• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy

    2022-10-26 09:47:10ChunLaiFu付春來ZhenLongZhao趙振龍BoYuJi季博宇XiaoWeiSong宋曉偉PengLang郎鵬andJingQuanLin林景全
    Chinese Physics B 2022年10期

    Chun-Lai Fu(付春來), Zhen-Long Zhao(趙振龍), Bo-Yu Ji(季博宇),Xiao-Wei Song(宋曉偉), Peng Lang(郎鵬), and Jing-Quan Lin(林景全)

    School of Physics,Changchun University of Science and Technology,Changchun 130022,China

    Keywords: surface plasmon polaritons,photoemission electron microscopy,near-field imaging

    1. Introduction

    Surface plasmon polaritons (SPPs), an electromagnetic wave transmitted at the metal–dielectric interface can propagate nearly millimeters with the excitation by near-infrared photons,[1]and can be used in nanoscale plasmon lasers,[2]local optical traps,[3,4]plasmon waveguides,[3,5–9]sensor,[10]and metamaterial,[11]and has strong potential applications in the next generation of highly integrated nano-photoelectron devices.[12–16]

    Owing to the subwavelength localization of SPPs, it is generally an important prerequisite to reveal the physical nature of plasmon fields by using a microscopy with nanoscale spatial-resolution. The imaging of SPPs can be carried out through optical fluorescence microscope, fluorescence labeling,[16]or visualized by scanning near-field optical microscopy(SNOM)with higher spatial resolution(about 10 nm).[17]Photoemission electron microscopy(PEEM)with a lateral resolution similar to SNOM, a fast acquire rate, an attosecond temporal resolution accessibility and without being affected by the probe tip,has been utilized to characterize the transmission or localization of plasmons by observing the interference fringe or the hot spots.[18–20]

    Despite the fact that the near-field image of SPPs by PEEM can be obtained via one-color ultrafast laser illumination, the electrons within the sample undergo a high-order nonlinear process to produce photoemission under infrared ultrafast laser excitation due to the relatively high work function of the sample(e.g.4.6 eV–5.2 eV for gold). In this regard,an extremely strong incident laser intensity is required for necessary image brightness. Nevertheless, this will easily result in melting or reconstruction of the sample during PEEM measurement. To avoid the above limitation,an atomic thick layer of alkali metal(such as cesium)can be deposited on the sample surface to lower the work function of the sample, reduce the nonlinear order of the multi-photon photoemission process and thereby enhance the brightness of PEEM image.[13,21,22]However, the drawback of this method is that the deposition of alkali metal will lead the sample difficult to be used for potential practical application since it undoubtedly will limit the reusability of the sample once exposed to air due to the highly reactivity of alkali metal.

    In recent years,two-color laser PEEM scheme,which can reduce the nonlinear order of the emitted photoelectron via the two-color ultrafast laser illumination, has been utilized to obtain the near-field image and the group/phase velocity of SPPs without the risk of damaging the sample.[23–27]Nevertheless,a systematical evaluation of the two-color laser PEEM image method, especially a direct comparation between one-/two-color laser PEEM(include the image brightness and the contrast of the SPPs fringes,etc.) is,to the best of our knowledge,rarely reported.

    In this paper,a direct and comprehensive comparation between one-/two-color laser excited PEEM image of SPPs(including the brightness and the contrast of SPPs)is carried out.The results show that the two-color laser excitation can increase the brightness of the PEEM image via enhancing the photoelectron yield,which can realize the imaging of weakly excited SPPs.More importantly,it is found that the contrast of SPPs fringes under two-color laser PEEM scheme can be significantly increased(up to 4 times in our case)in comparison with that under one-color laser excitation. By recording the nonlinear order of the photoelectrons emitted from the bright and dark fringe, respectively, the underlying physical mechanism of the improved visibility of SPPs is revealed by using two-color laser scheme. We attribute this result to the higher opening degree of the quantum channel at the position of the bright fringe than that of dark fringe. In addition, the effects of polarization angle of second harmonic laser(400 nm in this case)on the PEEM image of SPPs with different wave vector directions are presented as well.

    2. Experimental setup

    A 100-nm-thick Au film was evaporated onto an indium tin oxide coated clean silica substrate,and a rectangle groove structure with a size of 10 μm×1 μm was etched by focused ion beam lithography. The PEEM image of the groove structure under mercury lamp illumination is shown in the inset of Fig.1(a). Figure 1(b)shows the schematic diagram of the experiment. The SPPs were excited by a mode-locked titaniumsapphire laser with a central wavelength of 800 nm(Coherent,Mira 900, 76-MHz repetition rate, 150-fs pulse width). The laser pulse is split into two beams within a Mach–Zehnder interferometer equipped with a piezoelectric translation platform, one of which produces the second harmonic (400 nm)laser from a BBO crystal. The power and polarization angle for each of these two lasers beams can be adjusted by using two independent neutral density attenuators(which ranges from 30 mW to 70 mW for 800-nm pulses and from 2 mW to 9 mW for 400-nm pulses) and corresponding half wave plates, respectively. Two pulses went through two flanges of the PEEM,and then focused at the same position on the sample surface at an incident angle of 65°relative to the surface normal. The focal spot sizes of the two pulses were adjusted to basically the same size: about 30 μm×20 μm, by the focusing lens. The PEEM is used to collect the photoemission electrons ejected from the sample,and to achieve direct imaging of the near-field interference fringes of SPPs. Figure 1(c)shows the relative time-delay-dependent photoemission electron yield which presents a peak at 0 fs. Meanwhile, the 0-fs time delay will be adopted in subsequent studies. The inset in Fig.1(c)shows the two-color PEEM image of the SPPs at the time delay of 0 fs. On account of the extremely strong photoelectron emission from the edge of groove structure due to the excitation of localized surface plasmons,the groove structure is moved out of the field of view to avoid saturation of the PEEM image.

    Fig. 1. (a) Schematic diagram of experiment, with the inset showing onephoton PEEM image of sample diagram under illumination of mercury lamp;(b)experimental set up of two-color laser PEEM experimental scheme,where M1–M5 are silver mirrors,BS1 is beam splitter,L1–L4 correspond to convex lens,A1 and A2 are neutral attenuation plates,and H1,H2 are both half plate for 800-nm and 400-nm pulses,respectively;(c)hotelectron yield versus relative time delay between two color laser pulses for dark strip 1 and bright strip 1, with inset showing two-color laser PEEM image of SPPs at a time delay of laser pulse at 0 fs.

    3. Results and discussion

    Figure 2(a) shows the one-color PEEM images of the sample irradiated by a single 55-mW, 800-nm femtosecond laser pulse at three different polarization angles.Distinct interference fringes can be observed under a laser polarization angle of 0°(p-polarization).Nevertheless,no distinct fringes can be seen under laser polarization angle of 90°(s-polarization).This is attributed to the ineffective excitation of SPPs under spolarization laser illumination. Namely,it is hard for conventional one-color PEEM to clearly image the SPPs with weak excitation. Figure 2(b) shows the two-color PEEM images with an additional 2-mW,400-nm femtosecond laser beam(ppolarization). These results show that the brightness of image is significantly enhanced with respect to one-color laser PEEM scheme for the given polarization directions of 800 nm.Specifically,when the polarization angle of 800-nm laser pulse is tuned to 90°, SPP interference fringes can also be distinguished. By extracting the photoelectron yield at the same position(as shown in Figs.2(a)and 2(b))of the bright fringe under one-/two-color laser conditions, the 800-nm laser polarization angle-dependent photoemission yield is shown in Fig. 2(c). It can be seen that by introducing a 400-nm laser pulse,the photoemission yield of SPP interference fringes can effectively increase by nearly two times as great as that of onecolor laser scheme.

    It should be understood that the increase of the photoelectron yield from the sample under two-color laser excitation cannot be directly equivalent to the improvement of the image visibility. The contrast between the bright and dark fringes is an important parameter to evaluate the visualization of the SPP.The contrast between the SPP fringes under one-and twocolor laser PEEM case should be considered simultaneously to evaluate the visibility of the PEEM image more accurately. To this end, we further extract the photoemission yield from the adjacent dark fringe, and calculate the contrast from the following formula:whereImaxandImincorrespond to the photoemission yield of the bright and dark fringe (marked in Fig. 1(a)), respectively. Figure 2(d)shows the 800-nm laser polarization angledependent contrast under one-/two-color laser excitation condition,respectively. Firstly,it can be seen that the fringe contrast gradually decreases with the increase of polarization angle of 800-nm incident laser. More importantly, we should mention that the contrast of interference fringes obtained under two-color laser excitation condition is significantly higher than that under one-color laser excitation. Specifically, with 40°polarization angle of 800-nm laser,the fringe contrast obtained under two-color laser excitation is 0.22 which is about 4 times higher than that under one-color laser excitation. These results corroborate that in addition to observing weakly excited SPPs by enhancing the image brightness, the two-color laser scheme can enhance the visibility of the PEEM image of SPPs via increasing the contrast between the bright fringe and the dark fringe in comparison with the one-color laser scheme.It should be noted that the bright fringes under one-color excitation are almost invisible (accompanied with the contrast close to 0), with the 800-nm laser’s polarization angle being greater than 50°.We,therefore,do not make quantitative comparison of contrast between one-color case and two-color case under this condition.

    Fig. 2. PEEM images of SPP interference fringes obtained by (a) single 800-nm laser pulse and (b) two-color (400 nm+800 nm) laser pulse with 800-nm laser pulse’s polarization angle of 0°,50°,and 90°;(c)photoemission electron yields and(d)the contrast of SPPs fringes versus 800-nm laser pulse’s polarization angle. The error bars in panels(b)and(c)are made based on three different SPP fringe groups for one-color laser case(marked by the red rectangles in panel(a))and for two-color laser case(marked by the red triangles in panel(b)),respectively.

    To further reveal the underlying mechanism for the visibility improvement of the PEEM image of SPPs under twocolor laser excitation, the photoemission electron yields of bright and dark fringes of SPPs under the power of 800-nm and 400-nm laser are extracted,the results are shown in Fig.3.The relationship between photoemission electron yieldYand laser intensityIcan be presented by the following expression:[28]

    wherenrepresents the nonlinear order of the photoemission.Figure 3(a) shows the 800-nm laser (p-polarization) powerdependent photoelectron yield from bright and dark fringes of SPPs under one-color laser excitation. The nonlinear order of the photoelectrons emitted from the bright fringe and the dark fringe are 3.61±0.09 and 3.2±0.27, respectively,indicating a 4-photon photoelectron emission process. The 800-nm laser(p-polarization)power-dependent photoelectron yield from bright fringe and dark fringe under two-color laser excitation are shown in Fig. 3(b). In this case, the power of 400-nm laser pulse (p-polarization) is fixed at 3 mW. It can be seen that with the assistance of 400-nm laser,the nonlinear order of bright fringe and dark fringe decrease to 1.88±0.15 and 2.11±0.24, respectively. More importantly, we should note that the nonlinear order variation between bright fringe and dark fringe is different: for the bright fringe, the nonlinear order decreases from 3.61 to 1.88 (with a decrement of 1.73); for the dark fringe, the nonlinear order decreases from 3.2 to 2.11(with a decrement of 1.09). It is known that the photoemission electron under two-color femtosecond laser excitation can be treated as a process of the opening of twocolor quantum channel,[29]and a larger opening degree of the two-color quantum channel will result in the drastic reduction of the nonlinear order of photoelectrons accompanied with the significant increase of the photoemission yields.[23]The different nonlinear order variations at bright fringe and dark fringe clearly demonstrate that the visibility improvement of the PEEM image under two-color laser excitation results from the different opening degrees of the quantum channel spatially:the bright fringe corresponds to a higher opening degree of the quantum channel. This can be explained as follows: a 400-nm laser beam dominates the photoelectron emission in the dark fringe formed by the destructive interference between SPPs and 800-nm pump pulse, therefore the condition of the effective opening of the two-color channel is weaker than in the case of the bright fringe.[23–25]To further confirm our deduction, the 400-nm laser (p-polarization) power-dependent photoemission yields, with the power of 800-nm laser (ppolarization)fixed at 32mW,are shown in Fig.3(c).The result shows that the nonlinear order of bright fringe(1.23±0.09)is still lower than that of dark fringe (1.38±0.11). Similarly,this result demonstrates that there exists a higher opening degree for the bright fringe than that for the dark one. In short,the physical mechanism of the enhanced contrast between the bright fringe and the dark fringe under two-color laser excitation arises from the spatially different opening degrees of the quantum channel between the bright fringe and the dark fringe.Furthermore,we also obtain the contrast of SPP fringes at different 800-nm laser power values (32 mW to 48 mW, corresponding to Figs. 3(a) and 3(b)) for both the two-color laser excitation case and the one-color laser excitation case, which is not shown here. It is found that the contrast of the one-color laser case and two-color laser case increase with the further enhancement of the power of 800-nm laser, and the contrast under the two-color laser case is always higher than that under the one-color laser case. Note that the above results are obtained in zone 1(see Fig.4(a)for zone 1),and measurements in the zone 2 give very similar results,i.e., the conclusions obtained from zone 1 are applicable to the case of zone 2.

    To further demonstrate that the 400-nm laser pulse plays a role in enhancing the visibility of the SPPs, we display the 400-nm laser power-dependent contrast in the two-color laser pulse’s illumination scheme with 800-nm laser power of 50 mW. As shown in Fig. 3(d), with the increase of 40-nm power from 2 mW to 10 mW, the contrast of the fringe first shows a trend of increase,and then gradually decreases. This can be attributed to the fact that there is an optimal power ratio between 400-nm laser pulse and 800-nm laser pulse to maximize the opening degree of quantum channel.[23]While the increase of 400-nm laser power can enhance the intensity of bright fringes, the dark fringe and background intensity can increase simultaneously as shown in Fig.3(c). Therefore,the contrast of the fringe can be observed to decrease with 400-nm laser power increasing. The result of Fig.3(d)shows that the photoemission from 400-nm laser exerts an important influence on the contrast of the fringes.

    In the above research,we have directly compared the visibilities of the PEEM image of SPPs under one-and two-color laser excitation and found that,in addition to the enhancement of the photoemission yield,two-color PEEM can significantly improve the contrast between bright fringe and dark fringe(nearly 4 times higher than that of one-color case)and therefore enhancing the visibility. Next, the influence of 400-nm laser polarization angle(the 800-nm laser pulse is p-polarized one) on the PEEM image of SPPs is explored. Here, SPPs within different zones near the structure (marked by zone 1 and zone 2 in Fig.4(a)),which corresponds to different wave vector directions respectively,are selected,and their schematic diagrams are shown in Fig. 4(a). The SPPs in zone 2 are excited by shorter edge of the groove which is along thexaxis.The in-plane component (ESLas depict in Fig. 4(a)) of the SPPs selected in zone 2 is parallel to the electric field of the 800-nm laser, projected onto the gold surface. This will give a long overlapping time between the SPPs and the incident laser. In contrast, the SPPs in zone 1 are excited by longer edge of the grove which is along theyaxis. TheESLcomponent of SPPs in zone 1 intersects with the electric field of the 800-nm laser projected onto the gold surface. In this case,the overlapping time between the SPPs and the incident laser in zone 1 is shorter than in the case in zone 2. As a result, the fringe width in zone 1 is narrower than the one in zone 2.[18]It is needed to mention that as the SPPs in zone 2 correspond to a longer overlapping time and a higher coupling efficiency between laser and SPPs, a commonly used excitation framework should be used in the study and utilization of SPPs.[25,30]In contrast, owing to the narrower fringe period, the SPPs in zone 1 have been found recently to be conducive to the direct characterization of SPP properties and to the development of various SPPs-based applications.[18,31–34]

    Fig. 3. Plots of photoemission electron yield versus 800-nm laser power under (a) one-color laser excitation and (b) two-color laser excitation; (c)plots of photoemission electron yield versus 400-nm laser power under two-color laser excitation. All photoelectron yields have subtracted background intensity.Meanwhile,the photoelectron yield generated from the isolated laser pulses with fixed intensity under the two-color condition is also deducted.(d)Plot of contrast versus 400-nm laser power in zone 1 under two-color(400 nm+800 nm)laser pulses illumination. The error bars are made based on three different SPP fringe groups(marked by red triangles in Fig.2(b)).

    The photoemission electron yields of bright fringe and dark fringe related with the polarization angle of 400-nm laser is shown in Fig.4(b). From this figure it follows that the photoemission yields of bright fringe and dark fringe of SPPs in both zone 1 and zone 2 decrease rapidly with the increase of polarization angle of 400-nm laser pulse from 0°to 90°.More importantly, it can be seen that the variation trends of the curves of polarization angles of 400-nm laserversusphotoemission yield curves for the SPPs with different wave vector directions are basically consistent with each other. We attribute this result to the following possible reasons: (i) the SPPs induced by 800-nm laser correspond to an incoherent superposition with 400-nm laser;(ii)since SPPs-induced photoelectrons are dominated by out-of-plane componentESTas depicted in Fig.4(a),[30]the direction ofESTin zone 1 is identical to that in zone 2, therefore the response of the photoelectrons ejected from zone 1 to the polarization direction of 400-nm laser is the same as that from zone 2. Moreover, the contrast of PEEM image of SPPs in the two zones related with the polarization angle of 400-nm laser is also investigated.We extract the contrasts from three different groups of bright fringes and dark fringes in zone 1 and zone 2 as marked in the inset in Fig. 4(c), respectively, and the results are displayed in Fig. 4(c). From this figure it follows that the contrast of SPP fringes in each of zone 1 and zone 2 shows a slow decreasing trend with turning polarization angle of 400-nm laser increasing from 0°to 90°, even though the fringe periods in the two zones are quite different. In addition, it is noted that the variation in the contrast for zone 1 in Fig.4(c)and that in Fig. 2(d) generally follow the same trend but have some differences in decreasing rate with the laser polarization angle increasing for the two-color laser scheme under the same polarization condition. This phenomenon should result from the different laser wavelengths corresponding to the polarizationdependent measurement in Figs. 4(c) and 2(d). Moreover, it should be noted that the laser power corresponding to Fig.4(c)is different from that corresponds to Fig.2(d).

    Fig.4. (a)Schematic diagram of electric field components of SPPs on the surface of gold film. EST and ESL are the SPPs’electric field components perpendicular and parallel to the gold surface,respectively. The two insets show PEEM image of SPPs obtained under two-color excitation with 400-nm polarization angle of 0° (upper) and 90° (lower), respectively; (b) plots of photoemission electron yield versus polarization angle of 400-nm laser at bright fringes 1 and 2 and dark fringes 1 and 2;(c)plots of contrast of SPPs’fringes versus polarization angle of 400-nm laser for zone 1 and zone 2,respectively. The error bars in panels(b)and(c)are made based on three different SPP fringe groups in zone 1(marked by red triangles)and in zone 2(marked by blue circles)in inset,respectively.

    4. Conclusions

    We directly and comprehensively compared the brightness (photoelectron yield) and the contrast of the PEEM image of the SPPs exited from an etched groove structure in gold film under one-color laser photoemission electron microscopy with those under two-color laser photoemission electron microscopy. The results show that in addition to enhancing the photoemission yields that can be used to obtain the image of weakly excited SPPs, two-color laser excitation can significantly improve the visibility of the PEEM image due to the enhanced contrast between bright fringe and dark fringe in comparison with one-color laser excitation (up to about 4 times). By recording the nonlinear order of the photoelectrons ejected from the bright fringes and dark fringes, respectively,the underlying mechanism responsible for improving the visibility is revealed: for the two-color excitation, the opening degree of the two-color quantum channel corresponding to the bright fringes is higher than the one corresponding to the dark fringes. Moreover,it is found that the variation trends of the curves of 400-nm polarization angleversusphotoemission yield for the SPPs with different wave vector directions are basically consistent with each other. These results may deepen the understanding of the mechanism of two-color laser PEEM and will help broaden the scope of application of SPPs.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62005022 and 12004052),the Fund from the Jilin Provincial Key Laboratory of Ultrafast and Extreme Ultraviolet Optics, China (Grant No. YDZJ202102CXJD028), the Fund from the Department of Science and Technology of Jilin Province, China(Grant Nos.20200201268JC and 20200401052GX),the“111”Project of China(Grant No. D17017),and the Fund from the Ministry of Education Key Laboratory for Cross-Scale Microand Nano-Manufacturing, Changchun University of Science and Technology,China.

    免费一级毛片在线播放高清视频 | 亚洲人成77777在线视频| 亚洲精品自拍成人| 亚洲国产欧美在线一区| 欧美 亚洲 国产 日韩一| 亚洲精品国产区一区二| 1024香蕉在线观看| 国产精品久久久久久人妻精品电影 | 国产伦理片在线播放av一区| 日韩大码丰满熟妇| 制服人妻中文乱码| 日韩一区二区三区影片| 午夜福利乱码中文字幕| 高清黄色对白视频在线免费看| 老司机午夜十八禁免费视频| 99久久综合免费| 777久久人妻少妇嫩草av网站| 亚洲国产成人一精品久久久| avwww免费| av电影中文网址| 亚洲中文字幕日韩| 极品少妇高潮喷水抽搐| 久久亚洲国产成人精品v| 国产不卡av网站在线观看| 欧美激情 高清一区二区三区| 国产在线视频一区二区| 欧美精品人与动牲交sv欧美| 在线观看免费午夜福利视频| 美女扒开内裤让男人捅视频| 久久青草综合色| 欧美少妇被猛烈插入视频| 久久国产亚洲av麻豆专区| 热99国产精品久久久久久7| 建设人人有责人人尽责人人享有的| 91字幕亚洲| 青春草视频在线免费观看| 在线天堂中文资源库| 中文字幕人妻丝袜制服| 国产极品粉嫩免费观看在线| 国产片内射在线| 啦啦啦中文免费视频观看日本| 欧美 亚洲 国产 日韩一| 国产精品国产三级国产专区5o| 极品少妇高潮喷水抽搐| 欧美老熟妇乱子伦牲交| 男女免费视频国产| 日本wwww免费看| 亚洲欧洲日产国产| 人妻人人澡人人爽人人| 每晚都被弄得嗷嗷叫到高潮| 久久精品熟女亚洲av麻豆精品| 99精品欧美一区二区三区四区| 午夜福利在线免费观看网站| 亚洲精品久久久久久婷婷小说| 日本一区二区免费在线视频| 亚洲欧洲日产国产| 日韩免费高清中文字幕av| 国产日韩欧美视频二区| 国产精品国产av在线观看| 欧美精品人与动牲交sv欧美| 黑人欧美特级aaaaaa片| 少妇粗大呻吟视频| 成人亚洲精品一区在线观看| 十分钟在线观看高清视频www| 国产免费一区二区三区四区乱码| 日本91视频免费播放| 性高湖久久久久久久久免费观看| 免费不卡黄色视频| 中文字幕精品免费在线观看视频| 亚洲国产看品久久| 老鸭窝网址在线观看| 日本撒尿小便嘘嘘汇集6| 人人妻人人添人人爽欧美一区卜| 久久久久久人人人人人| 精品久久久久久久毛片微露脸 | 亚洲精品在线美女| 久久人妻福利社区极品人妻图片| 欧美国产精品va在线观看不卡| 午夜影院在线不卡| 99久久精品国产亚洲精品| 免费观看人在逋| 自线自在国产av| 天堂中文最新版在线下载| 亚洲成人免费av在线播放| 色视频在线一区二区三区| 日本精品一区二区三区蜜桃| 黑人巨大精品欧美一区二区mp4| 亚洲成国产人片在线观看| 1024香蕉在线观看| 丝瓜视频免费看黄片| 亚洲精品中文字幕在线视频| 亚洲va日本ⅴa欧美va伊人久久 | 一级毛片精品| 精品久久久精品久久久| 中文字幕最新亚洲高清| av线在线观看网站| 国产av又大| 在线 av 中文字幕| 男女高潮啪啪啪动态图| 一本—道久久a久久精品蜜桃钙片| 亚洲av电影在线进入| 日韩,欧美,国产一区二区三区| 精品免费久久久久久久清纯 | 咕卡用的链子| 丝袜在线中文字幕| 久久久精品94久久精品| 精品国产一区二区久久| 欧美日本中文国产一区发布| 国产免费av片在线观看野外av| 国产主播在线观看一区二区| 俄罗斯特黄特色一大片| 大码成人一级视频| 亚洲欧美精品综合一区二区三区| 又紧又爽又黄一区二区| 亚洲久久久国产精品| 免费观看av网站的网址| 99精品久久久久人妻精品| 少妇人妻久久综合中文| 国产片内射在线| 国精品久久久久久国模美| 欧美国产精品va在线观看不卡| 老熟妇仑乱视频hdxx| 亚洲欧美色中文字幕在线| 在线观看一区二区三区激情| 日韩,欧美,国产一区二区三区| 国产成人精品久久二区二区91| 国产精品成人在线| 亚洲综合色网址| 黄片播放在线免费| 久久 成人 亚洲| 国产三级黄色录像| 午夜福利在线观看吧| 男女边摸边吃奶| 国产成人av教育| 国产1区2区3区精品| av电影中文网址| 国产在视频线精品| 欧美日韩精品网址| 日韩欧美国产一区二区入口| 欧美日韩中文字幕国产精品一区二区三区 | 老司机深夜福利视频在线观看 | 久久天躁狠狠躁夜夜2o2o| bbb黄色大片| 久久久精品94久久精品| 老熟妇乱子伦视频在线观看 | 久久久久国内视频| www.精华液| 人妻人人澡人人爽人人| 日韩欧美国产一区二区入口| 国产免费现黄频在线看| 极品人妻少妇av视频| 91老司机精品| 热re99久久精品国产66热6| av欧美777| 叶爱在线成人免费视频播放| 少妇的丰满在线观看| av在线播放精品| 欧美性长视频在线观看| 999久久久国产精品视频| 欧美97在线视频| 深夜精品福利| 国产精品成人在线| 久久ye,这里只有精品| 欧美乱码精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 午夜福利一区二区在线看| 在线天堂中文资源库| 亚洲精华国产精华精| 国产成人免费观看mmmm| 精品国产国语对白av| 亚洲精品中文字幕在线视频| 日韩,欧美,国产一区二区三区| 丝袜人妻中文字幕| 男女高潮啪啪啪动态图| 久久人人爽人人片av| 久久久水蜜桃国产精品网| 免费人妻精品一区二区三区视频| 精品一区在线观看国产| 国产亚洲一区二区精品| 99国产精品免费福利视频| 伊人亚洲综合成人网| 精品久久蜜臀av无| 手机成人av网站| 丁香六月天网| 午夜福利免费观看在线| 久9热在线精品视频| 69精品国产乱码久久久| 免费在线观看日本一区| 亚洲第一av免费看| 成人黄色视频免费在线看| 十分钟在线观看高清视频www| 热99国产精品久久久久久7| 日韩欧美一区二区三区在线观看 | 亚洲熟女毛片儿| 国产亚洲欧美在线一区二区| 伦理电影免费视频| 精品人妻一区二区三区麻豆| 麻豆av在线久日| 高清在线国产一区| 欧美日韩黄片免| 日韩,欧美,国产一区二区三区| 久久精品久久久久久噜噜老黄| 欧美人与性动交α欧美软件| 宅男免费午夜| 国产97色在线日韩免费| 一本大道久久a久久精品| 欧美av亚洲av综合av国产av| 免费看十八禁软件| 久久人人爽av亚洲精品天堂| 老熟女久久久| 交换朋友夫妻互换小说| 欧美国产精品一级二级三级| 悠悠久久av| 叶爱在线成人免费视频播放| 国产男人的电影天堂91| 久久国产精品影院| 在线精品无人区一区二区三| 免费观看a级毛片全部| 啦啦啦在线免费观看视频4| 91字幕亚洲| 日韩视频一区二区在线观看| 国产精品 欧美亚洲| 精品福利观看| 91精品三级在线观看| 免费在线观看黄色视频的| 男女国产视频网站| 999久久久精品免费观看国产| 久久久欧美国产精品| 亚洲人成电影观看| 亚洲中文日韩欧美视频| 一个人免费看片子| 国产精品 国内视频| 久久久久精品国产欧美久久久 | 国产精品国产av在线观看| 超色免费av| 丰满少妇做爰视频| www.999成人在线观看| 亚洲成国产人片在线观看| 秋霞在线观看毛片| 国产男女超爽视频在线观看| 高清在线国产一区| 久久久国产欧美日韩av| 别揉我奶头~嗯~啊~动态视频 | 国产成人精品久久二区二区91| 亚洲av日韩在线播放| 岛国毛片在线播放| 一级毛片女人18水好多| 久久精品人人爽人人爽视色| 国产精品自产拍在线观看55亚洲 | 欧美日韩亚洲综合一区二区三区_| 男女下面插进去视频免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区二区三区av在线| av超薄肉色丝袜交足视频| 超色免费av| 午夜精品久久久久久毛片777| 国产极品粉嫩免费观看在线| 久久久久视频综合| 午夜成年电影在线免费观看| 脱女人内裤的视频| 91精品伊人久久大香线蕉| 国产精品免费视频内射| 亚洲av成人不卡在线观看播放网 | 热99re8久久精品国产| 国产精品一区二区免费欧美 | 国产男女超爽视频在线观看| 精品久久蜜臀av无| 老汉色∧v一级毛片| 丝袜美腿诱惑在线| 中文字幕最新亚洲高清| 纯流量卡能插随身wifi吗| 狠狠婷婷综合久久久久久88av| 多毛熟女@视频| 国产无遮挡羞羞视频在线观看| 久久精品人人爽人人爽视色| 国产高清国产精品国产三级| 久久久久久久大尺度免费视频| 国产有黄有色有爽视频| 久久ye,这里只有精品| 乱人伦中国视频| 纵有疾风起免费观看全集完整版| 亚洲精品国产av成人精品| 亚洲精品美女久久av网站| 欧美黄色淫秽网站| 不卡一级毛片| 交换朋友夫妻互换小说| 丝袜美足系列| 亚洲男人天堂网一区| 69精品国产乱码久久久| 黄色视频在线播放观看不卡| 高清黄色对白视频在线免费看| 国产精品一区二区免费欧美 | 777米奇影视久久| 黑人巨大精品欧美一区二区mp4| 一区福利在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 一二三四在线观看免费中文在| 欧美变态另类bdsm刘玥| 操出白浆在线播放| 777久久人妻少妇嫩草av网站| 亚洲精品粉嫩美女一区| 法律面前人人平等表现在哪些方面 | 涩涩av久久男人的天堂| 亚洲精品日韩在线中文字幕| 在线观看舔阴道视频| 国产一区二区三区综合在线观看| www.精华液| 韩国精品一区二区三区| 麻豆av在线久日| 亚洲av片天天在线观看| 两个人免费观看高清视频| 中文字幕人妻熟女乱码| 国产精品一区二区精品视频观看| 国产成人精品在线电影| 国产日韩一区二区三区精品不卡| 韩国精品一区二区三区| 国产有黄有色有爽视频| 中文字幕av电影在线播放| 国产精品久久久av美女十八| av福利片在线| 成年人午夜在线观看视频| 日韩三级视频一区二区三区| 欧美少妇被猛烈插入视频| 自线自在国产av| 成年人免费黄色播放视频| 久久免费观看电影| 久久午夜综合久久蜜桃| 国产日韩欧美在线精品| 人人妻人人澡人人看| 日本av手机在线免费观看| 老熟妇仑乱视频hdxx| 伊人亚洲综合成人网| 久久久久久久久免费视频了| 亚洲成人免费av在线播放| 男女边摸边吃奶| 精品卡一卡二卡四卡免费| 亚洲,欧美精品.| 成人国语在线视频| 国产亚洲一区二区精品| 亚洲七黄色美女视频| 午夜免费鲁丝| 男人添女人高潮全过程视频| 国产成人一区二区三区免费视频网站| 水蜜桃什么品种好| 成人亚洲精品一区在线观看| 午夜日韩欧美国产| 高清视频免费观看一区二区| 色视频在线一区二区三区| 在线观看一区二区三区激情| 老司机午夜十八禁免费视频| 久久久久久久大尺度免费视频| 欧美日韩视频精品一区| 亚洲精品中文字幕在线视频| 母亲3免费完整高清在线观看| 国产一区二区 视频在线| 久久天堂一区二区三区四区| av网站在线播放免费| 国产亚洲精品第一综合不卡| 久久精品久久久久久噜噜老黄| 欧美亚洲日本最大视频资源| 老鸭窝网址在线观看| 超碰成人久久| 久久精品国产a三级三级三级| 黑丝袜美女国产一区| 中文字幕色久视频| 国产精品秋霞免费鲁丝片| 欧美人与性动交α欧美软件| 女人被躁到高潮嗷嗷叫费观| 在线精品无人区一区二区三| 日本wwww免费看| 国产成人免费无遮挡视频| 天天影视国产精品| 中亚洲国语对白在线视频| 啦啦啦在线免费观看视频4| 午夜精品国产一区二区电影| 美女脱内裤让男人舔精品视频| 午夜免费鲁丝| 丁香六月天网| 免费看十八禁软件| 国产精品一区二区免费欧美 | 亚洲国产精品999| 亚洲人成电影免费在线| 高清欧美精品videossex| 老司机靠b影院| 亚洲九九香蕉| 老司机福利观看| 亚洲欧美清纯卡通| 精品人妻在线不人妻| 两性夫妻黄色片| 国产av国产精品国产| 国产日韩欧美亚洲二区| 在线看a的网站| 9色porny在线观看| 婷婷色av中文字幕| 精品亚洲成a人片在线观看| 精品久久久久久久毛片微露脸 | 99国产极品粉嫩在线观看| 免费人妻精品一区二区三区视频| 两个人免费观看高清视频| 精品一区二区三卡| 纯流量卡能插随身wifi吗| 欧美黄色片欧美黄色片| 性色av乱码一区二区三区2| 69精品国产乱码久久久| 国产精品一区二区免费欧美 | 久久精品国产亚洲av香蕉五月 | 狠狠精品人妻久久久久久综合| 妹子高潮喷水视频| 热99久久久久精品小说推荐| 精品国产一区二区三区久久久樱花| 欧美日韩成人在线一区二区| 久久久久国产一级毛片高清牌| 国产99久久九九免费精品| 久久国产精品影院| 亚洲伊人色综图| 亚洲国产日韩一区二区| a级毛片在线看网站| 亚洲欧洲日产国产| 欧美日韩精品网址| 高清视频免费观看一区二区| 亚洲国产av新网站| 国产老妇伦熟女老妇高清| 人妻一区二区av| 久久性视频一级片| 91精品伊人久久大香线蕉| 日本欧美视频一区| 视频在线观看一区二区三区| 国产高清videossex| 两性午夜刺激爽爽歪歪视频在线观看 | a在线观看视频网站| 欧美国产精品一级二级三级| www.自偷自拍.com| 亚洲av美国av| 中文欧美无线码| 亚洲欧美成人综合另类久久久| 久久人人爽av亚洲精品天堂| 国产精品 国内视频| 国产黄频视频在线观看| 国产人伦9x9x在线观看| 亚洲欧美日韩另类电影网站| 久久久精品免费免费高清| 午夜福利在线观看吧| 国产高清videossex| 国产欧美日韩一区二区三区在线| 国产免费现黄频在线看| 国产亚洲欧美精品永久| 在线 av 中文字幕| 青春草视频在线免费观看| 伊人亚洲综合成人网| 窝窝影院91人妻| av天堂在线播放| 国产熟女午夜一区二区三区| 日韩一区二区三区影片| 亚洲精品中文字幕一二三四区 | 人人妻人人澡人人看| 美女国产高潮福利片在线看| 国产精品.久久久| 国产男人的电影天堂91| 999精品在线视频| a级毛片在线看网站| 丝袜美足系列| 在线永久观看黄色视频| 极品人妻少妇av视频| 又黄又粗又硬又大视频| 久久久精品免费免费高清| 中亚洲国语对白在线视频| 制服人妻中文乱码| 99久久99久久久精品蜜桃| 亚洲国产欧美日韩在线播放| 最近中文字幕2019免费版| 国产高清国产精品国产三级| 亚洲精品在线美女| 国产欧美日韩精品亚洲av| 免费观看a级毛片全部| 久久人人爽av亚洲精品天堂| 国产一级毛片在线| 精品免费久久久久久久清纯 | 午夜福利视频精品| 波多野结衣av一区二区av| 亚洲国产精品一区二区三区在线| 亚洲欧洲精品一区二区精品久久久| 国产在线一区二区三区精| 亚洲精品久久久久久婷婷小说| av电影中文网址| 捣出白浆h1v1| 美女扒开内裤让男人捅视频| 天天躁夜夜躁狠狠躁躁| 18在线观看网站| 在线 av 中文字幕| 男女免费视频国产| 午夜日韩欧美国产| 日韩三级视频一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 免费在线观看完整版高清| 久久国产精品人妻蜜桃| 精品人妻在线不人妻| 18禁裸乳无遮挡动漫免费视频| 老熟妇仑乱视频hdxx| 亚洲精品日韩在线中文字幕| 一区二区三区乱码不卡18| 日本精品一区二区三区蜜桃| 久久久国产一区二区| 亚洲精品一区蜜桃| 成人手机av| 岛国在线观看网站| 成人亚洲精品一区在线观看| 日韩制服骚丝袜av| 亚洲成人免费电影在线观看| 69av精品久久久久久 | 中文字幕人妻丝袜一区二区| 一本—道久久a久久精品蜜桃钙片| 成人三级做爰电影| 麻豆乱淫一区二区| 国产在线免费精品| av天堂久久9| 亚洲国产看品久久| 欧美精品一区二区免费开放| 成年人午夜在线观看视频| 亚洲国产日韩一区二区| 欧美一级毛片孕妇| 一边摸一边做爽爽视频免费| 午夜福利免费观看在线| 老司机午夜福利在线观看视频 | 国产亚洲欧美在线一区二区| 精品国产乱码久久久久久小说| 高清欧美精品videossex| 午夜福利,免费看| 国产国语露脸激情在线看| av不卡在线播放| 国产又色又爽无遮挡免| 十八禁人妻一区二区| 亚洲av成人一区二区三| 天天影视国产精品| 中文欧美无线码| 久久99热这里只频精品6学生| 婷婷成人精品国产| 久久人妻福利社区极品人妻图片| 法律面前人人平等表现在哪些方面 | 亚洲欧美精品综合一区二区三区| 精品一区二区三卡| 99久久国产精品久久久| 91九色精品人成在线观看| 黄片小视频在线播放| 精品久久蜜臀av无| 侵犯人妻中文字幕一二三四区| 亚洲av日韩精品久久久久久密| 女人精品久久久久毛片| 亚洲精品国产区一区二| av网站免费在线观看视频| 久久青草综合色| 国产淫语在线视频| 欧美成狂野欧美在线观看| 老司机深夜福利视频在线观看 | 老司机影院毛片| 91大片在线观看| 国产深夜福利视频在线观看| 在线天堂中文资源库| 成年女人毛片免费观看观看9 | 亚洲美女黄色视频免费看| 国产1区2区3区精品| 久久精品aⅴ一区二区三区四区| 亚洲av日韩在线播放| 精品一区二区三区av网在线观看 | 大陆偷拍与自拍| 欧美日韩亚洲国产一区二区在线观看 | 免费黄频网站在线观看国产| 国产男女超爽视频在线观看| 多毛熟女@视频| 性色av一级| 欧美激情高清一区二区三区| 黄色a级毛片大全视频| av在线app专区| 超色免费av| 咕卡用的链子| 国产淫语在线视频| 亚洲伊人久久精品综合| 五月天丁香电影| 日韩欧美一区视频在线观看| 99精品久久久久人妻精品| 久久久久网色| 国产在线免费精品| 免费不卡黄色视频| 日韩一区二区三区影片| 19禁男女啪啪无遮挡网站| 亚洲国产中文字幕在线视频| 国产亚洲一区二区精品| 亚洲七黄色美女视频| 欧美久久黑人一区二区| 啦啦啦啦在线视频资源| 久久人妻熟女aⅴ| 人人澡人人妻人| 免费少妇av软件| 美女大奶头黄色视频| 久久国产亚洲av麻豆专区| 亚洲伊人色综图| 亚洲七黄色美女视频| 亚洲综合色网址| 久久久久久久国产电影| 黑丝袜美女国产一区| 极品人妻少妇av视频| 国产一级毛片在线| 丝袜人妻中文字幕| 国产高清国产精品国产三级| 在线观看人妻少妇| 又大又爽又粗| 欧美激情久久久久久爽电影 | 久久人人97超碰香蕉20202| 精品人妻熟女毛片av久久网站| 三级毛片av免费| av不卡在线播放| av网站免费在线观看视频| 999久久久精品免费观看国产| 一区在线观看完整版| 热re99久久精品国产66热6| 久久久国产成人免费|