• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons

    2022-10-26 09:51:12ZhenLongZhao趙振龍BoYuJi季博宇LunWang王倫PengLang郎鵬XiaoWeiSong宋曉偉andJingQuanLin林景全
    Chinese Physics B 2022年10期
    關(guān)鍵詞:王倫

    Zhen-Long Zhao(趙振龍), Bo-Yu Ji(季博宇), Lun Wang(王倫), Peng Lang(郎鵬),Xiao-Wei Song(宋曉偉), and Jing-Quan Lin(林景全)

    School of Physics,Changchun University of Science and Technology,Changchun 130022,China

    Keywords: femtosecond surface plasmon polaritons,two-color photoemission electron microscopy,near-field imaging

    1. Introduction

    Surface plasmon polaritons (SPPs) are electromagnetic waves transmitted at the metal–dielectric interface with a speed near that of light and are capable of subwavelength localization via metal nanostructures.[1,2]Signal processing applications[3–5]are made possible by these remarkable properties. An accurate near-field imaging of the SPPs field is a prerequisite for the precise application of SPPs. At present,the techniques used for near-field imaging of SPPs include near-field scanning optical microscopy,[6]cathodoluminescence microscopy,[7,8]fluorescence microscopy,[9,10]electronic energy loss microscopy,[11,12]and photoemission electron microscopy(PEEM).[13–15]Among them,PEEM can resolve SPPs with high spatial resolution without the use of molecular reporters and scanning probes as required in nonlinear fluorescence microscopy[9]and scanning near-field optical microscopy,[16]respectively, which makes PEEM a powerful tool for the investigation of SPPs. Crucially, due to specific boundary conditions, SPPs is essentially transverse magnetic wave with vertical and horizontal electric field components in the propagation plane.[17]The horizontal and vertical components of the SPPs field have different functionalities for different application areas. For instance,it has been shown that the vertical component of SPPs dominated the two-dimensional plasmonic lens focusing performance and the pure SPPs interference pattern,[18–20]while the horizontal component of the SPPs field is more significant in the SPPs super focusing by a metallic cone.[21,22]Hence, distinct and independent imaging of vertical and horizontal components of the SPPs field with PEEM is necessary.

    Several potential solutions have recently been proposed for imaging the vertical and horizontal components of SPPs field, including the utilization of the scanning near-field microscope[23,24]and photoemission electron microscope.[25–27]Specifically, Podbiel and co-workers visualized the horizontal field component of SPPs via the interference patterns generated from the interaction between incident laser and SPPs using normal-incidence PEEM.[26]However,due to the absence of the electric field component vertical to the sample surface for the probe laser, the observation of the vertical component of SPPs is prohibitive in that case.Qin and co-workers[27,28]achieved independent spatiotemporal imaging of vertical and horizontal components of the SPPs field with obliquely incident one-color TR-PEEM. However,to capture the weak horizontal component of the SPPs field,a relatively harsh experimental condition is indispensable for that scheme. First,the silver sample,which has a lower work function than the other precious metals, is utilized in that experiment to obtain enough PEEM image brightness of the SPPs, but the easily oxidized and chemically unstable characters of the silver material strongly restrict its application.Secondly,the specified polarization angle(fixed at 45°,for the directional excitation of the SPPs field to increase the intensity of the SPPs at a certain direction) and relatively higher power of the femtosecond laser are needed simultaneously to provide enough brightness of the PEEM image of SPPs. As a result, the experiment was carried out at the risk of the potential damage to the sample and also at the expense of SPPs field information loss due to the limitation in the launching direction of SPPs.

    In this paper, to overcome the limitation of our previous experiments with one-color PEEM,we carried out the distinct imaging of the vertical and horizontal components of SPPs launched from a trench with the 400-nm laser-assisted nearinfrared(NIR)femtosecond laser TR-PEEM imaging technology (two-color laser PEEM technology). The pump–probe setup consists of two spatially separated 800-nm laser beams,where the pump laser is p-polarized and the probe laser is p/spolarized to visualize different components of SPPs. Additionally, the 400-nm pulse with different polarization directions is used to enhance the photoemission yield for better visualization of interference fringes caused by the interaction of the 800-nm probe light with the SPPs. Experiments demonstrate that an introduction of the 400-nm pulse in the spatially separated TR-PEEM scheme allows distinct visualization of the different components of the SPPs field,accompanying with circumventing the risk of sample damage as well as the shortcoming of information loss of the excited SPPs field that is generally confronted in the usual spatially separated one-color IR laser TR-PEEM scheme. The underlying mechanism responsible for realizing distinct visualization of the different components of the SPPs field by two-color PEEM is revealed by obtaining the measurements of the double logarithmic dependence of photoemission yield with the 800-nm and 400-nm pulse powers of different polarizations. Moreover, we found that the PEEM image quality of the vertical and horizontal components of the SPPs field is nearly independent of the polarization of the 400-nm pulse which suggests the robustness of this two-color scheme.Our results pave a way for the application of the different components of the SPPs near field and offer help for drawing the SPPs field in the three-dimensional spatial-temporal domain.

    2. Experimental setup

    A rectangular 20 μm×1 μm trench coupling structure was milled into a 120-nm thick gold thin film using focused ion beam lithography. The inset of Fig.1 displays the topography of the trench structure imaged with PEEM under Hg lamp illumination. Femtosecond laser pulses(76-MHz repetition rate)were generated by a commercial titanium–sapphire femtosecond oscillator(Coherent,Mira 900)with a central wavelength of 800 nm (150-fs pulse width). Aβ-BaBO3(BBO) crystal was used for generating the second harmonic 400-nm pulse.The 800-nm pulse and the 400-nm pulse are focused onto the sample surface through two flanges of the PEEM with an incident angle of 65°relative to the surface normal. The corresponding attenuation plates and half-wave plates for 800-nm and 400-nm pulses were used for independently adjusting their power and polarization angle, respectively. The elliptically shaped spot size of the red light is 50 μm×25 μm, and the elliptically shaped spot size of the blue light is twice as large as that of the red light at the sample position. A schematic diagram of the two-color experiments is shown in Fig.1. The PEEM is utilized to directly image the interference patterns of the SPPs near-field by collecting photoelectrons emitted from the sample surface. The SPPs were excited by a p-polarized 800-nm pump pulse,which is detected at a remote position by the 400-nm (p/s)-assisted p/s-polarized 800-nm probe pulse.kLandkSdenote the wave vectors of the in-plane incident light and SPPs. Meanwhile, the laser power of the 800-nm pump/probe pulse is 150 mW and 30 mW–120 mW, respectively,while the 400-nm pulse laser power is 3 mW–14 mW.

    Fig.1. Schematic diagram of the two-color setup. The inset photo in the figure shows the topography of the sample under Hg lamp illumination.

    3. Results and discussion

    Figure 2(a) depicts the photoemission interference patterns obtained with monochromatic 800-nm pump–probe pulses. A p-polarized pump laser at 800-nm excited the SPPs,which were detected by the 800-nm p-polarized probe laser at a distance of about 80 μm from the coupling structure. The time that the SPPs and the probe pulse overlap in space is defined as zero delays. The bottom of Fig.2(a)is a vector figure of the laser and SPPs field. Figure 2(a) clearly demonstrates that we have imaged the vertical component of the field of SPPs through a p-polarized 800-nm probe laser. Figure 2(b)shows the photoemission interference patterns under the same delay time except for the probe pulse is 800-nm s-polarized.It shows that the interference patterns generated from the spolarized 800-nm probe light and the SPPs field are hardly recognized, and accordingly, the spatiotemporal information of the horizontal component of the SPPs field cannot be captured in this one-color PEEM scheme. This result could be attributed to the following reasons. (i) The work function of gold we used in this experiment is higher than that of silver used in our previous research in which a 3-photon photoemission was realized and independently imaging of vertical and horizontal components of SPPs had been successfully achieved only by one-color 800-nm laser PEEM.[28]However,a higher 4-photon nonlinear order(4PP)is required in the current gold sample, resulting in fewer photoelectrons for SPPs imaging. Moreover,it is known that the intensity of the horizontal component of the SPPs field(ES.Hin Fig.2(a))is much smaller than the vertical component of the SPPs field (ES.Vin Fig.2(a)),[28]which results in insufficient photoemission to meet the needs of PEEM imaging for the horizontal component of the SPPs being captured while the vertical component of SPPs field can be captured as shown in Fig.2(a). (ii)In our previous experiment for spatiotemporal imaging of the vertical and horizontal components of the SPPs field, the pump pulse with a polarization angle of 45°off the main axis of the sample is used to directionally excite the SPPs towards one side of the trench to facilitate the nonlinear multiple photon photoemission imaging of the SPPs field. As a result, the previous scheme is at the expense of information loss of the SPPs field at the opposite side of the trench. In the current scheme of SPPs field excitation from the trench,we do not intend to set a special polarization direction of the pump pulse like the previous experiment[27,28]which can launches SPPs on both sides of the trench, it gives more freedom to exploit the polarization direction of the pump pulse and thus offers more opportunity for SPPs applications such as multiplexing devices.[29]To avoid CCD saturation from localized surface plasmon excitation on the edges of the groove, we removed the groove structure from the field of view of the PEEM image.

    Fig. 2. One-color photoemission interference patterns of the spatially separated pump–probe experiment at a 20 μm×1 μm trench structure. PEEM image was obtained with(a)p-polarized and(b)s-polarized probe pulses,respectively. The white dashed rectangle represents the trench location,and the yellow dashed ellipse represents the approximate location of the spatially separated pump and probe pulses.

    To fully capture the SPPs field components from the trench structure in the gold film sample, a two-color laser PEEM scheme as shown in Fig. 1 has been employed in the following investigation. In the two-color scheme,a femtosecond laser at 400-nm wavelength is united with the probe pulse at 800-nm wavelength for imaging the SPPs field. Figure 3(a)shows the PEEM images obtained with an 800-nm p-polarized pump pulse and an 800-nm p-polarized probe pulse assisted by a 400-nm p-polarized one. In comparison to the results of the one-color experiment shown in Fig. 2(a), the interference fringes measured with two-color PEEM appear the same but with an enhancement of photoemission yields. Importantly,Figure 3(b)shows the PEEM image followed by an s-polarized 800-nm probe laser assisted with a p-polarized 400-nm laser in the probe area. It displays that in the probe area, the spolarized 800-nm pulse interacted with the SPPs field,resulting in clear interference fringes. As a result of the superposition of the horizontal field component of SPPs and the probe pulse, interference patterns can be seen in the probe area of Fig. 3(b), and the relevant vector figure of the laser field and the SPPs field refer to the one at the bottom of Fig.2(b). The interference fringes in Fig. 3(b) indicate that the horizontal component of the SPPs has been successfully captured. To confirm the success in the visualization of the horizontal and vertical components of the SPPs field in our case,we measured the interference fringe drift between the two components of theE-field captured by the s-polarized and p-polarized probe lasers. Experimental results show that the peak spacing of the interference fringes with p- and s-polarized probe pulses are always ΔS/4 (The value of ΔSis 1.6 μm in the PEEM image), indicating the phase delay between the horizontal and out-of-plane components corresponding to theπ/2 phase difference.[17]Therefore, the horizontal and vertical components of the SPPs field are successfully imaged in this twocolor PEEM scheme with noncollinear excitation mode. In short,we have distinctly captured the spatiotemporal information of the horizontal component of the SPPs field using the s-polarized probe pulses with the two-color PEEM.

    Fig.3. Two-color laser PEEM images were obtained using the pump of a p-polarized 800-nm laser and the probe of(a)p-polarized 800-nm laser and(b)s-polarized 800-nm laser,respectively. The approximate location of the 400-nm pulse is indicated by the blue elliptical dashed ellipse. The double logarithmic dependence of photoemission yield with the single 800-nm laser power(c),with the s-polarized 800-nm laser power after introducing the 400-nm laser pulse(d),and with the 400-nm laser power(e). In measuring the dependence of power on photoemission yield,the photoemission yield induced by the unchanged laser is deduced.

    It is interesting to note that the vertical field component of the SPPs field induces a far stronger photoemission intensity than those induced by the horizontal component.This is due to the reason we discussed above: the vertical component of the SPPs field amplitude is much larger than that of the horizontal component.[28]Moreover, due to Fresnel’s law of refraction,the SPPs propagation direction has a certain angle with theyaxis, as shown in Fig. 1, and only the projection of the horizontal component of SPPs onto theyaxis can interfere with the 800-nm s-polarized probe laser. Therefore,the above two factors determine the difference in photoemission intensity of the interference fringes corresponding to horizontal and vertical components. It needs to be mentioned that the value of the color bar is fine-tuned with different starting values in Fig. 3 to enhance the visibility of the interference signal.

    As shown in Figs. 3(a)–3(b), the assistance of a 400-nm laser in the detection location plays a significant role in the realization of distinct spatiotemporal visualization of vertical and horizontal components of the SPPs field. To analyze the underlying physics mechanism for realizing distinct spatiotemporal visualization of the two components of the SPPs field in this two-color laser PEEM scheme, we obtained the double logarithmic dependence of photoemission yield with the laser power(for 800-nm and 400-nm pulses,respectively)under one- and two-color cases as shown in Figs. 3(c)–3(e).Figure 3(c)shows the double logarithmic dependence of photoemission yield with the one-color 800-nm laser power. It is found that the slope value of the photoemission yield plot is about 3.61,indicating at least four 800-nm photons are needed to emit from the gold surface (corresponding to a 4-photon photoemission process). It needs to mention that in our onecolor 800-nm pulse power dependence measurement,since the s-polarized 800-nm pulse alone as probe light cannot induce enough photoelectrons to satisfy PEEM imaging, we choose the p-polarized 800-nm pulse case to reveal the nonlinear order of the photoemission process. Figure 3(d) shows the double logarithmic dependence of photoemission yield with the 800-nm s-polarized pulses with the presence of a-3-mW 400-nm laser. It can be seen that the nonlinear order of the photoemission yield dependence on the 800-nm laser power under this two-color case decreases from nearly 4 to a value of 1.27. Figure 3(e)shows the double logarithmic dependence of photoemission yield with the 400-nm laser pulses with the constant power of the 800-nm s-polarized pulse and corresponds to a slope value of 1.40. Figures 3(c)–3(e) shows that the nonlinear order of the photoemission is changed from four to nearly three(one 400-nm photon with two 800-nm photons)with the help of 400-nm light. The reduction of photoemission nonlinear order corresponds to an effective opening of the twocolor quantum channel for photoemission.[30,31]Specifically,in single-color pulse excitation at 800 nm, the localized electrons near the Fermi level of gold will be stimulated,via intermediate states, to form photoelectrons by simultaneously absorbing 4 photons of 800-nm laser.In this case,the photoemission yield followsP∝E8z, whereEzrepresents thezcomponent of the electric field derived from the 800-nm laser illumination. The photoemission induced by a two-color excitation can absorb photons of different colors simultaneously.[31]As a result, the dependence of photoelectron yield onEz@800 nm is dramatically reduced toP∝E4z. More importantly, due to the introduction of the 400-nm pulse,more possible quantum channels emerge for the ejection of photoelectrons accompanied by a decrement of the nonlinear order and an increasement of the photoemission yield.[32,33]The reduction of the nonlinear order of photoemission is accompanied by a great enhancement of the photoelectrons yield that is essential for readily imaging the horizontal component of the SPPs field via the two-color scheme.

    Fig.4. Two-color PEEM image was obtained with the probe of(a)p-polarized and(b)s-polarized 800-nm lasers assisted by s-polarized 400-nm pulses.The double logarithmic dependence of photoemission yield with the 400-nm p-polarized and s-polarized laser powers from the bright and dark fringes corresponding to(c)the vertical and(d)the horizontal components of the SPPs. During recording,the power of the 800-nm laser pulse was fixed.

    The polarization angle of 400-nm light was further investigated on the photoemission interference patterns of the horizontal and vertical components of the SPPs field. To this end,we turned the polarization direction of the 400-nm laser from p-polarized laser pulse to s-polarized laser pulse. Figures 4(a)and 4(b)shows the photoemission interference patterns under 800-nm p-polarized and s-polarized probe pulses assisted with 400-nm s-polarized laser pulse. As far as we know the absorptivity of the gold film will vary with different polarization directions of 400-nm laser for oblique incidence. To exclude this influence,we utilized the same effective absorption power by considering the absorptivity of the gold material on the 65°obliquely illuminated 400-nm laser with different polarization angles. Compared with the results obtained with 400-nm ppolarized laser pulse as illustrated in Figs. 3(a) and 3(b), the interference patterns under 400-nm s-polarized laser illumination as shown in Figs. 4(a) and 4(b) are consistent except for the enhanced photoemission yield of the SPPs interference fringes.

    We extracted the photoelectron yields in the same region under the 400-nm p-polarized and s-polarized pulses,respectively,with the polarization of the 800-nm pulse kept unchanged (either p-polarized for the vertical component or spolarized for the horizontal component of SPPs field). The results showed that,for the p-polarized 800-nm laser probe case,the photoelectron yields were 67829(for p-polarized 400-nm laser case) and 116184 (for s-polarized 400-nm laser case),respectively, showing a nearly 1.71 times photoelectron enhancement for an s-polarized 400-nm pulse over a p-polarized 400-nm pulse. When the probe pulse was 800-nm s-polarized pulse, the photoelectron yields were 24330 (for p-polarized 400-nm laser case) and 38140 (for s-polarized 400-nm laser case),respectively,corresponding to a photoelectron yield enhancement of about 1.56 times. The above results show that the brightness of the interference fringes under s-polarized 400-nm laser illumination is higher than that under p-polarized 400-nm laser illumination for both the vertical and horizontal components of the SPPs field.

    Further, for exploring the reason for the higher brightness of the interference fringes under the assistance of spolarized 400-nm light than that of the p-polarized case, we measured the 400-nm pulse power dependence of the photoelectron yields from bright and dark fringes when the 800-nm probe pulse is p/s-polarized, respectively, and the results as shown in Figs.4(c)and 4(d). Figure 4(c)displays the double logarithmic dependence of photoemission yield with the 400-nm laser power from bright and dark fringes with the fixed p-polarized 800-nm probe pulse which represents the vertical component of the SPPs. It can be seen that the slope values of the photoelectrons from bright and dark stripes are 1.23 and 1.29, respectively, for the p-polarized 400-nm case, and then decrease to 1.09 and 1.14 with the polarization of the 400-nm laser being adjusted to s-polarized one. As we discussed above,the lower the nonlinear order of the photoemission, the higher the photoelectrons yield is. Moreover, it has been shown that under two-color femtosecond laser excitation,the photoemission electrons can eject through two-color quantum channels.[33,34]When the two-color quantum channel is opened to a greater degree, the nonlinear order of photoelectrons will be dramatically reduced, resulting in a significant increase in photoemission yields.[31]Consequently,the photoelectron yields at the bright and dark fringes of the SPPs field interference fringes with the help of 400-nm s-polarized pulse illumination is higher than that with the 400-nm p-polarized pulse owing to a greater open degree of the two-color quantum channel. Figure 4(d) depicts the double logarithmic dependence of photoemission yield with the 400-nm p-polarized and s-polarized laser powers from bright and dark fringes when the s-polarized 800-nm probe pulse is used. Likewise,the nonlinear orders of the photoemission at the bright and dark fringes of the interference fringes corresponding to the horizontal component of the SPPs field are lower and corresponding to a higher photoemission yield under the 400-nm s-polarized laser case than that of the p-polarized 400-nm laser case. The above results show that when s-polarized 400-nm light is used to assist in imaging the horizontal and vertical components of the SPPs field, the nonlinear orders of the photoemission at the bright and dark fringes are lower,corresponding to an enhanced photoemission yield and brighter interference fringes.

    It is important to emphasize that although the photoelectron yield of the interference fringes of the SPPs field is higher when s-polarized 400-nm laser light illumination, it does not mean a better visualization of the PEEM image at this time.Because the contrast of the bright and dark interference fringes of the SPPs field is the fundamental standard to evaluate the imaging effect of the SPPs field. Thus,to evaluate the PEEM image’s visibility, the contrast of SPPs interference fringes under 400-nm light in different polarization cases are taken into consideration simultaneously. The contrast is obtained by extracting the photoemission yield of the adjacent bright and dark fringes when the 400-nm light is p/spolarized. The calculation results show that the interference fringes contrast of the vertical and horizontal components of the SPPs field are 1.25 and 1.20, respectively for the p-polarized 400-nm laser case. When the 400-nm light is turned into s-polarization,the contrast of the vertical and horizontal components of the SPPs field are 1.19 and 1.20, respectively. The above results show that the contrast of the interference patterns corresponding to the vertical and horizontal components of the SPPs field is nearly the same for the two polarization directions of the 400-nm laser.No big change in the contrast can be explained as the following. Changing the 400-nm pulse from p-polarization to s-polarization reduces the nonlinear order of the photoemission significantly at both the bright and dark stripes. Increasing the photoelectron yield at the dark and bright fringes at the same time results in almost no change in the contrast of the fringes. In short,the above results show that the polarization direction of the 400-nm light shows a negligible effect on the imaging contrast of the horizontal and vertical components of the SPPs field even though it affects the brightness of the PEEM images. Thus, the independence of the 400-nm laser polarization angle on the contrast offers the robustness of the 400-nm laser pulse assisted PEEM experiment on disclosing the horizontal and vertical components of the SPPs field. Furthermore, it can be noticed from Figs. 4(b) and 4(c) that the slope value corresponding to the bright fringe is lower than that of the dark fringe. It is attributed to a stronger 800-nm light intensity for the bright fringes due to the constructive interference and accordingly a stronger interaction between 400-nm and 800-nm lasers. As a result, the bright fringe corresponds to a greater open degree of two-color quantum channel than the dark fringe. Since the light intensity associated with bright and dark fringes has a different spatial distribution,the open degree of the two-color quantum channel also varies spatially.

    4. Conclusions

    In summary, we demonstrated the independent, spatiotemporal visualization of the vertical and horizontal components of SPPs launched from a rectangular trench with a 400-nm laser-assisted TR-PEEM.It is found that an introduction of the 400-nm laser pulse allows distinct imaging of the two different components of the same SPPs field without the risk of sample damage as well as the problem of information loss of the excited SPPs field that is generally confronted in the usual spatially NIR laser TR-PEEM scheme. Our experimental results essentially showed that the vertical and horizontal components of the SPPs field can be imaged no matter whether the 400-nm pulse is p-polarized or s-polarized,showing the robustness of the introduced 400-nm pulse in the experiment. The underlying mechanism for realizing distinct imaging of the different components of the SPPs field is revealed by measuring the power dependence of the 800-nm light and 400-nm light with different laser polarization directions. With the help of the two-color NIR laser time-resolved PEEM scheme,we have comprehensively captured spatiotemporal information of the horizontal and vertical components of the SPPs near-field from the noncollinear mode, and offer a possible solution for drawing the SPPs field in the three-dimensional spatial-temporal domain.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62005022, 12004052,and 62175018), the Fund from Jilin Provincial Key Laboratory of Ultrafast and Extreme Ultraviolet Optics(Grant No. YDZJ202102CXJD028), Department of Science and Technology of the Jilin Province, China (Grant Nos. 20200201268JC and 20200401052GX), the “111”Project of China(Grant No.D17017), and the Fund from the Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology.

    猜你喜歡
    王倫
    白衣秀士冤不冤
    雜文月刊(2022年4期)2022-04-22 20:28:21
    王倫實有其人
    文史雜志(2021年1期)2021-01-06 03:41:10
    “痞子大使”王倫
    王倫:機(jī)關(guān)算盡太聰明
    文苑(2015年22期)2015-11-18 07:27:17
    王倫:機(jī)關(guān)算盡太聰明
    文苑(2015年8期)2015-08-08 11:21:08
    淺論《水滸傳》中王倫的悲劇
    名作欣賞(2015年36期)2015-07-12 13:19:30
    王倫:機(jī)關(guān)算盡太聰明
    文苑·感悟(2015年8期)2015-07-05 11:50:45
    林沖三論
    梁山的“秀才寨主”王倫——兼及梁山寨主變動與“山寨政治”轉(zhuǎn)向*
    無能者無量
    国产亚洲av高清不卡| 国产成人系列免费观看| 亚洲,欧美精品.| 成人免费观看视频高清| 亚洲五月婷婷丁香| 熟女少妇亚洲综合色aaa.| 免费在线观看日本一区| 国产精品久久久久久精品古装| 新久久久久国产一级毛片| 十八禁网站免费在线| 性色av乱码一区二区三区2| 中文欧美无线码| 成人三级做爰电影| 亚洲自偷自拍图片 自拍| 国产男女超爽视频在线观看| 桃红色精品国产亚洲av| 91大片在线观看| 色婷婷久久久亚洲欧美| 成人国产一区最新在线观看| 国产免费av片在线观看野外av| 狠狠婷婷综合久久久久久88av| 中文字幕人妻熟女乱码| 日日摸夜夜添夜夜添小说| 麻豆乱淫一区二区| 另类亚洲欧美激情| 久久精品91无色码中文字幕| 夜夜夜夜夜久久久久| 怎么达到女性高潮| 少妇粗大呻吟视频| 欧美黑人欧美精品刺激| 欧美乱妇无乱码| 无人区码免费观看不卡| 久久久久久亚洲精品国产蜜桃av| 可以免费在线观看a视频的电影网站| 很黄的视频免费| 大片电影免费在线观看免费| 午夜久久久在线观看| 免费在线观看亚洲国产| 可以免费在线观看a视频的电影网站| 久久人人爽av亚洲精品天堂| 国产乱人伦免费视频| 午夜福利视频在线观看免费| 在线观看一区二区三区激情| 久热这里只有精品99| 亚洲视频免费观看视频| 欧美黑人欧美精品刺激| 如日韩欧美国产精品一区二区三区| √禁漫天堂资源中文www| 一本综合久久免费| 搡老岳熟女国产| 国产精品av久久久久免费| 精品熟女少妇八av免费久了| xxx96com| 欧美亚洲日本最大视频资源| 久久中文看片网| av网站免费在线观看视频| 亚洲第一欧美日韩一区二区三区| 91九色精品人成在线观看| ponron亚洲| 捣出白浆h1v1| 久久精品亚洲av国产电影网| 欧美国产精品一级二级三级| 又黄又爽又免费观看的视频| 在线观看一区二区三区激情| 中文字幕人妻丝袜制服| 99久久综合精品五月天人人| 99国产精品一区二区三区| 日本五十路高清| 欧美日韩中文字幕国产精品一区二区三区 | 美女扒开内裤让男人捅视频| 欧美乱色亚洲激情| av在线播放免费不卡| 午夜亚洲福利在线播放| 久久久国产一区二区| 国产精品久久久久成人av| 亚洲少妇的诱惑av| а√天堂www在线а√下载 | 精品人妻在线不人妻| а√天堂www在线а√下载 | 美女高潮喷水抽搐中文字幕| 1024视频免费在线观看| 国产片内射在线| 欧美性长视频在线观看| 天天影视国产精品| 国产成人精品无人区| 夜夜夜夜夜久久久久| 真人做人爱边吃奶动态| 中文字幕制服av| 欧美黑人欧美精品刺激| 青草久久国产| av福利片在线| 国产麻豆69| 视频区图区小说| 99热国产这里只有精品6| 视频区图区小说| 色综合欧美亚洲国产小说| √禁漫天堂资源中文www| 韩国av一区二区三区四区| 一级a爱视频在线免费观看| 三上悠亚av全集在线观看| 国产一区有黄有色的免费视频| 久久精品国产清高在天天线| 90打野战视频偷拍视频| 欧美在线一区亚洲| 国产国语露脸激情在线看| 精品欧美一区二区三区在线| 丁香六月欧美| 国产成人精品久久二区二区免费| 一级a爱视频在线免费观看| 自线自在国产av| 在线永久观看黄色视频| 久久国产精品大桥未久av| 国产精华一区二区三区| 久久久国产成人精品二区 | 免费在线观看亚洲国产| 老司机午夜十八禁免费视频| 久久久国产一区二区| 亚洲色图综合在线观看| 看免费av毛片| 亚洲va日本ⅴa欧美va伊人久久| 麻豆成人av在线观看| 久久香蕉精品热| 国产男靠女视频免费网站| 99在线人妻在线中文字幕 | tube8黄色片| 天天操日日干夜夜撸| svipshipincom国产片| 欧美精品亚洲一区二区| 乱人伦中国视频| 亚洲片人在线观看| 国产午夜精品久久久久久| 亚洲精品中文字幕一二三四区| 国产麻豆69| 午夜日韩欧美国产| 免费少妇av软件| 高清黄色对白视频在线免费看| 亚洲avbb在线观看| 亚洲精品中文字幕在线视频| 国产三级黄色录像| av片东京热男人的天堂| 麻豆成人av在线观看| 一本一本久久a久久精品综合妖精| 国产av又大| 日日夜夜操网爽| 久久久久久久国产电影| 99re6热这里在线精品视频| 这个男人来自地球电影免费观看| 久久这里只有精品19| 夜夜躁狠狠躁天天躁| 老熟妇仑乱视频hdxx| 国产免费现黄频在线看| 高清av免费在线| 国产精品99久久99久久久不卡| 日韩欧美一区二区三区在线观看 | 午夜福利影视在线免费观看| 国产日韩欧美亚洲二区| 成人免费观看视频高清| 波多野结衣一区麻豆| 日日摸夜夜添夜夜添小说| 男女午夜视频在线观看| 一边摸一边抽搐一进一小说 | 国产精品自产拍在线观看55亚洲 | 久久精品熟女亚洲av麻豆精品| 大陆偷拍与自拍| 国产精品 国内视频| 久久久精品国产亚洲av高清涩受| 法律面前人人平等表现在哪些方面| 久久人人爽av亚洲精品天堂| 成人精品一区二区免费| 国产视频一区二区在线看| avwww免费| 免费高清在线观看日韩| 狂野欧美激情性xxxx| 麻豆成人av在线观看| 日韩三级视频一区二区三区| 精品久久久久久电影网| 亚洲色图av天堂| 精品一区二区三卡| 香蕉丝袜av| 一级作爱视频免费观看| 亚洲精品国产色婷婷电影| 成人av一区二区三区在线看| 久久中文字幕一级| 久久国产精品人妻蜜桃| 精品亚洲成国产av| 欧美亚洲 丝袜 人妻 在线| 91精品国产国语对白视频| 免费黄频网站在线观看国产| 麻豆av在线久日| 色尼玛亚洲综合影院| 国产一区二区三区视频了| 女性生殖器流出的白浆| 久久久国产成人精品二区 | 日韩 欧美 亚洲 中文字幕| 久久精品成人免费网站| 国产精品欧美亚洲77777| 色老头精品视频在线观看| 巨乳人妻的诱惑在线观看| 久久精品人人爽人人爽视色| 大码成人一级视频| 成人av一区二区三区在线看| 狠狠婷婷综合久久久久久88av| www.熟女人妻精品国产| 十八禁高潮呻吟视频| 亚洲黑人精品在线| 日日夜夜操网爽| 国产在线观看jvid| 亚洲人成电影免费在线| 一级a爱视频在线免费观看| av有码第一页| 成人影院久久| 亚洲国产毛片av蜜桃av| 久久香蕉激情| 亚洲精品成人av观看孕妇| 日韩熟女老妇一区二区性免费视频| 老司机福利观看| 精品国产亚洲在线| 亚洲一码二码三码区别大吗| 亚洲精品久久午夜乱码| 在线观看免费视频网站a站| 亚洲熟女精品中文字幕| 超碰成人久久| 色94色欧美一区二区| 色综合欧美亚洲国产小说| 国产成人欧美| 交换朋友夫妻互换小说| 亚洲国产欧美网| 日韩欧美一区二区三区在线观看 | 国产99白浆流出| 亚洲性夜色夜夜综合| 午夜成年电影在线免费观看| 三上悠亚av全集在线观看| 满18在线观看网站| 免费一级毛片在线播放高清视频 | www.自偷自拍.com| 999久久久精品免费观看国产| av有码第一页| 国产在线精品亚洲第一网站| 亚洲国产毛片av蜜桃av| 在线观看日韩欧美| 亚洲熟女毛片儿| 午夜亚洲福利在线播放| 王馨瑶露胸无遮挡在线观看| 免费在线观看完整版高清| 久久久久视频综合| 999久久久精品免费观看国产| 亚洲av日韩在线播放| 脱女人内裤的视频| 在线免费观看的www视频| 狂野欧美激情性xxxx| 少妇粗大呻吟视频| 欧美精品一区二区免费开放| 亚洲色图av天堂| 午夜福利免费观看在线| 国产激情欧美一区二区| 日韩欧美三级三区| 国产高清videossex| 极品少妇高潮喷水抽搐| 久99久视频精品免费| 国产亚洲av高清不卡| 亚洲av第一区精品v没综合| 久久国产亚洲av麻豆专区| 热99久久久久精品小说推荐| 久久草成人影院| 免费在线观看影片大全网站| 亚洲精华国产精华精| 精品久久久精品久久久| 露出奶头的视频| 久久人妻av系列| 国产一区在线观看成人免费| 精品国产一区二区久久| 美女视频免费永久观看网站| 这个男人来自地球电影免费观看| 国产精品久久久久成人av| 女人久久www免费人成看片| 亚洲欧洲精品一区二区精品久久久| 国产成人系列免费观看| 日本vs欧美在线观看视频| 精品一区二区三区视频在线观看免费 | 自拍欧美九色日韩亚洲蝌蚪91| 国产精品免费视频内射| 99re6热这里在线精品视频| 中出人妻视频一区二区| 美女视频免费永久观看网站| 在线观看午夜福利视频| 精品国产国语对白av| 国产主播在线观看一区二区| 国产97色在线日韩免费| 久久久精品区二区三区| 天堂中文最新版在线下载| 看黄色毛片网站| 一级a爱片免费观看的视频| 麻豆av在线久日| 日韩欧美在线二视频 | 老汉色av国产亚洲站长工具| 中亚洲国语对白在线视频| 免费在线观看视频国产中文字幕亚洲| 精品一品国产午夜福利视频| 久久午夜亚洲精品久久| 亚洲欧美精品综合一区二区三区| 欧美激情 高清一区二区三区| 在线观看日韩欧美| 757午夜福利合集在线观看| 涩涩av久久男人的天堂| 十八禁高潮呻吟视频| 国产淫语在线视频| 国产精华一区二区三区| 老司机午夜十八禁免费视频| 亚洲av欧美aⅴ国产| 国产av又大| 黑人欧美特级aaaaaa片| 亚洲成人手机| 日本黄色视频三级网站网址 | 亚洲国产精品一区二区三区在线| 久99久视频精品免费| 黑人欧美特级aaaaaa片| 一级毛片精品| 久久久精品区二区三区| 国产蜜桃级精品一区二区三区 | 久久人人爽av亚洲精品天堂| 在线观看舔阴道视频| 九色亚洲精品在线播放| av天堂在线播放| 亚洲精品美女久久av网站| 久久久久久久精品吃奶| 三级毛片av免费| 免费观看精品视频网站| 国产精品免费视频内射| 久久狼人影院| 国产av一区二区精品久久| 亚洲熟妇中文字幕五十中出 | 午夜福利乱码中文字幕| 国产黄色免费在线视频| 十分钟在线观看高清视频www| 丰满迷人的少妇在线观看| 麻豆乱淫一区二区| 欧美黑人欧美精品刺激| 欧美在线一区亚洲| 老司机午夜福利在线观看视频| 咕卡用的链子| 老熟妇仑乱视频hdxx| 91成年电影在线观看| 女警被强在线播放| 日日摸夜夜添夜夜添小说| 国产成人欧美| 香蕉丝袜av| 18禁裸乳无遮挡动漫免费视频| 亚洲一区二区三区不卡视频| 久久狼人影院| 国内毛片毛片毛片毛片毛片| 亚洲人成伊人成综合网2020| av不卡在线播放| 啦啦啦免费观看视频1| 18禁美女被吸乳视频| svipshipincom国产片| 少妇 在线观看| 18禁国产床啪视频网站| 一进一出抽搐动态| 啦啦啦在线免费观看视频4| 亚洲精品在线美女| 亚洲性夜色夜夜综合| 亚洲色图 男人天堂 中文字幕| 高清在线国产一区| 身体一侧抽搐| 99热只有精品国产| 亚洲一区二区三区欧美精品| 99久久精品国产亚洲精品| 91在线观看av| 国产日韩一区二区三区精品不卡| 亚洲欧美日韩另类电影网站| 精品乱码久久久久久99久播| 日韩一卡2卡3卡4卡2021年| 亚洲 欧美一区二区三区| av线在线观看网站| 久久精品国产清高在天天线| 啪啪无遮挡十八禁网站| 亚洲精品久久午夜乱码| 久久香蕉精品热| 日本精品一区二区三区蜜桃| 99久久国产精品久久久| 国产成人av激情在线播放| 一进一出抽搐gif免费好疼 | 国产又色又爽无遮挡免费看| 交换朋友夫妻互换小说| 黄色丝袜av网址大全| 99久久人妻综合| 久久精品国产亚洲av高清一级| 亚洲国产中文字幕在线视频| 国产激情久久老熟女| 看黄色毛片网站| 天天躁狠狠躁夜夜躁狠狠躁| 男人的好看免费观看在线视频 | 正在播放国产对白刺激| 亚洲精品国产色婷婷电影| 9热在线视频观看99| 国产精品免费一区二区三区在线 | 欧美日韩一级在线毛片| 脱女人内裤的视频| 18禁观看日本| 欧美激情高清一区二区三区| 欧美成狂野欧美在线观看| 色尼玛亚洲综合影院| 国产精品99久久99久久久不卡| 国产蜜桃级精品一区二区三区 | 制服人妻中文乱码| 9191精品国产免费久久| ponron亚洲| 性色av乱码一区二区三区2| 精品午夜福利视频在线观看一区| 777久久人妻少妇嫩草av网站| 欧美精品高潮呻吟av久久| 亚洲av欧美aⅴ国产| 成人影院久久| 亚洲国产精品合色在线| av在线播放免费不卡| 久久性视频一级片| 黄色丝袜av网址大全| www日本在线高清视频| 国产欧美日韩一区二区三| 国产欧美日韩一区二区精品| 久久 成人 亚洲| 91成人精品电影| 久久久久久久精品吃奶| 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品亚洲一区二区| 一区二区日韩欧美中文字幕| 在线看a的网站| 精品久久蜜臀av无| 下体分泌物呈黄色| 久久精品国产清高在天天线| 如日韩欧美国产精品一区二区三区| 国产精品一区二区在线不卡| 欧美 日韩 精品 国产| 叶爱在线成人免费视频播放| 99久久综合精品五月天人人| 在线十欧美十亚洲十日本专区| 国产真人三级小视频在线观看| 亚洲五月天丁香| 国内久久婷婷六月综合欲色啪| 侵犯人妻中文字幕一二三四区| 国产主播在线观看一区二区| 满18在线观看网站| 首页视频小说图片口味搜索| 免费在线观看视频国产中文字幕亚洲| 欧美黑人精品巨大| 国产色视频综合| 成人18禁高潮啪啪吃奶动态图| 激情视频va一区二区三区| 久久精品熟女亚洲av麻豆精品| 欧美精品高潮呻吟av久久| 黄色 视频免费看| 国内毛片毛片毛片毛片毛片| 国产成人啪精品午夜网站| 在线观看66精品国产| 天堂√8在线中文| a在线观看视频网站| 高潮久久久久久久久久久不卡| 天堂俺去俺来也www色官网| 亚洲熟妇中文字幕五十中出 | www.自偷自拍.com| 国产黄色免费在线视频| 99精品在免费线老司机午夜| 嫩草影视91久久| 国产亚洲精品久久久久5区| 免费av中文字幕在线| www.自偷自拍.com| 中文欧美无线码| 一本综合久久免费| 日韩成人在线观看一区二区三区| 99精品久久久久人妻精品| 热99国产精品久久久久久7| tube8黄色片| 久久精品91无色码中文字幕| 欧美最黄视频在线播放免费 | 成熟少妇高潮喷水视频| 亚洲精品一卡2卡三卡4卡5卡| 十八禁网站免费在线| 欧美丝袜亚洲另类 | 一二三四在线观看免费中文在| 热99久久久久精品小说推荐| 一区二区三区精品91| 国产在视频线精品| 日韩欧美一区二区三区在线观看 | 高清av免费在线| 亚洲国产欧美日韩在线播放| 免费观看人在逋| 久久久久精品国产欧美久久久| 少妇粗大呻吟视频| 免费女性裸体啪啪无遮挡网站| 久久影院123| 亚洲三区欧美一区| 99国产精品免费福利视频| 国产精品秋霞免费鲁丝片| 黄色成人免费大全| 黄色视频不卡| 精品午夜福利视频在线观看一区| 妹子高潮喷水视频| 一个人免费在线观看的高清视频| 在线播放国产精品三级| 三上悠亚av全集在线观看| 黑丝袜美女国产一区| 久久 成人 亚洲| 丁香欧美五月| 成人手机av| 91在线观看av| 他把我摸到了高潮在线观看| 无人区码免费观看不卡| 在线十欧美十亚洲十日本专区| 日本黄色日本黄色录像| 日韩一卡2卡3卡4卡2021年| 国产成人免费无遮挡视频| 一区福利在线观看| 黄片大片在线免费观看| 成人永久免费在线观看视频| 亚洲精品久久成人aⅴ小说| 视频区图区小说| 国产精品一区二区精品视频观看| 欧美激情极品国产一区二区三区| 日本撒尿小便嘘嘘汇集6| av免费在线观看网站| 捣出白浆h1v1| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美激情在线| 久久精品熟女亚洲av麻豆精品| 国产精品美女特级片免费视频播放器 | 精品久久久久久,| 欧美日本中文国产一区发布| 亚洲色图 男人天堂 中文字幕| 国产在视频线精品| 免费在线观看完整版高清| 国产单亲对白刺激| 国产无遮挡羞羞视频在线观看| 久久天堂一区二区三区四区| 日本vs欧美在线观看视频| 国产视频一区二区在线看| 亚洲性夜色夜夜综合| 国产亚洲欧美精品永久| 亚洲三区欧美一区| 黑丝袜美女国产一区| 9色porny在线观看| 精品人妻1区二区| 一区二区三区精品91| 亚洲av成人一区二区三| 热99久久久久精品小说推荐| 国产欧美日韩综合在线一区二区| 女同久久另类99精品国产91| 亚洲第一av免费看| 性少妇av在线| 精品亚洲成a人片在线观看| 亚洲熟女精品中文字幕| 成年版毛片免费区| 亚洲人成77777在线视频| 亚洲精品av麻豆狂野| 国产免费av片在线观看野外av| www.精华液| av中文乱码字幕在线| 别揉我奶头~嗯~啊~动态视频| 高清欧美精品videossex| 露出奶头的视频| 99久久99久久久精品蜜桃| 男女床上黄色一级片免费看| 久久久国产一区二区| 亚洲美女黄片视频| 精品午夜福利视频在线观看一区| 午夜精品国产一区二区电影| 成年人黄色毛片网站| 老司机靠b影院| a在线观看视频网站| av不卡在线播放| 免费女性裸体啪啪无遮挡网站| 啦啦啦在线免费观看视频4| 丰满的人妻完整版| 校园春色视频在线观看| 国产在线一区二区三区精| 母亲3免费完整高清在线观看| 淫妇啪啪啪对白视频| 一a级毛片在线观看| 国产国语露脸激情在线看| 91成人精品电影| 欧美另类亚洲清纯唯美| 精品视频人人做人人爽| 久久午夜综合久久蜜桃| 人成视频在线观看免费观看| 午夜福利免费观看在线| 窝窝影院91人妻| 久久国产精品男人的天堂亚洲| 成年女人毛片免费观看观看9 | 久久精品人人爽人人爽视色| 亚洲中文日韩欧美视频| 久久中文字幕人妻熟女| 久久精品亚洲熟妇少妇任你| 亚洲黑人精品在线| 黑人巨大精品欧美一区二区mp4| 男人操女人黄网站| 韩国精品一区二区三区| 欧美黄色淫秽网站| 国产又爽黄色视频| 黄色丝袜av网址大全| 欧美老熟妇乱子伦牲交| 人妻丰满熟妇av一区二区三区 | 国产麻豆69| 精品亚洲成国产av| 国产精品免费大片| 人妻一区二区av| 亚洲色图综合在线观看| 99精国产麻豆久久婷婷| 美女国产高潮福利片在线看| 视频在线观看一区二区三区| 久久久久国产精品人妻aⅴ院 | 别揉我奶头~嗯~啊~动态视频| 国产精品久久久久成人av| 亚洲人成77777在线视频| 亚洲情色 制服丝袜| 午夜福利乱码中文字幕| 热99re8久久精品国产|