic mesophase.

    Fig.2. DSC curves during heating and cooling scan for nOBAF.

    Fig.3. Polarized optical microscopy textures of the phases obtained in complexes: (a)nematic phase,(b)SmC phase,and(c)SmF phase.

    The other complexesnOBAF(n=9,10,11,and 12)reveal only the nematic and the SmC phases during the heating and the cooling scan.

    Figure 4 shows the phase transition temperatures with respect to chain length. The highest clearing temperature(119.5°C) is obtained for 7OBAF. Moreover, 12OBAF possesses the highest melting temperature at 87°C and the lowest clearing point temperature of 109°C, respectively. Such characteristics show that a shorter carbon chain length gives appealing mesomorphic quality through a lower melting point temperature and, in particular, a wide temperature range of the nematic phase. Remarkably,the melting point temperature does not decrease as the carbon chain length increases. As is common with all compounds, SmC phase is observed. The number of carbon atoms has no discernible effect on the inhibition of SmC. However, the compoundsn=7 andn=8 are most favorable to have the SmF mesophase. Increasing the length of the carbon chain reduces the clearing temperature substantially. As a result,the length of the flexible alkyl chain plays a role in suppressing the SmF phase and lowering the clearing point.

    Fig.4. Plot of transition temperatures against alkyl chain lengths(n).

    Obviously, the primary consequence in these series is a significant push towards a less ordered system as the length grows. Thus, asnsteadily increases, we expect to observe a steady decrease in the value of clearing temperature. This is exactly what is discovered; however,the value of the melting temperature increases proportionally with chain length increasing, which is in good agreement with the experimental result. This is an important finding since the decrease in the clearing temperature must be directly correlated with a significant decline in the order parameterS. Contrariwise, the increase of the melting temperature may be due to the increase of the cohesion molecule caused by the increase of the C–C bond. It is worthwhile to mention that increasing carbon number chain may break the molecular symmetry,so that the formation of the SmF phase is inhibited. Thus,a close inspection of the clearing temperature values for a homologous series may provide an indirect method of evaluating mesophase type in side chain LC.

    It should be noted that in complexes withn=7 and 8,the nematic and SmC phases are more stable. The decrease of the SmC range withnincreasing can be explained by the fact that when the chain length increases, the strength of the terminal aggregation increases,resulting in the decrease of the smectic range.

    3.1.2. Order parameters and birefringence

    At the isotropic to nematic transition, the molecules of LCs are statistically oriented along the average direction,which called director,and thereby the molecules have the tendency to rotate about the director, which is called the order parameter (S). We estimate orientational order parameterSfrom the birefringence data described later and find that all parameters change with chain length increasing. In fact, the order parameter and the birefringence are proportional to theTNIaccording to the following expressions:[38,39]

    whereβis an exponent characteristic of the material, Δn0is the birefringence atT= 0 K andTNIis the nematic-toisotropic phase transition temperature(the clearing point).Δn0andβare obtained from a fit of Eq. (1) to experimental data(Fig.5)and regrouped into the four homologues in Table 1.

    The experimental data for birefringence of the four compounds are shown in Fig. 5. Increasing the carbon number causes the birefringence to drop slightly from 0.18 to 0.11 at 100°C.

    Table 1. Optical parameters of complexes under study.

    Fig.5. Temperature-dependent birefringence of complexes under study.

    Fig.6. Temperature-dependent order parameter of complexes under study.

    The lower birefringence of the systems is primarily due to the lower clearing points of the systems. High birefringence(Δn) values are expected for the compounds with long chain,as the increasing of chain length may increase theπ-electron conjugation through the entire molecule. However, this lowers the birefringence of the compounds, which may be due to the increase of carbon number in flexible chain that trapsπ-electrons and pull them away from the conjugation along the main molecular axis. Specially, we find that the spontaneous polarization is gradually weakened by increasing the flexible chain length.[17]Here we guess that the bent shape molecule may be deformed by increasing molecule length and the molecule tends to have linear form. Figure 6 shows the curves of order parameterS versustemperature for the four compounds. SinceTNIdecreases with chain length decreasing andSis proportional to this parameter according to Eq. (2),we can confirm that the decrease ofTNIwith the chain length increasing is due to the decrease ofS. Moreover,the order parameter S decreases as temperature increases which is in good agreement with Eq. (2). This reflects the steep temperature variations of various properties exhibited by these compounds,and the fact that the small number of carbon atoms in the chain leads to a relatively high value of the anisotropy of molecular polarizability,which is particularly desirable for elongating theπ-electron conjugation through the molecule by increasing the polarizability along the principal molecular axis.

    3.2. Nanocomposites LiNbO3/8OBAF

    3.2.1. Thermal analysis

    Figure 7 presents the DSC thermograms corresponding to pure sample and doped sample. As can be seen,the isotropic–nematic temperature phase transition (TN-I) for the doped sample is lower than for the pure 8OBAF.TheTN-Idecreases from 116°C for 8OBAF to 113.2°C for doped sample. This decrease may be explained by the decrease of the order,which is caused by inserting the NPs in the pure LCs. Owing to the dipole moment, ferroelectric nanoparticles of LiNbO3generate strong electric fields and interactions around them. Therefore the weak planar anchoring can be induced leading to an easy adaptation of the LCs molecules anchored on the NPs to the surrounding, which in turn reduces the nematic order parameter,and thus reducing the transition temperature. This behavior is consistent with that obtained by our group in the nematic 5CB doped with magnetic NPs.[33]In addition, the decrease of phase transition temperature has been observed in the nematic doped by the gold nanoparticles.[40]Mishraet al.[40]have attributed this decrease to the dilution phenomenon. It should be mentioned that the chain length dependence of melting temperature shows a non-universal dependence. Generally,the melting temperature decreases with the increase of the alkyl chain length of liquid crystalline which,in the present case,is consistent with the results in Refs.[28,41],but the melting temperature increases with the number of carbon atoms. Moreover, there appears an odd–even effect of the alkyl chain which has already been observed in several instances.[42,43]

    The isotropic–nematic phase transition is also followed by the optical microscopy observations. Figure 8 illustrates the evolution of this transition when the doped sample cooled from the isotropic to nematic phase. At first the small spherical droplets suspended in the isotropic phase and a biphasic state is observed as shown in Fig.8(a). After that the droplets grow into different size droplets and the NPs concentrate at the droplet interface. In the case of further cooling, the nematic domain grows to form the point and line defects,where the aggregations are concentrated as shown in Fig.8(c). This result demonstrates the stable state with the spherical droplets and separate phases without adding any substrate, while some researches have shown that the achievement of this phenomenon implies the presence of surfactant. In addition, theTI-Ndecreases from 116°C for pure compound to 113.2°C for the doped one. The reduction ofTI-Nmay be due to the decrease of the order parameter(S)caused by adding the NPs.

    Fig. 7. DSC traces of 8OBAF (blue color) and NPs/8OBABF (red color).Heating and cooling at a rate of 10 °C/min.

    Fig.8. Optical images of texture of LiNbO3/8OBAF at isotropic–nematic transition.

    3.2.2. Dielectric and electrical properties

    In order to understand the effect NPs on the electrical and dielectric behaviors, the real part (ε′) and imaginary part (ε′′) of dielectric permittivity are measured by using the impedance/gain phase analyzer (Solartron SI1260) in a frequency range from 20 Hz to 10 MHz.

    Fig.9. Frequency-dependent ε′(f)and ε′′(f)for 8OBAF and NPs/8OBAF.

    Figure 9 shows these frequency-dependent parameters in nematic phase at 108°C.The increase of dielectric permittivity(ε′andε′′)due to the dispersion of the NPs is clearly observed. This result indicates that the presence of the LiNbO3enhances the conductivity of the nanocomposites. It should be mentioned that this behavior have already been observed in Ref.[36].

    In addition,both the real(Z′)element and imaginary(Z′′)element of the complex electrical impedance (Z*) are measured in a frequency range of 1 Hz–10 MHz. Therefore, an equivalent electric circuit(EEC)model is proposed in order to analyze the impedance spectrum (Fig. 10). The EEC model can be simplified as follows: the resistor for the resistivity of the cell’s electrodes and connectors (RCR, in series with a parallel set ofCLCcapacitors andRLCresistor,approximating the active and reactive behavior of the LCs, Sprokel[44]have added capacitance elementCDLin series toCLCandRLCto model low frequency behavior in a region of 1 Hz–100 Hz,and Zafraet al.[45]have included a finite diffusion Warburg element,W,connected in parallel toCDLto represent the drift of charged species near the electrode. The impedance of the Warburg element can be written as[46]whereTis the temperature expressed in Kelvin,Ris the gas constant,NAis the Avogadro’s number,Fis the Faraday constant,Ais the surface area,nsis the surface concentration of the ions,andδNis the thickness of the Nernst diffusion layer.The fitting parameters are listed in Table 2.

    Fig.10. Nyquist plots of 8OBAF and LiNbO3/8OBAF nanocomposites.

    As seen in Table 1, the presence of LiNbO3NPs in 8OBAF increases the capacitive effects of theCDLand reduces the bulk resistanceRLC. The value of the double layer capacitanceCDLis very higher than that of the bulk capacitanceCLC,which is in good agreement with that obtained for 5CB doped by gold nanoparticles.[47]On the other hand, the increment inCDLby LiNbO3NPs in our case can be attributed to the enhancement of the space charge motion,therefore the ion moves easily toward the electrode. This is consistent with the decrement inWsrdue to the increase of the diffusion coefficient according to Eq.(4). It should be mentioned that this behavior is quite useful because the presence of LiNbO3NPs increases the conductivity and reduces the resistivity of the system. Indded,the bulk resistance decreases from 2.83 MΩ for the 8OBAF to 1.92 MΩ for the doped sample as shown in Table 2,while,the conductivity increases from 0.75×10-6m·s-1for the pure sample to 1.3×10-6m·s-1for the doped one at 1 kHz and 105°C.This behavior can be explained by the decrease in the rotaional viscosity and response time when 8ONAF is doped by LiNbO3NPs. We have reported in our previous work on the influence of LiNbO3on the electro–optic behavior of the 8OBAF and found that the rotational viscosity decreases from 50 mPa·s for undoped 8OBAF to 7 mPa·s for 8OBAF + 1%NPs and the response time decreases from 16 ms for undoped 8OBAF to 8 ms for 8OBAF+1%NPs.[35]As consequence the space charge motion is enhanced leading to the bulk resistance to decrease and the conductivity to increase.

    Table 2. Impedance spectroscopy parameters of elementsin EEC model obtained from measured impedance spectra.

    4. Conclusions

    A new series of fluorinated hydrogen bonded liquid crystals from 4-n-alkoxybenzoic acid(nOBAF)is studied by using the POM,DSC,and dielectric technique. The DSC and POM show that the enantiotropic SmF, which is depressed in the compound with a long chain length. It is found that the clearing temperature decreases with chain length increasing.Moreover, all the compound contains the nematic and SmC phase.On the other hand the influence of LiNbO3on the isotropic–nematic phase transition for the 8OBAF is investigated. This transition reveals the formation of the spherical droplets and the decrease of the temperature transition. In addition the presence of the nanoparticles increases the conductivity and reduces the resistivity of the doped sample.

    亚洲精华国产精华精| 亚洲精品粉嫩美女一区| 香蕉丝袜av| 啦啦啦在线免费观看视频4| 色老头精品视频在线观看| 久久久久久人人人人人| 精品人妻在线不人妻| 日韩欧美免费精品| 女人被狂操c到高潮| 国产在线精品亚洲第一网站| 成年人午夜在线观看视频| 亚洲 国产 在线| 高清视频免费观看一区二区| 黄片大片在线免费观看| 久久人妻av系列| 久久精品国产综合久久久| 免费久久久久久久精品成人欧美视频| 色综合婷婷激情| 97人妻天天添夜夜摸| 12—13女人毛片做爰片一| 免费在线观看影片大全网站| 国产精品一区二区在线不卡| 黄片大片在线免费观看| 高清av免费在线| www.熟女人妻精品国产| 建设人人有责人人尽责人人享有的| av线在线观看网站| 国产欧美亚洲国产| 国产极品粉嫩免费观看在线| 99精品在免费线老司机午夜| 午夜视频精品福利| 国产免费现黄频在线看| 亚洲成a人片在线一区二区| 午夜日韩欧美国产| 村上凉子中文字幕在线| 久久中文字幕人妻熟女| a级毛片在线看网站| 亚洲欧美激情综合另类| 自拍欧美九色日韩亚洲蝌蚪91| 美女高潮到喷水免费观看| 亚洲人成77777在线视频| 三上悠亚av全集在线观看| 丰满饥渴人妻一区二区三| a级毛片黄视频| 精品国产国语对白av| 精品一区二区三区av网在线观看| 99热网站在线观看| 美女 人体艺术 gogo| 无人区码免费观看不卡| 别揉我奶头~嗯~啊~动态视频| 91国产中文字幕| 视频在线观看一区二区三区| 亚洲五月婷婷丁香| 欧美精品人与动牲交sv欧美| 国产黄色免费在线视频| 亚洲精品自拍成人| 男女下面插进去视频免费观看| 人成视频在线观看免费观看| 视频区欧美日本亚洲| 日本黄色日本黄色录像| 欧美另类亚洲清纯唯美| 成年女人毛片免费观看观看9 | 精品免费久久久久久久清纯 | 丝袜人妻中文字幕| 夜夜爽天天搞| 免费观看人在逋| 国产有黄有色有爽视频| а√天堂www在线а√下载 | 99riav亚洲国产免费| 亚洲欧美一区二区三区黑人| 日韩视频一区二区在线观看| 1024香蕉在线观看| 啦啦啦免费观看视频1| 人人妻,人人澡人人爽秒播| 国产亚洲一区二区精品| 色老头精品视频在线观看| 在线观看66精品国产| 飞空精品影院首页| 午夜视频精品福利| 色老头精品视频在线观看| 国产精品一区二区精品视频观看| 热99国产精品久久久久久7| 黑人操中国人逼视频| xxxhd国产人妻xxx| 可以免费在线观看a视频的电影网站| 欧美日韩一级在线毛片| 亚洲av熟女| 日韩欧美免费精品| 黄网站色视频无遮挡免费观看| 亚洲专区字幕在线| 99国产精品99久久久久| 精品少妇久久久久久888优播| 美女 人体艺术 gogo| 亚洲熟女精品中文字幕| 国产欧美日韩一区二区精品| 欧美乱妇无乱码| 69av精品久久久久久| 亚洲男人天堂网一区| 搡老岳熟女国产| 无遮挡黄片免费观看| 国产日韩欧美亚洲二区| 午夜福利视频在线观看免费| 亚洲精品国产区一区二| 成人影院久久| 黄色片一级片一级黄色片| 18在线观看网站| 视频在线观看一区二区三区| 99国产精品免费福利视频| 亚洲成人国产一区在线观看| 纯流量卡能插随身wifi吗| 久久国产精品影院| 国产亚洲一区二区精品| 一二三四在线观看免费中文在| 国产高清videossex| 久久精品国产99精品国产亚洲性色 | 久久久精品区二区三区| 成人18禁高潮啪啪吃奶动态图| x7x7x7水蜜桃| 又大又爽又粗| 夜夜爽天天搞| 亚洲精华国产精华精| 亚洲九九香蕉| 亚洲视频免费观看视频| 国产免费av片在线观看野外av| 日韩 欧美 亚洲 中文字幕| 欧美在线黄色| 免费看a级黄色片| 99久久人妻综合| 三上悠亚av全集在线观看| 亚洲国产欧美日韩在线播放| 日韩免费av在线播放| 黄色成人免费大全| 成年版毛片免费区| 天天操日日干夜夜撸| 人妻一区二区av| 午夜免费观看网址| 国产真人三级小视频在线观看| 欧美黑人欧美精品刺激| 国产不卡av网站在线观看| 啦啦啦免费观看视频1| 中文字幕高清在线视频| 欧美乱码精品一区二区三区| √禁漫天堂资源中文www| 久久精品成人免费网站| 老司机影院毛片| 日韩 欧美 亚洲 中文字幕| 精品人妻在线不人妻| 天天躁狠狠躁夜夜躁狠狠躁| 人人妻,人人澡人人爽秒播| 午夜影院日韩av| 国产一区在线观看成人免费| 一区福利在线观看| 亚洲 国产 在线| 飞空精品影院首页| 老熟妇乱子伦视频在线观看| 国产1区2区3区精品| 精品午夜福利视频在线观看一区| 大码成人一级视频| 日本wwww免费看| 三级毛片av免费| 久久久国产成人免费| 青草久久国产| 亚洲精品自拍成人| 亚洲国产欧美一区二区综合| 1024视频免费在线观看| 亚洲精品一二三| 国产成人精品无人区| 国产成人免费观看mmmm| 一级毛片女人18水好多| 欧美成人午夜精品| 国产一区二区激情短视频| 久久午夜亚洲精品久久| 久久青草综合色| 国产亚洲av高清不卡| 99re在线观看精品视频| 亚洲五月天丁香| 一级作爱视频免费观看| 人妻丰满熟妇av一区二区三区 | 午夜免费鲁丝| 精品国产超薄肉色丝袜足j| 少妇被粗大的猛进出69影院| 在线看a的网站| x7x7x7水蜜桃| 亚洲自偷自拍图片 自拍| 亚洲精品在线观看二区| 国产精品自产拍在线观看55亚洲 | 久久国产精品人妻蜜桃| 国产精品一区二区精品视频观看| 亚洲成人免费电影在线观看| 日本精品一区二区三区蜜桃| 国产黄色免费在线视频| 欧美精品av麻豆av| 国产精品99久久99久久久不卡| 久久久国产欧美日韩av| 欧美日韩乱码在线| 18禁裸乳无遮挡动漫免费视频| 精品国产国语对白av| 欧美av亚洲av综合av国产av| 交换朋友夫妻互换小说| 一级片'在线观看视频| 高清欧美精品videossex| 身体一侧抽搐| 欧美黄色片欧美黄色片| 青草久久国产| 中文字幕av电影在线播放| 亚洲国产欧美日韩在线播放| 精品国产一区二区三区久久久樱花| 日韩有码中文字幕| 精品久久久精品久久久| 亚洲欧美色中文字幕在线| 一级,二级,三级黄色视频| 一级毛片女人18水好多| av欧美777| 亚洲人成电影观看| 精品久久久精品久久久| 亚洲熟妇熟女久久| 高清在线国产一区| videos熟女内射| 欧美精品人与动牲交sv欧美| 午夜日韩欧美国产| 国产主播在线观看一区二区| 欧美亚洲 丝袜 人妻 在线| 国产精品 欧美亚洲| 麻豆成人av在线观看| 婷婷精品国产亚洲av在线 | 亚洲avbb在线观看| 手机成人av网站| 精品视频人人做人人爽| 精品无人区乱码1区二区| 中文字幕精品免费在线观看视频| 极品少妇高潮喷水抽搐| cao死你这个sao货| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久久久久久久大奶| 热99re8久久精品国产| 国精品久久久久久国模美| 午夜视频精品福利| 一个人免费在线观看的高清视频| 人人妻人人澡人人看| 丁香六月欧美| 亚洲专区中文字幕在线| 露出奶头的视频| 十分钟在线观看高清视频www| 午夜福利影视在线免费观看| 侵犯人妻中文字幕一二三四区| 亚洲欧美激情在线| 欧美+亚洲+日韩+国产| 真人做人爱边吃奶动态| 欧美乱色亚洲激情| 999精品在线视频| 国产高清视频在线播放一区| av免费在线观看网站| 老司机深夜福利视频在线观看| 亚洲午夜精品一区,二区,三区| 亚洲自偷自拍图片 自拍| 大码成人一级视频| 亚洲欧洲精品一区二区精品久久久| 99热只有精品国产| 亚洲熟妇中文字幕五十中出 | 波多野结衣一区麻豆| 国产精品秋霞免费鲁丝片| 狂野欧美激情性xxxx| 亚洲国产欧美网| 伊人久久大香线蕉亚洲五| 在线天堂中文资源库| 国产成人av教育| 9191精品国产免费久久| 免费黄频网站在线观看国产| 色94色欧美一区二区| 女人精品久久久久毛片| 欧美日韩av久久| 自线自在国产av| 日韩欧美三级三区| 日韩大码丰满熟妇| 亚洲一卡2卡3卡4卡5卡精品中文| 美女福利国产在线| 国产xxxxx性猛交| 中国美女看黄片| 久久久久久久久免费视频了| 老司机靠b影院| 久久久久久久午夜电影 | 国产精品99久久99久久久不卡| 日韩欧美国产一区二区入口| 亚洲人成77777在线视频| av片东京热男人的天堂| 怎么达到女性高潮| 韩国精品一区二区三区| 国产亚洲精品久久久久5区| 国产激情久久老熟女| 一级a爱视频在线免费观看| 国产不卡av网站在线观看| 国产av又大| 免费观看精品视频网站| 91成人精品电影| 天天操日日干夜夜撸| 欧美精品av麻豆av| 午夜视频精品福利| 日本a在线网址| 高清av免费在线| 麻豆乱淫一区二区| 99精国产麻豆久久婷婷| 久久久国产成人精品二区 | 天天添夜夜摸| 精品久久蜜臀av无| av国产精品久久久久影院| 亚洲少妇的诱惑av| 人成视频在线观看免费观看| 亚洲情色 制服丝袜| 乱人伦中国视频| 满18在线观看网站| 欧洲精品卡2卡3卡4卡5卡区| 久久国产精品影院| 啪啪无遮挡十八禁网站| 亚洲va日本ⅴa欧美va伊人久久| 男女床上黄色一级片免费看| 丰满迷人的少妇在线观看| 日韩欧美一区视频在线观看| 天天添夜夜摸| 老司机午夜福利在线观看视频| 老司机深夜福利视频在线观看| 国产一区二区三区综合在线观看| 两人在一起打扑克的视频| 超碰成人久久| 国产精品二区激情视频| 夜夜夜夜夜久久久久| 97人妻天天添夜夜摸| 91麻豆精品激情在线观看国产 | 免费久久久久久久精品成人欧美视频| 亚洲国产欧美网| 在线视频色国产色| 母亲3免费完整高清在线观看| 高清在线国产一区| 丰满饥渴人妻一区二区三| 色在线成人网| cao死你这个sao货| 日日摸夜夜添夜夜添小说| 日本五十路高清| 久久久久久久午夜电影 | 欧美黄色淫秽网站| 欧美日韩国产mv在线观看视频| 美女午夜性视频免费| 视频在线观看一区二区三区| 欧美乱码精品一区二区三区| 亚洲视频免费观看视频| 日韩欧美在线二视频 | 亚洲片人在线观看| 如日韩欧美国产精品一区二区三区| 怎么达到女性高潮| 国产精品影院久久| 久久性视频一级片| 黄色a级毛片大全视频| 一二三四在线观看免费中文在| 99精品欧美一区二区三区四区| 中文字幕人妻熟女乱码| 黑人巨大精品欧美一区二区mp4| 人妻一区二区av| 色婷婷av一区二区三区视频| 老司机亚洲免费影院| 99国产精品免费福利视频| 国产成人免费观看mmmm| 妹子高潮喷水视频| 亚洲性夜色夜夜综合| 国产亚洲欧美精品永久| 一进一出抽搐gif免费好疼 | 亚洲一区中文字幕在线| 亚洲少妇的诱惑av| 精品电影一区二区在线| 久久精品国产亚洲av香蕉五月 | 成人国产一区最新在线观看| 国产一区二区三区综合在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品永久免费网站| 中文字幕人妻丝袜制服| 天天影视国产精品| 亚洲全国av大片| 午夜两性在线视频| 99国产精品一区二区三区| 国精品久久久久久国模美| 淫妇啪啪啪对白视频| 亚洲精品国产一区二区精华液| 18禁裸乳无遮挡动漫免费视频| 黄色片一级片一级黄色片| 在线看a的网站| 久久中文字幕一级| 俄罗斯特黄特色一大片| 19禁男女啪啪无遮挡网站| 日韩精品免费视频一区二区三区| 飞空精品影院首页| 超碰97精品在线观看| 国产男靠女视频免费网站| 久久久精品区二区三区| 国产麻豆69| 国产精品亚洲一级av第二区| 欧美激情高清一区二区三区| 99精品在免费线老司机午夜| 男女床上黄色一级片免费看| 久久久久精品国产欧美久久久| 亚洲少妇的诱惑av| 国产亚洲欧美98| 久久人人97超碰香蕉20202| 男人操女人黄网站| 欧美日韩黄片免| 又大又爽又粗| 麻豆乱淫一区二区| 一区二区三区精品91| 欧美精品亚洲一区二区| 啪啪无遮挡十八禁网站| 手机成人av网站| 天堂中文最新版在线下载| 午夜91福利影院| 国产成人精品在线电影| 亚洲欧美一区二区三区久久| 黄色视频,在线免费观看| 我的亚洲天堂| 免费在线观看完整版高清| 午夜久久久在线观看| 久久精品国产a三级三级三级| 成年人黄色毛片网站| 热re99久久精品国产66热6| 国产精品偷伦视频观看了| 午夜两性在线视频| 国产精品成人在线| 国产欧美日韩一区二区三区在线| 18禁黄网站禁片午夜丰满| 亚洲av成人不卡在线观看播放网| 欧美黄色淫秽网站| 啦啦啦免费观看视频1| 中文字幕色久视频| 巨乳人妻的诱惑在线观看| 精品欧美一区二区三区在线| 国产在线观看jvid| 成人三级做爰电影| 亚洲精品久久成人aⅴ小说| 成人三级做爰电影| 成年人免费黄色播放视频| 91老司机精品| 亚洲成人国产一区在线观看| 丰满迷人的少妇在线观看| 精品人妻在线不人妻| 男女高潮啪啪啪动态图| 在线免费观看的www视频| 国产精品一区二区在线不卡| 黄片小视频在线播放| 欧美大码av| 亚洲第一青青草原| 中文字幕最新亚洲高清| 80岁老熟妇乱子伦牲交| 国产精品免费大片| 国产又色又爽无遮挡免费看| 熟女少妇亚洲综合色aaa.| 欧美黑人精品巨大| 精品久久久久久久久久免费视频 | 国产在视频线精品| 久久精品国产亚洲av高清一级| 女性被躁到高潮视频| 人成视频在线观看免费观看| 色94色欧美一区二区| 中文字幕最新亚洲高清| 日韩欧美三级三区| av线在线观看网站| 午夜老司机福利片| 日本五十路高清| 午夜老司机福利片| videos熟女内射| 在线av久久热| av在线播放免费不卡| 国产精品欧美亚洲77777| 亚洲国产看品久久| 成人18禁在线播放| 国产午夜精品久久久久久| 成人永久免费在线观看视频| 久久人妻熟女aⅴ| 欧美精品亚洲一区二区| 久久久国产成人免费| 精品人妻1区二区| 亚洲avbb在线观看| 老汉色av国产亚洲站长工具| 咕卡用的链子| 夜夜爽天天搞| 女人被躁到高潮嗷嗷叫费观| 在线av久久热| 亚洲成人国产一区在线观看| 免费一级毛片在线播放高清视频 | 另类亚洲欧美激情| 午夜免费鲁丝| 日韩视频一区二区在线观看| 国产乱人伦免费视频| 国产精华一区二区三区| 午夜免费成人在线视频| 国产精品久久电影中文字幕 | 自拍欧美九色日韩亚洲蝌蚪91| 国产又爽黄色视频| 淫妇啪啪啪对白视频| 91成年电影在线观看| a级毛片黄视频| 欧美成狂野欧美在线观看| 黑人巨大精品欧美一区二区蜜桃| 美女扒开内裤让男人捅视频| 男女床上黄色一级片免费看| 国产在视频线精品| a在线观看视频网站| 日韩免费av在线播放| 欧美一级毛片孕妇| 免费在线观看完整版高清| 9191精品国产免费久久| 亚洲精品自拍成人| 亚洲av成人不卡在线观看播放网| www.精华液| 国产欧美亚洲国产| a级毛片黄视频| 欧美色视频一区免费| 精品亚洲成a人片在线观看| 日韩欧美在线二视频 | 免费日韩欧美在线观看| 在线观看免费日韩欧美大片| 乱人伦中国视频| svipshipincom国产片| 国产欧美日韩精品亚洲av| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品自拍成人| 欧美+亚洲+日韩+国产| 老司机福利观看| 久久久久精品人妻al黑| 中文字幕精品免费在线观看视频| 狠狠狠狠99中文字幕| 精品少妇一区二区三区视频日本电影| а√天堂www在线а√下载 | 亚洲国产中文字幕在线视频| 国产av一区二区精品久久| 黄片大片在线免费观看| 成熟少妇高潮喷水视频| 99国产极品粉嫩在线观看| 香蕉丝袜av| 黄色丝袜av网址大全| 日本欧美视频一区| 精品欧美一区二区三区在线| 亚洲久久久国产精品| 777米奇影视久久| 国产欧美日韩精品亚洲av| 久久午夜综合久久蜜桃| 国内毛片毛片毛片毛片毛片| 久久国产亚洲av麻豆专区| av网站免费在线观看视频| 亚洲中文字幕日韩| 欧美乱妇无乱码| 搡老岳熟女国产| 色综合欧美亚洲国产小说| 亚洲精品美女久久av网站| 最新美女视频免费是黄的| 久久人妻福利社区极品人妻图片| 制服人妻中文乱码| 国内毛片毛片毛片毛片毛片| 韩国av一区二区三区四区| 黄片大片在线免费观看| 精品久久久久久,| 日本vs欧美在线观看视频| 国产免费av片在线观看野外av| 亚洲精品国产色婷婷电影| 露出奶头的视频| 中文字幕高清在线视频| 久久精品成人免费网站| 国产亚洲一区二区精品| 大码成人一级视频| 啦啦啦免费观看视频1| 国精品久久久久久国模美| 老鸭窝网址在线观看| 777久久人妻少妇嫩草av网站| 久久久精品国产亚洲av高清涩受| 女人高潮潮喷娇喘18禁视频| 久久久久久久久免费视频了| 日韩欧美一区视频在线观看| 99久久99久久久精品蜜桃| 男人的好看免费观看在线视频 | 精品少妇久久久久久888优播| 国产不卡av网站在线观看| 精品久久久精品久久久| 又大又爽又粗| 国产99白浆流出| 一级片'在线观看视频| 人妻 亚洲 视频| 在线观看舔阴道视频| 日韩熟女老妇一区二区性免费视频| 久久国产精品影院| 欧美黄色淫秽网站| 色在线成人网| 正在播放国产对白刺激| 99精品欧美一区二区三区四区| 啦啦啦在线免费观看视频4| 国产精品一区二区在线观看99| 久久这里只有精品19| 无遮挡黄片免费观看| 亚洲色图综合在线观看| av有码第一页| 亚洲五月色婷婷综合| 亚洲熟女精品中文字幕| 久热这里只有精品99| 国产成人欧美在线观看 | 欧美日韩黄片免| 99久久综合精品五月天人人| 国产欧美日韩精品亚洲av| 午夜激情av网站| 最近最新中文字幕大全免费视频| 三上悠亚av全集在线观看| 久久ye,这里只有精品| 香蕉丝袜av| 悠悠久久av| 国产成人av教育| 美女高潮喷水抽搐中文字幕| 法律面前人人平等表现在哪些方面| 精品视频人人做人人爽| 欧美日韩国产mv在线观看视频| 国产精品av久久久久免费| 在线观看免费视频日本深夜| 满18在线观看网站| 日本五十路高清|