• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons

    2022-10-26 09:51:12ZhenLongZhao趙振龍BoYuJi季博宇LunWang王倫PengLang郎鵬XiaoWeiSong宋曉偉andJingQuanLin林景全
    Chinese Physics B 2022年10期
    關(guān)鍵詞:王倫

    Zhen-Long Zhao(趙振龍), Bo-Yu Ji(季博宇), Lun Wang(王倫), Peng Lang(郎鵬),Xiao-Wei Song(宋曉偉), and Jing-Quan Lin(林景全)

    School of Physics,Changchun University of Science and Technology,Changchun 130022,China

    Keywords: femtosecond surface plasmon polaritons,two-color photoemission electron microscopy,near-field imaging

    1. Introduction

    Surface plasmon polaritons (SPPs) are electromagnetic waves transmitted at the metal–dielectric interface with a speed near that of light and are capable of subwavelength localization via metal nanostructures.[1,2]Signal processing applications[3–5]are made possible by these remarkable properties. An accurate near-field imaging of the SPPs field is a prerequisite for the precise application of SPPs. At present,the techniques used for near-field imaging of SPPs include near-field scanning optical microscopy,[6]cathodoluminescence microscopy,[7,8]fluorescence microscopy,[9,10]electronic energy loss microscopy,[11,12]and photoemission electron microscopy(PEEM).[13–15]Among them,PEEM can resolve SPPs with high spatial resolution without the use of molecular reporters and scanning probes as required in nonlinear fluorescence microscopy[9]and scanning near-field optical microscopy,[16]respectively, which makes PEEM a powerful tool for the investigation of SPPs. Crucially, due to specific boundary conditions, SPPs is essentially transverse magnetic wave with vertical and horizontal electric field components in the propagation plane.[17]The horizontal and vertical components of the SPPs field have different functionalities for different application areas. For instance,it has been shown that the vertical component of SPPs dominated the two-dimensional plasmonic lens focusing performance and the pure SPPs interference pattern,[18–20]while the horizontal component of the SPPs field is more significant in the SPPs super focusing by a metallic cone.[21,22]Hence, distinct and independent imaging of vertical and horizontal components of the SPPs field with PEEM is necessary.

    Several potential solutions have recently been proposed for imaging the vertical and horizontal components of SPPs field, including the utilization of the scanning near-field microscope[23,24]and photoemission electron microscope.[25–27]Specifically, Podbiel and co-workers visualized the horizontal field component of SPPs via the interference patterns generated from the interaction between incident laser and SPPs using normal-incidence PEEM.[26]However,due to the absence of the electric field component vertical to the sample surface for the probe laser, the observation of the vertical component of SPPs is prohibitive in that case.Qin and co-workers[27,28]achieved independent spatiotemporal imaging of vertical and horizontal components of the SPPs field with obliquely incident one-color TR-PEEM. However,to capture the weak horizontal component of the SPPs field,a relatively harsh experimental condition is indispensable for that scheme. First,the silver sample,which has a lower work function than the other precious metals, is utilized in that experiment to obtain enough PEEM image brightness of the SPPs, but the easily oxidized and chemically unstable characters of the silver material strongly restrict its application.Secondly,the specified polarization angle(fixed at 45°,for the directional excitation of the SPPs field to increase the intensity of the SPPs at a certain direction) and relatively higher power of the femtosecond laser are needed simultaneously to provide enough brightness of the PEEM image of SPPs. As a result, the experiment was carried out at the risk of the potential damage to the sample and also at the expense of SPPs field information loss due to the limitation in the launching direction of SPPs.

    In this paper, to overcome the limitation of our previous experiments with one-color PEEM,we carried out the distinct imaging of the vertical and horizontal components of SPPs launched from a trench with the 400-nm laser-assisted nearinfrared(NIR)femtosecond laser TR-PEEM imaging technology (two-color laser PEEM technology). The pump–probe setup consists of two spatially separated 800-nm laser beams,where the pump laser is p-polarized and the probe laser is p/spolarized to visualize different components of SPPs. Additionally, the 400-nm pulse with different polarization directions is used to enhance the photoemission yield for better visualization of interference fringes caused by the interaction of the 800-nm probe light with the SPPs. Experiments demonstrate that an introduction of the 400-nm pulse in the spatially separated TR-PEEM scheme allows distinct visualization of the different components of the SPPs field,accompanying with circumventing the risk of sample damage as well as the shortcoming of information loss of the excited SPPs field that is generally confronted in the usual spatially separated one-color IR laser TR-PEEM scheme. The underlying mechanism responsible for realizing distinct visualization of the different components of the SPPs field by two-color PEEM is revealed by obtaining the measurements of the double logarithmic dependence of photoemission yield with the 800-nm and 400-nm pulse powers of different polarizations. Moreover, we found that the PEEM image quality of the vertical and horizontal components of the SPPs field is nearly independent of the polarization of the 400-nm pulse which suggests the robustness of this two-color scheme.Our results pave a way for the application of the different components of the SPPs near field and offer help for drawing the SPPs field in the three-dimensional spatial-temporal domain.

    2. Experimental setup

    A rectangular 20 μm×1 μm trench coupling structure was milled into a 120-nm thick gold thin film using focused ion beam lithography. The inset of Fig.1 displays the topography of the trench structure imaged with PEEM under Hg lamp illumination. Femtosecond laser pulses(76-MHz repetition rate)were generated by a commercial titanium–sapphire femtosecond oscillator(Coherent,Mira 900)with a central wavelength of 800 nm (150-fs pulse width). Aβ-BaBO3(BBO) crystal was used for generating the second harmonic 400-nm pulse.The 800-nm pulse and the 400-nm pulse are focused onto the sample surface through two flanges of the PEEM with an incident angle of 65°relative to the surface normal. The corresponding attenuation plates and half-wave plates for 800-nm and 400-nm pulses were used for independently adjusting their power and polarization angle, respectively. The elliptically shaped spot size of the red light is 50 μm×25 μm, and the elliptically shaped spot size of the blue light is twice as large as that of the red light at the sample position. A schematic diagram of the two-color experiments is shown in Fig.1. The PEEM is utilized to directly image the interference patterns of the SPPs near-field by collecting photoelectrons emitted from the sample surface. The SPPs were excited by a p-polarized 800-nm pump pulse,which is detected at a remote position by the 400-nm (p/s)-assisted p/s-polarized 800-nm probe pulse.kLandkSdenote the wave vectors of the in-plane incident light and SPPs. Meanwhile, the laser power of the 800-nm pump/probe pulse is 150 mW and 30 mW–120 mW, respectively,while the 400-nm pulse laser power is 3 mW–14 mW.

    Fig.1. Schematic diagram of the two-color setup. The inset photo in the figure shows the topography of the sample under Hg lamp illumination.

    3. Results and discussion

    Figure 2(a) depicts the photoemission interference patterns obtained with monochromatic 800-nm pump–probe pulses. A p-polarized pump laser at 800-nm excited the SPPs,which were detected by the 800-nm p-polarized probe laser at a distance of about 80 μm from the coupling structure. The time that the SPPs and the probe pulse overlap in space is defined as zero delays. The bottom of Fig.2(a)is a vector figure of the laser and SPPs field. Figure 2(a) clearly demonstrates that we have imaged the vertical component of the field of SPPs through a p-polarized 800-nm probe laser. Figure 2(b)shows the photoemission interference patterns under the same delay time except for the probe pulse is 800-nm s-polarized.It shows that the interference patterns generated from the spolarized 800-nm probe light and the SPPs field are hardly recognized, and accordingly, the spatiotemporal information of the horizontal component of the SPPs field cannot be captured in this one-color PEEM scheme. This result could be attributed to the following reasons. (i) The work function of gold we used in this experiment is higher than that of silver used in our previous research in which a 3-photon photoemission was realized and independently imaging of vertical and horizontal components of SPPs had been successfully achieved only by one-color 800-nm laser PEEM.[28]However,a higher 4-photon nonlinear order(4PP)is required in the current gold sample, resulting in fewer photoelectrons for SPPs imaging. Moreover,it is known that the intensity of the horizontal component of the SPPs field(ES.Hin Fig.2(a))is much smaller than the vertical component of the SPPs field (ES.Vin Fig.2(a)),[28]which results in insufficient photoemission to meet the needs of PEEM imaging for the horizontal component of the SPPs being captured while the vertical component of SPPs field can be captured as shown in Fig.2(a). (ii)In our previous experiment for spatiotemporal imaging of the vertical and horizontal components of the SPPs field, the pump pulse with a polarization angle of 45°off the main axis of the sample is used to directionally excite the SPPs towards one side of the trench to facilitate the nonlinear multiple photon photoemission imaging of the SPPs field. As a result, the previous scheme is at the expense of information loss of the SPPs field at the opposite side of the trench. In the current scheme of SPPs field excitation from the trench,we do not intend to set a special polarization direction of the pump pulse like the previous experiment[27,28]which can launches SPPs on both sides of the trench, it gives more freedom to exploit the polarization direction of the pump pulse and thus offers more opportunity for SPPs applications such as multiplexing devices.[29]To avoid CCD saturation from localized surface plasmon excitation on the edges of the groove, we removed the groove structure from the field of view of the PEEM image.

    Fig. 2. One-color photoemission interference patterns of the spatially separated pump–probe experiment at a 20 μm×1 μm trench structure. PEEM image was obtained with(a)p-polarized and(b)s-polarized probe pulses,respectively. The white dashed rectangle represents the trench location,and the yellow dashed ellipse represents the approximate location of the spatially separated pump and probe pulses.

    To fully capture the SPPs field components from the trench structure in the gold film sample, a two-color laser PEEM scheme as shown in Fig. 1 has been employed in the following investigation. In the two-color scheme,a femtosecond laser at 400-nm wavelength is united with the probe pulse at 800-nm wavelength for imaging the SPPs field. Figure 3(a)shows the PEEM images obtained with an 800-nm p-polarized pump pulse and an 800-nm p-polarized probe pulse assisted by a 400-nm p-polarized one. In comparison to the results of the one-color experiment shown in Fig. 2(a), the interference fringes measured with two-color PEEM appear the same but with an enhancement of photoemission yields. Importantly,Figure 3(b)shows the PEEM image followed by an s-polarized 800-nm probe laser assisted with a p-polarized 400-nm laser in the probe area. It displays that in the probe area, the spolarized 800-nm pulse interacted with the SPPs field,resulting in clear interference fringes. As a result of the superposition of the horizontal field component of SPPs and the probe pulse, interference patterns can be seen in the probe area of Fig. 3(b), and the relevant vector figure of the laser field and the SPPs field refer to the one at the bottom of Fig.2(b). The interference fringes in Fig. 3(b) indicate that the horizontal component of the SPPs has been successfully captured. To confirm the success in the visualization of the horizontal and vertical components of the SPPs field in our case,we measured the interference fringe drift between the two components of theE-field captured by the s-polarized and p-polarized probe lasers. Experimental results show that the peak spacing of the interference fringes with p- and s-polarized probe pulses are always ΔS/4 (The value of ΔSis 1.6 μm in the PEEM image), indicating the phase delay between the horizontal and out-of-plane components corresponding to theπ/2 phase difference.[17]Therefore, the horizontal and vertical components of the SPPs field are successfully imaged in this twocolor PEEM scheme with noncollinear excitation mode. In short,we have distinctly captured the spatiotemporal information of the horizontal component of the SPPs field using the s-polarized probe pulses with the two-color PEEM.

    Fig.3. Two-color laser PEEM images were obtained using the pump of a p-polarized 800-nm laser and the probe of(a)p-polarized 800-nm laser and(b)s-polarized 800-nm laser,respectively. The approximate location of the 400-nm pulse is indicated by the blue elliptical dashed ellipse. The double logarithmic dependence of photoemission yield with the single 800-nm laser power(c),with the s-polarized 800-nm laser power after introducing the 400-nm laser pulse(d),and with the 400-nm laser power(e). In measuring the dependence of power on photoemission yield,the photoemission yield induced by the unchanged laser is deduced.

    It is interesting to note that the vertical field component of the SPPs field induces a far stronger photoemission intensity than those induced by the horizontal component.This is due to the reason we discussed above: the vertical component of the SPPs field amplitude is much larger than that of the horizontal component.[28]Moreover, due to Fresnel’s law of refraction,the SPPs propagation direction has a certain angle with theyaxis, as shown in Fig. 1, and only the projection of the horizontal component of SPPs onto theyaxis can interfere with the 800-nm s-polarized probe laser. Therefore,the above two factors determine the difference in photoemission intensity of the interference fringes corresponding to horizontal and vertical components. It needs to be mentioned that the value of the color bar is fine-tuned with different starting values in Fig. 3 to enhance the visibility of the interference signal.

    As shown in Figs. 3(a)–3(b), the assistance of a 400-nm laser in the detection location plays a significant role in the realization of distinct spatiotemporal visualization of vertical and horizontal components of the SPPs field. To analyze the underlying physics mechanism for realizing distinct spatiotemporal visualization of the two components of the SPPs field in this two-color laser PEEM scheme, we obtained the double logarithmic dependence of photoemission yield with the laser power(for 800-nm and 400-nm pulses,respectively)under one- and two-color cases as shown in Figs. 3(c)–3(e).Figure 3(c)shows the double logarithmic dependence of photoemission yield with the one-color 800-nm laser power. It is found that the slope value of the photoemission yield plot is about 3.61,indicating at least four 800-nm photons are needed to emit from the gold surface (corresponding to a 4-photon photoemission process). It needs to mention that in our onecolor 800-nm pulse power dependence measurement,since the s-polarized 800-nm pulse alone as probe light cannot induce enough photoelectrons to satisfy PEEM imaging, we choose the p-polarized 800-nm pulse case to reveal the nonlinear order of the photoemission process. Figure 3(d) shows the double logarithmic dependence of photoemission yield with the 800-nm s-polarized pulses with the presence of a-3-mW 400-nm laser. It can be seen that the nonlinear order of the photoemission yield dependence on the 800-nm laser power under this two-color case decreases from nearly 4 to a value of 1.27. Figure 3(e)shows the double logarithmic dependence of photoemission yield with the 400-nm laser pulses with the constant power of the 800-nm s-polarized pulse and corresponds to a slope value of 1.40. Figures 3(c)–3(e) shows that the nonlinear order of the photoemission is changed from four to nearly three(one 400-nm photon with two 800-nm photons)with the help of 400-nm light. The reduction of photoemission nonlinear order corresponds to an effective opening of the twocolor quantum channel for photoemission.[30,31]Specifically,in single-color pulse excitation at 800 nm, the localized electrons near the Fermi level of gold will be stimulated,via intermediate states, to form photoelectrons by simultaneously absorbing 4 photons of 800-nm laser.In this case,the photoemission yield followsP∝E8z, whereEzrepresents thezcomponent of the electric field derived from the 800-nm laser illumination. The photoemission induced by a two-color excitation can absorb photons of different colors simultaneously.[31]As a result, the dependence of photoelectron yield onEz@800 nm is dramatically reduced toP∝E4z. More importantly, due to the introduction of the 400-nm pulse,more possible quantum channels emerge for the ejection of photoelectrons accompanied by a decrement of the nonlinear order and an increasement of the photoemission yield.[32,33]The reduction of the nonlinear order of photoemission is accompanied by a great enhancement of the photoelectrons yield that is essential for readily imaging the horizontal component of the SPPs field via the two-color scheme.

    Fig.4. Two-color PEEM image was obtained with the probe of(a)p-polarized and(b)s-polarized 800-nm lasers assisted by s-polarized 400-nm pulses.The double logarithmic dependence of photoemission yield with the 400-nm p-polarized and s-polarized laser powers from the bright and dark fringes corresponding to(c)the vertical and(d)the horizontal components of the SPPs. During recording,the power of the 800-nm laser pulse was fixed.

    The polarization angle of 400-nm light was further investigated on the photoemission interference patterns of the horizontal and vertical components of the SPPs field. To this end,we turned the polarization direction of the 400-nm laser from p-polarized laser pulse to s-polarized laser pulse. Figures 4(a)and 4(b)shows the photoemission interference patterns under 800-nm p-polarized and s-polarized probe pulses assisted with 400-nm s-polarized laser pulse. As far as we know the absorptivity of the gold film will vary with different polarization directions of 400-nm laser for oblique incidence. To exclude this influence,we utilized the same effective absorption power by considering the absorptivity of the gold material on the 65°obliquely illuminated 400-nm laser with different polarization angles. Compared with the results obtained with 400-nm ppolarized laser pulse as illustrated in Figs. 3(a) and 3(b), the interference patterns under 400-nm s-polarized laser illumination as shown in Figs. 4(a) and 4(b) are consistent except for the enhanced photoemission yield of the SPPs interference fringes.

    We extracted the photoelectron yields in the same region under the 400-nm p-polarized and s-polarized pulses,respectively,with the polarization of the 800-nm pulse kept unchanged (either p-polarized for the vertical component or spolarized for the horizontal component of SPPs field). The results showed that,for the p-polarized 800-nm laser probe case,the photoelectron yields were 67829(for p-polarized 400-nm laser case) and 116184 (for s-polarized 400-nm laser case),respectively, showing a nearly 1.71 times photoelectron enhancement for an s-polarized 400-nm pulse over a p-polarized 400-nm pulse. When the probe pulse was 800-nm s-polarized pulse, the photoelectron yields were 24330 (for p-polarized 400-nm laser case) and 38140 (for s-polarized 400-nm laser case),respectively,corresponding to a photoelectron yield enhancement of about 1.56 times. The above results show that the brightness of the interference fringes under s-polarized 400-nm laser illumination is higher than that under p-polarized 400-nm laser illumination for both the vertical and horizontal components of the SPPs field.

    Further, for exploring the reason for the higher brightness of the interference fringes under the assistance of spolarized 400-nm light than that of the p-polarized case, we measured the 400-nm pulse power dependence of the photoelectron yields from bright and dark fringes when the 800-nm probe pulse is p/s-polarized, respectively, and the results as shown in Figs.4(c)and 4(d). Figure 4(c)displays the double logarithmic dependence of photoemission yield with the 400-nm laser power from bright and dark fringes with the fixed p-polarized 800-nm probe pulse which represents the vertical component of the SPPs. It can be seen that the slope values of the photoelectrons from bright and dark stripes are 1.23 and 1.29, respectively, for the p-polarized 400-nm case, and then decrease to 1.09 and 1.14 with the polarization of the 400-nm laser being adjusted to s-polarized one. As we discussed above,the lower the nonlinear order of the photoemission, the higher the photoelectrons yield is. Moreover, it has been shown that under two-color femtosecond laser excitation,the photoemission electrons can eject through two-color quantum channels.[33,34]When the two-color quantum channel is opened to a greater degree, the nonlinear order of photoelectrons will be dramatically reduced, resulting in a significant increase in photoemission yields.[31]Consequently,the photoelectron yields at the bright and dark fringes of the SPPs field interference fringes with the help of 400-nm s-polarized pulse illumination is higher than that with the 400-nm p-polarized pulse owing to a greater open degree of the two-color quantum channel. Figure 4(d) depicts the double logarithmic dependence of photoemission yield with the 400-nm p-polarized and s-polarized laser powers from bright and dark fringes when the s-polarized 800-nm probe pulse is used. Likewise,the nonlinear orders of the photoemission at the bright and dark fringes of the interference fringes corresponding to the horizontal component of the SPPs field are lower and corresponding to a higher photoemission yield under the 400-nm s-polarized laser case than that of the p-polarized 400-nm laser case. The above results show that when s-polarized 400-nm light is used to assist in imaging the horizontal and vertical components of the SPPs field, the nonlinear orders of the photoemission at the bright and dark fringes are lower,corresponding to an enhanced photoemission yield and brighter interference fringes.

    It is important to emphasize that although the photoelectron yield of the interference fringes of the SPPs field is higher when s-polarized 400-nm laser light illumination, it does not mean a better visualization of the PEEM image at this time.Because the contrast of the bright and dark interference fringes of the SPPs field is the fundamental standard to evaluate the imaging effect of the SPPs field. Thus,to evaluate the PEEM image’s visibility, the contrast of SPPs interference fringes under 400-nm light in different polarization cases are taken into consideration simultaneously. The contrast is obtained by extracting the photoemission yield of the adjacent bright and dark fringes when the 400-nm light is p/spolarized. The calculation results show that the interference fringes contrast of the vertical and horizontal components of the SPPs field are 1.25 and 1.20, respectively for the p-polarized 400-nm laser case. When the 400-nm light is turned into s-polarization,the contrast of the vertical and horizontal components of the SPPs field are 1.19 and 1.20, respectively. The above results show that the contrast of the interference patterns corresponding to the vertical and horizontal components of the SPPs field is nearly the same for the two polarization directions of the 400-nm laser.No big change in the contrast can be explained as the following. Changing the 400-nm pulse from p-polarization to s-polarization reduces the nonlinear order of the photoemission significantly at both the bright and dark stripes. Increasing the photoelectron yield at the dark and bright fringes at the same time results in almost no change in the contrast of the fringes. In short,the above results show that the polarization direction of the 400-nm light shows a negligible effect on the imaging contrast of the horizontal and vertical components of the SPPs field even though it affects the brightness of the PEEM images. Thus, the independence of the 400-nm laser polarization angle on the contrast offers the robustness of the 400-nm laser pulse assisted PEEM experiment on disclosing the horizontal and vertical components of the SPPs field. Furthermore, it can be noticed from Figs. 4(b) and 4(c) that the slope value corresponding to the bright fringe is lower than that of the dark fringe. It is attributed to a stronger 800-nm light intensity for the bright fringes due to the constructive interference and accordingly a stronger interaction between 400-nm and 800-nm lasers. As a result, the bright fringe corresponds to a greater open degree of two-color quantum channel than the dark fringe. Since the light intensity associated with bright and dark fringes has a different spatial distribution,the open degree of the two-color quantum channel also varies spatially.

    4. Conclusions

    In summary, we demonstrated the independent, spatiotemporal visualization of the vertical and horizontal components of SPPs launched from a rectangular trench with a 400-nm laser-assisted TR-PEEM.It is found that an introduction of the 400-nm laser pulse allows distinct imaging of the two different components of the same SPPs field without the risk of sample damage as well as the problem of information loss of the excited SPPs field that is generally confronted in the usual spatially NIR laser TR-PEEM scheme. Our experimental results essentially showed that the vertical and horizontal components of the SPPs field can be imaged no matter whether the 400-nm pulse is p-polarized or s-polarized,showing the robustness of the introduced 400-nm pulse in the experiment. The underlying mechanism for realizing distinct imaging of the different components of the SPPs field is revealed by measuring the power dependence of the 800-nm light and 400-nm light with different laser polarization directions. With the help of the two-color NIR laser time-resolved PEEM scheme,we have comprehensively captured spatiotemporal information of the horizontal and vertical components of the SPPs near-field from the noncollinear mode, and offer a possible solution for drawing the SPPs field in the three-dimensional spatial-temporal domain.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62005022, 12004052,and 62175018), the Fund from Jilin Provincial Key Laboratory of Ultrafast and Extreme Ultraviolet Optics(Grant No. YDZJ202102CXJD028), Department of Science and Technology of the Jilin Province, China (Grant Nos. 20200201268JC and 20200401052GX), the “111”Project of China(Grant No.D17017), and the Fund from the Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology.

    猜你喜歡
    王倫
    白衣秀士冤不冤
    雜文月刊(2022年4期)2022-04-22 20:28:21
    王倫實有其人
    文史雜志(2021年1期)2021-01-06 03:41:10
    “痞子大使”王倫
    王倫:機(jī)關(guān)算盡太聰明
    文苑(2015年22期)2015-11-18 07:27:17
    王倫:機(jī)關(guān)算盡太聰明
    文苑(2015年8期)2015-08-08 11:21:08
    淺論《水滸傳》中王倫的悲劇
    名作欣賞(2015年36期)2015-07-12 13:19:30
    王倫:機(jī)關(guān)算盡太聰明
    文苑·感悟(2015年8期)2015-07-05 11:50:45
    林沖三論
    梁山的“秀才寨主”王倫——兼及梁山寨主變動與“山寨政治”轉(zhuǎn)向*
    無能者無量
    久久久国产一区二区| 欧美日韩黄片免| 国产成人精品在线电影| 欧美 日韩 精品 国产| 亚洲av成人一区二区三| 国产精品二区激情视频| 麻豆成人av在线观看| 国产高清videossex| 亚洲自偷自拍图片 自拍| 国产精品国产高清国产av | 国产精品美女特级片免费视频播放器 | 国产亚洲av高清不卡| 91精品国产国语对白视频| av国产精品久久久久影院| 国产成人精品在线电影| 女人爽到高潮嗷嗷叫在线视频| 美国免费a级毛片| netflix在线观看网站| 老司机深夜福利视频在线观看| 91精品国产国语对白视频| 亚洲欧洲精品一区二区精品久久久| 国精品久久久久久国模美| 亚洲 欧美一区二区三区| 啦啦啦中文免费视频观看日本| 9热在线视频观看99| 久久这里只有精品19| av又黄又爽大尺度在线免费看| 亚洲欧洲精品一区二区精品久久久| 久久99热这里只频精品6学生| 国产在视频线精品| 成人特级黄色片久久久久久久 | 日韩欧美三级三区| 两个人免费观看高清视频| 在线观看舔阴道视频| 99九九在线精品视频| 少妇 在线观看| 午夜两性在线视频| 老司机午夜福利在线观看视频 | 免费一级毛片在线播放高清视频 | 久久久久网色| 成人永久免费在线观看视频 | 亚洲av国产av综合av卡| 久久免费观看电影| 国产三级黄色录像| 午夜福利免费观看在线| 亚洲国产看品久久| 2018国产大陆天天弄谢| 女人精品久久久久毛片| 高清av免费在线| 日韩视频一区二区在线观看| 亚洲少妇的诱惑av| 日本黄色日本黄色录像| 嫁个100分男人电影在线观看| 法律面前人人平等表现在哪些方面| 我要看黄色一级片免费的| 日韩一区二区三区影片| 美女视频免费永久观看网站| 国产精品亚洲一级av第二区| 午夜精品国产一区二区电影| 男人舔女人的私密视频| 啦啦啦免费观看视频1| 考比视频在线观看| 日韩欧美三级三区| 大香蕉久久网| 露出奶头的视频| 欧美日本中文国产一区发布| 大香蕉久久网| 国产精品av久久久久免费| 日韩欧美免费精品| 欧美精品一区二区大全| 日韩欧美免费精品| 交换朋友夫妻互换小说| 麻豆国产av国片精品| 三级毛片av免费| 精品欧美一区二区三区在线| 人人澡人人妻人| 国产成+人综合+亚洲专区| 亚洲精品一卡2卡三卡4卡5卡| 女人被躁到高潮嗷嗷叫费观| 99国产极品粉嫩在线观看| 99re在线观看精品视频| 国产精品二区激情视频| 天天操日日干夜夜撸| 久久九九热精品免费| 欧美日韩福利视频一区二区| 亚洲伊人久久精品综合| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品一区二区免费欧美| 99国产精品99久久久久| 一边摸一边抽搐一进一出视频| 蜜桃国产av成人99| 免费在线观看影片大全网站| 精品国产一区二区三区四区第35| 蜜桃在线观看..| 叶爱在线成人免费视频播放| 国产免费福利视频在线观看| 男女边摸边吃奶| 日韩有码中文字幕| 老司机午夜福利在线观看视频 | 男男h啪啪无遮挡| 一级a爱视频在线免费观看| 亚洲全国av大片| 国产在线观看jvid| 国产在线免费精品| 黄片大片在线免费观看| 国产精品亚洲av一区麻豆| 亚洲精品国产一区二区精华液| 久久久久精品国产欧美久久久| 999精品在线视频| 热99久久久久精品小说推荐| 99re在线观看精品视频| 欧美日韩中文字幕国产精品一区二区三区 | 在线播放国产精品三级| 国产精品国产高清国产av | 免费在线观看完整版高清| 青草久久国产| 国产精品一区二区免费欧美| 亚洲精品成人av观看孕妇| 亚洲视频免费观看视频| 99在线人妻在线中文字幕 | 国产精品二区激情视频| 一级片免费观看大全| 2018国产大陆天天弄谢| 手机成人av网站| 国产精品麻豆人妻色哟哟久久| 久久精品人人爽人人爽视色| 99riav亚洲国产免费| 成人国语在线视频| 久久国产亚洲av麻豆专区| 三上悠亚av全集在线观看| 亚洲美女黄片视频| 亚洲视频免费观看视频| 91成年电影在线观看| 国产av又大| 国产精品亚洲av一区麻豆| 色播在线永久视频| 在线 av 中文字幕| 一本色道久久久久久精品综合| 亚洲avbb在线观看| 美女福利国产在线| 不卡一级毛片| 久热这里只有精品99| 男女免费视频国产| 亚洲五月婷婷丁香| 国产区一区二久久| 午夜免费鲁丝| 老司机深夜福利视频在线观看| 久久久久久人人人人人| 日韩视频在线欧美| 99国产综合亚洲精品| 久久久国产成人免费| 欧美大码av| 建设人人有责人人尽责人人享有的| 国产又爽黄色视频| 老司机影院毛片| av福利片在线| 多毛熟女@视频| 亚洲一区中文字幕在线| 99久久人妻综合| 一本一本久久a久久精品综合妖精| 在线看a的网站| 国产国语露脸激情在线看| 免费在线观看日本一区| 97人妻天天添夜夜摸| 涩涩av久久男人的天堂| 性高湖久久久久久久久免费观看| 久久免费观看电影| 久9热在线精品视频| 午夜成年电影在线免费观看| 亚洲国产欧美网| 亚洲欧美激情在线| 久久中文看片网| 亚洲国产欧美一区二区综合| 色婷婷av一区二区三区视频| av天堂久久9| 757午夜福利合集在线观看| 国产在线一区二区三区精| 美女高潮喷水抽搐中文字幕| 国产午夜精品久久久久久| 欧美日韩精品网址| 日韩欧美一区视频在线观看| 亚洲国产欧美一区二区综合| 午夜免费鲁丝| 日韩免费av在线播放| 亚洲精品粉嫩美女一区| 欧美日韩福利视频一区二区| 在线观看免费高清a一片| 12—13女人毛片做爰片一| 视频区欧美日本亚洲| 夜夜夜夜夜久久久久| 一本大道久久a久久精品| 国产日韩欧美在线精品| 在线看a的网站| 高清在线国产一区| 丰满饥渴人妻一区二区三| 久久亚洲精品不卡| 69av精品久久久久久 | 色播在线永久视频| 国产一区二区三区视频了| 两个人免费观看高清视频| 精品国产一区二区三区久久久樱花| 精品久久久久久电影网| 亚洲自偷自拍图片 自拍| 无遮挡黄片免费观看| 亚洲精品国产精品久久久不卡| 欧美精品一区二区免费开放| 成年女人毛片免费观看观看9 | 黄片播放在线免费| 欧美精品亚洲一区二区| 巨乳人妻的诱惑在线观看| 亚洲性夜色夜夜综合| 两人在一起打扑克的视频| 搡老熟女国产l中国老女人| 久久久国产欧美日韩av| 免费观看人在逋| 捣出白浆h1v1| 黄色视频,在线免费观看| 亚洲综合色网址| 亚洲中文字幕日韩| 亚洲伊人色综图| 国产成人精品无人区| 欧美中文综合在线视频| 亚洲熟女毛片儿| 女人久久www免费人成看片| e午夜精品久久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 国产精品国产av在线观看| 一级,二级,三级黄色视频| 中文字幕最新亚洲高清| 午夜视频精品福利| 俄罗斯特黄特色一大片| 夫妻午夜视频| 国产一区二区三区视频了| 久久久国产精品麻豆| 国产97色在线日韩免费| 免费观看av网站的网址| 亚洲黑人精品在线| 欧美日韩亚洲国产一区二区在线观看 | 国产精品九九99| 国产精品亚洲av一区麻豆| 色老头精品视频在线观看| 欧美黑人精品巨大| a在线观看视频网站| 日日夜夜操网爽| av天堂在线播放| 久久人妻熟女aⅴ| 人妻久久中文字幕网| 午夜激情av网站| kizo精华| 超色免费av| 高潮久久久久久久久久久不卡| 午夜两性在线视频| 国产三级黄色录像| 中文欧美无线码| 国产免费视频播放在线视频| 人人妻,人人澡人人爽秒播| 亚洲性夜色夜夜综合| 十分钟在线观看高清视频www| 一级毛片电影观看| 成年人午夜在线观看视频| 在线观看一区二区三区激情| cao死你这个sao货| 久久这里只有精品19| 欧美精品av麻豆av| 中文亚洲av片在线观看爽 | 欧美+亚洲+日韩+国产| 欧美日本中文国产一区发布| 国产成人一区二区三区免费视频网站| 久久久久国产一级毛片高清牌| 99国产综合亚洲精品| 18禁黄网站禁片午夜丰满| 亚洲国产欧美网| 国产精品一区二区在线不卡| av免费在线观看网站| 久久亚洲精品不卡| 国产一区二区三区综合在线观看| 精品视频人人做人人爽| 欧美亚洲 丝袜 人妻 在线| 国产1区2区3区精品| 99国产极品粉嫩在线观看| 高清黄色对白视频在线免费看| 久久久久国产一级毛片高清牌| av免费在线观看网站| 午夜福利,免费看| 久久久精品国产亚洲av高清涩受| 欧美人与性动交α欧美软件| 亚洲精品久久成人aⅴ小说| 欧美在线一区亚洲| 人妻久久中文字幕网| 国产亚洲av高清不卡| 精品少妇黑人巨大在线播放| 久久久国产成人免费| 91九色精品人成在线观看| 亚洲全国av大片| 精品国产一区二区三区久久久樱花| 日本vs欧美在线观看视频| 精品久久久精品久久久| 亚洲美女黄片视频| 国产精品av久久久久免费| 自拍欧美九色日韩亚洲蝌蚪91| 久热爱精品视频在线9| 黄片小视频在线播放| 亚洲熟女精品中文字幕| 日日摸夜夜添夜夜添小说| 精品亚洲成国产av| 91国产中文字幕| 日韩免费高清中文字幕av| 精品乱码久久久久久99久播| 午夜老司机福利片| 老司机在亚洲福利影院| 午夜福利,免费看| 国产麻豆69| 高清欧美精品videossex| 少妇被粗大的猛进出69影院| 国产熟女午夜一区二区三区| 一本久久精品| tube8黄色片| 大型av网站在线播放| 欧美大码av| 久久精品国产a三级三级三级| 精品人妻熟女毛片av久久网站| 亚洲国产看品久久| 最黄视频免费看| 真人做人爱边吃奶动态| 免费少妇av软件| 午夜福利在线免费观看网站| 久久久国产一区二区| 亚洲成人免费电影在线观看| 免费高清在线观看日韩| 国产精品欧美亚洲77777| 欧美日韩黄片免| 视频区欧美日本亚洲| 日韩有码中文字幕| 国产单亲对白刺激| 午夜精品国产一区二区电影| 免费在线观看完整版高清| 一进一出抽搐动态| 午夜激情av网站| 美女高潮到喷水免费观看| av又黄又爽大尺度在线免费看| 久久久精品区二区三区| 精品乱码久久久久久99久播| 亚洲美女黄片视频| 国产欧美日韩一区二区精品| 无限看片的www在线观看| 在线天堂中文资源库| 国产精品亚洲av一区麻豆| 美女视频免费永久观看网站| 免费女性裸体啪啪无遮挡网站| 大码成人一级视频| 在线观看66精品国产| 亚洲男人天堂网一区| 亚洲国产av影院在线观看| 岛国在线观看网站| 老汉色av国产亚洲站长工具| 少妇的丰满在线观看| 热re99久久精品国产66热6| 亚洲人成77777在线视频| 久久ye,这里只有精品| 亚洲伊人色综图| 亚洲人成电影观看| 高清欧美精品videossex| 成人精品一区二区免费| 精品一品国产午夜福利视频| 亚洲国产av新网站| 女性被躁到高潮视频| 久久国产精品影院| 中文字幕av电影在线播放| 黑人猛操日本美女一级片| 999精品在线视频| 51午夜福利影视在线观看| 国产aⅴ精品一区二区三区波| 啦啦啦免费观看视频1| 午夜老司机福利片| 婷婷成人精品国产| 母亲3免费完整高清在线观看| 在线观看免费高清a一片| 一区二区日韩欧美中文字幕| 日韩有码中文字幕| 麻豆成人av在线观看| 天天添夜夜摸| 2018国产大陆天天弄谢| 成人av一区二区三区在线看| 日本a在线网址| 人人澡人人妻人| 天天影视国产精品| 嫁个100分男人电影在线观看| 一本综合久久免费| 国产欧美日韩精品亚洲av| www.精华液| 女人高潮潮喷娇喘18禁视频| 成人手机av| 免费日韩欧美在线观看| 19禁男女啪啪无遮挡网站| 亚洲欧洲日产国产| 韩国精品一区二区三区| 又大又爽又粗| 国产99久久九九免费精品| 99re在线观看精品视频| 十八禁人妻一区二区| 国产日韩一区二区三区精品不卡| 亚洲第一av免费看| 欧美日韩一级在线毛片| 精品国产超薄肉色丝袜足j| 欧美乱妇无乱码| 女人被躁到高潮嗷嗷叫费观| 日本撒尿小便嘘嘘汇集6| 无遮挡黄片免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品香港三级国产av潘金莲| 搡老乐熟女国产| 亚洲男人天堂网一区| 亚洲 欧美一区二区三区| videosex国产| 欧美性长视频在线观看| 午夜福利在线观看吧| 日韩一区二区三区影片| 在线观看免费午夜福利视频| 亚洲伊人色综图| 国产精品亚洲av一区麻豆| 啦啦啦免费观看视频1| 国产精品欧美亚洲77777| 亚洲精品一二三| 人人澡人人妻人| 岛国毛片在线播放| 久久精品亚洲精品国产色婷小说| 久久亚洲真实| 在线观看www视频免费| 在线观看免费午夜福利视频| 在线观看人妻少妇| 色尼玛亚洲综合影院| 国产91精品成人一区二区三区 | 亚洲专区中文字幕在线| 亚洲成国产人片在线观看| 国产精品香港三级国产av潘金莲| 国产aⅴ精品一区二区三区波| 亚洲精品美女久久久久99蜜臀| 精品高清国产在线一区| 肉色欧美久久久久久久蜜桃| 少妇 在线观看| tocl精华| 涩涩av久久男人的天堂| 欧美中文综合在线视频| 日韩欧美三级三区| 亚洲成人手机| 欧美激情高清一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 中文欧美无线码| 伊人久久大香线蕉亚洲五| 成人国语在线视频| 一区二区日韩欧美中文字幕| 亚洲精品久久午夜乱码| 精品久久久久久久毛片微露脸| 亚洲欧美一区二区三区久久| 啪啪无遮挡十八禁网站| 久久婷婷成人综合色麻豆| 久久这里只有精品19| 日本欧美视频一区| 国产一区二区 视频在线| 国产三级黄色录像| 色婷婷久久久亚洲欧美| a在线观看视频网站| 老熟妇仑乱视频hdxx| 夜夜夜夜夜久久久久| avwww免费| 国产在线精品亚洲第一网站| 如日韩欧美国产精品一区二区三区| 精品卡一卡二卡四卡免费| 日本a在线网址| 女同久久另类99精品国产91| 国产国语露脸激情在线看| 欧美精品高潮呻吟av久久| 一级片'在线观看视频| 国产精品免费一区二区三区在线 | 免费日韩欧美在线观看| 国产精品偷伦视频观看了| 成人国产一区最新在线观看| 大码成人一级视频| 美女高潮喷水抽搐中文字幕| 亚洲午夜理论影院| 纵有疾风起免费观看全集完整版| 亚洲精品中文字幕在线视频| e午夜精品久久久久久久| 国产高清激情床上av| 青青草视频在线视频观看| 精品久久久久久久毛片微露脸| a级毛片黄视频| 欧美精品一区二区免费开放| 91成人精品电影| 国产精品久久电影中文字幕 | 在线观看舔阴道视频| 免费高清在线观看日韩| 成人精品一区二区免费| 亚洲精品美女久久久久99蜜臀| 色尼玛亚洲综合影院| 免费少妇av软件| 免费在线观看黄色视频的| 超碰97精品在线观看| 一区二区三区精品91| 久热爱精品视频在线9| av超薄肉色丝袜交足视频| 亚洲色图av天堂| 18禁美女被吸乳视频| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av高清一级| 国产精品熟女久久久久浪| 性色av乱码一区二区三区2| 一级毛片精品| 日本黄色日本黄色录像| 国产一区二区 视频在线| 在线观看免费视频网站a站| 欧美精品av麻豆av| 91精品三级在线观看| 国产极品粉嫩免费观看在线| 777久久人妻少妇嫩草av网站| 老鸭窝网址在线观看| 免费日韩欧美在线观看| av有码第一页| 丁香六月欧美| 蜜桃在线观看..| 最近最新中文字幕大全电影3 | 久久狼人影院| 亚洲国产精品一区二区三区在线| 国产一卡二卡三卡精品| av视频免费观看在线观看| 制服诱惑二区| 国产99久久九九免费精品| 激情在线观看视频在线高清 | 一区福利在线观看| 精品国产一区二区三区四区第35| 亚洲精品久久成人aⅴ小说| 成年人免费黄色播放视频| 免费观看av网站的网址| 青草久久国产| 一进一出抽搐动态| 两个人看的免费小视频| 12—13女人毛片做爰片一| 国产免费现黄频在线看| 日韩中文字幕视频在线看片| 黑人巨大精品欧美一区二区mp4| 高清视频免费观看一区二区| a在线观看视频网站| 中文字幕高清在线视频| 色在线成人网| 国产精品 国内视频| 日日爽夜夜爽网站| 日本欧美视频一区| 精品福利永久在线观看| 成人影院久久| 亚洲国产毛片av蜜桃av| 在线观看免费午夜福利视频| 国产精品99久久99久久久不卡| 国产成人精品在线电影| 可以免费在线观看a视频的电影网站| 国产成+人综合+亚洲专区| 亚洲精品在线观看二区| 久久精品国产亚洲av高清一级| 午夜免费鲁丝| 国产在线一区二区三区精| 日韩三级视频一区二区三区| 亚洲熟女精品中文字幕| 精品福利观看| 亚洲,欧美精品.| 欧美成狂野欧美在线观看| 热re99久久国产66热| 国产亚洲精品第一综合不卡| 精品福利永久在线观看| 国产人伦9x9x在线观看| www.自偷自拍.com| 久久性视频一级片| 黄色怎么调成土黄色| 97人妻天天添夜夜摸| 人人妻,人人澡人人爽秒播| 精品国产乱码久久久久久男人| 精品国产一区二区久久| 一本久久精品| 日本欧美视频一区| 精品国产一区二区久久| 精品福利观看| 国产欧美亚洲国产| 色视频在线一区二区三区| 亚洲国产毛片av蜜桃av| 在线观看免费午夜福利视频| 日韩一区二区三区影片| 日韩视频一区二区在线观看| 欧美日韩亚洲国产一区二区在线观看 | 纯流量卡能插随身wifi吗| 黄色视频,在线免费观看| 法律面前人人平等表现在哪些方面| 久久精品国产a三级三级三级| 99香蕉大伊视频| 欧美亚洲日本最大视频资源| 欧美乱妇无乱码| 麻豆乱淫一区二区| 欧美在线一区亚洲| 777久久人妻少妇嫩草av网站| 人人妻人人澡人人爽人人夜夜| 一本综合久久免费| 亚洲精品美女久久av网站| 人妻久久中文字幕网| 12—13女人毛片做爰片一| 亚洲精品中文字幕一二三四区 | 一本综合久久免费| 亚洲av电影在线进入| xxxhd国产人妻xxx| 日韩视频在线欧美| 免费人妻精品一区二区三区视频| 午夜福利影视在线免费观看| 一区二区日韩欧美中文字幕| 久久久久久亚洲精品国产蜜桃av| 极品少妇高潮喷水抽搐| 别揉我奶头~嗯~啊~动态视频| 又黄又粗又硬又大视频| 香蕉丝袜av| 无限看片的www在线观看|