• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Formation of high-density cold molecules via electromagnetic trap

    2022-10-26 09:46:04YaBingJi紀(jì)亞兵BinWei魏斌HengJiaoGuo郭恒嬌QingLiu劉青
    Chinese Physics B 2022年10期
    關(guān)鍵詞:楊濤劉青建平

    Ya-Bing Ji(紀(jì)亞兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒嬌), Qing Liu(劉青),

    Tao Yang(楊濤)1,3, Shun-Yong Hou(侯順永)1,?, and Jian-Ping Yin(印建平)1,?

    1State Key Laboratory of Precision Spectroscopy,East China Normal University,Shanghai 200241,China

    2Key Laboratory of Nondestructive Test(Ministry of Education),Nanchang Hangkong University,Nanchang 330063,China

    3Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China

    Keywords: Stark effect,Zeeman effect,cold molecules

    1. Introduction

    Recently, a great effort has been made to develop ultracold molecules into being as large and profound as the work performed with ultracold atoms, pushed forward by favorable prospects for advances in fundamental physics,[1–3]cold collisions,[4–6]and strongly correlated quantum systems.[7–10]Trapping is a crucial step in each of these fields, and a major goal is to prepare high density and slow molecules in a specific quantum state. A promising approach is taking advantage of the capability of controlling the motion of neutral molecules via inhomogeneous electric or magnetic fields,such as Stark or Zeeman deceleration, electric traps, and magnetic traps.[4,11,12]Electrostatic quadrupole traps[11,13]and magnetic traps[14]have been demonstrated to successfully confine various species.The external field traps can be designed based on the direct current (dc) Zeeman effect, dc Stark effect, alternating current Stark effect, or a combination of either two effects.[12,15–19]The combination of the electric field and magnetic fields allows increasing trap depth,[20]controlling over state purity,[21]and fascinating new phenomena.[21–24]

    In this paper, we propose to design an electromagnetic trap(EMT)for diatomic2Σ molecules,which allows producing high-density cold molecules in a small volume. To verify the feasibility of this scheme,theoretical analysis,and numerical calculations are carried out by using MgF molecules. Our calculations show that the number of molecules in the trap can be increased by 40%compared with the case using only electric fields. This trapped molecular sample with tight spatial distribution offers a platform for various cold molecular applications, such as optical confinement and ultracold molecular preparation.

    2. Electromagnetic trap scheme

    2.1. Electromagnetic trap design

    As indicated in Fig.1, the EMT consists of an octupole,two parallel disks, and a set of anti-Helmholtz coils. The octupole is composed of eight cylindrical rods each with 14 mm in length and 2 mm in diameter,which are spaced equidistantly on the outside of a 12-mm-diameter circle,the four rods of the octupole are spaced by 5 mm for detecting the laser at the access to the trap. The innermost of the EMT are two parallel slotted disk electrodes with a gap of 10 mm in between. Each disk is 7 mm in diameter and has a 2-mm-diameter hole in the center, allowing molecules to enter into the trap. The larger number of rods makes it a nearly perfect circle rather than a quadrupole or hexapole,so as to increase trap depth. The configuration of the anti-Helmholtz coil is similar to a Zeeman decelerator system developed by Meerakker’s group.[25]The pair of copper coils has a center-to-center distance of 13.2 mm,and each coil consists of a copper capillary with 1.5 mm in outer diameter and 0.6 mm in inner diameter.These hollow capillaries allow cooling liquid to flow rapidly for limiting the heating caused by the high current pulses,and the copper coils and the electrodes can be supported by non-metallic materials,such as Teflon,to minimize the influence of eddy currents.

    Fig. 1. (a) Schematic diagram of EMT composed of a set of an anti-Helmholtz coil, octupole electrodes, and two disk electrodes. (b) Section view of trap, together with coordinate frame and dimensions of each part.The light-yellow area indicates the passage of MgF molecules into the trap.All distances are in unit of mm.

    2.2. Molecular properties of MgF

    We choose MgF molecules in the X2Σ+state as a tester in our proposal out of the following considerations: (i) The MgF has an unpaired electron,leading to both non-zero electric dipole moments and non-zero magnetic dipole moments.Such molecules are important for quantum simulation, for they can be used to simulate a large variety of lattice spin models for quantum information.[26](ii) Smaller mass than other alkaline-earth monofluorides, implying less kinetic energy at the same speed thus making it easier to control. (iii)Highly diagonal Franck–Condon factors and the short lifetime for the first excited state A2Π1/2,[27]manifesting an energy level structure that is favorable for laser cooling and magneticoptical trapping.

    First, we examine perturbations to the molecular structure in a pure electric field or a pure magnetic field. In pure Hund’s case (b) the molecule is of symmetry2Σ, in which the electronic spin and the resulting magnetic dipole moment are completely decoupled from the molecular axis. Thus, the electric dipole and the magnetic dipole can independently follow the external electric field and magnetic field.[23]The MgF molecule in the X2Σ+ground state conforms to Hund’s case(b)coupling,where the rotational angular momentumNcouples withSto form the total angular momentumJ,whileMis the corresponding space-fixed projection quantum number.

    The total Hamiltonian is composed of the zero-field term,the interaction term between the system and the electric fieldEz, or the interaction term between the system and the magnetic fieldBz,which can be written as

    whereB,D, andγare the molecular rotational constant, the centrifugal distortion constant, and the spin-rotational coupling constant,respectively.

    For MgF molecules in the X2Σ+state,[27]B=15496.8 MHz,γ=50.697 MHz, andD=0.0323 MHz. In the presence of a strong electric field such that ?μeEz ?γ,the spin–rotation interaction can be omitted,and the electric field dependent Hamiltonian ?HEzcan be expressed as

    Takingμeas the molecular dipole moment along with the internuclearzaxis(q=0),the matrix elements of ?HEzare given as follows:

    In the case of a large magnetic field,since a paramagnetic2Σ molecule has an unpaired electron, only the interaction between the electron spin and the magnetic field along thezdirection will be considered. The Zeeman energy levels are better described in terms of their decoupled projection quantum numbers,MNandMS,in which the electron spin is decoupled from the molecular frame,and quantized by the external magnetic field. This decoupling is known as the Paschen–Back effect.[28]Basis eigenwave functions in this coupling scheme are then written as|ηΛN(S)JMJ〉,while the total Hamiltonian in a large magnetic field can be expressed as

    wheregsis the free-electrongfactor andμBis the magnetic moment. In Hund’s case (b) basis set, these matrix elements are presented as the rotation term (Eq. (6)), the spin–rotation interaction term (Eq. (7)), and the Zeeman interaction term(Eq.(8)).After the supersonic expansion, the rotational temperature of the molecular beam is usually several Kelvin,and most of the molecules reside in lower rotational states. The energy of the lowest rotational levels of MgF electronic ground state in the electric field or magnetic field is shown in Fig.2. The operation principle of our loading concept is similar to the principle of other electrically or magnetically trapping the molecules in a low-field-seeking (LFS) quantum state.[29]When the external field is a higher electric or magnetic field,Stark or Zeeman energy increases,so the motion of molecules in the LFS quantum state can be controlled by the gradient of field. It is important to note that the Stark shift shows the opposite behavior at a higher electric field due to the small rotational constant.Therefore,the field strength should be relatively low and kept below the turn-over point. For simplicity,it is assumed that all the molecules are populated in theN=2,MN=0,MS=1/2 state in our calculations,leading to the feasibility of manipulation for molecules of such a state in both electric and magnetic fields.

    Fig. 2. (a) Stark energy levels in the lowest rotational state of the MgF molecule in the X2Σ+ state with N =2, with electric field strength of the turn-over point labelled;(b)N=2,MN =0 rotational level of MgF molecule as a function of magnetic field strength, with dashed line indicating relevant energy level used in our calculations. The unit 1 Gs=10-4 T.

    The acceleration of an MgF molecule under the influence of an electric field is calculated from

    Here,-(dW/dE) is the effective dipole moment, and|E(x,y,z)|represents the magnitude of the local electric field.The method of calculating the magnetic field is similar to the above.

    2.3. Loading strategy

    The EMT is adjacent to the end of a Stark decelerator,which can produce the slowed-down cold molecules for the next loading into the EMT.The loading process and the trapping process are completed in four steps.To calculate the electric field and magnetic field generated by our trap,we choose maximum electric fields on axis and current parameters that are similar to the ones used in these experiments.[30,31]Figure 3 shows the distribution of electric field or magnetic field at each stage,calculated by using finite element software. Figure 3(a)shows the loading process where the front disk electrode (closer to the Stark decelerator) is grounded, and +Uand-Uare applied to the back disk and all eight rods of the octupole, respectively. In this process, MgF molecules in the LFS state will experience a repulsive dipolar force when climbing the potential hill of the electrostatic trap, which is stage I. In stage II, the molecules pass through the center of the trap and come to a near-standstill, and the front disk is rapidly switched to +U, such that a true three-dimensional(3D) trapping potential well is formed as shown in Fig. 3(b).In stage III, the synchronous molecule starts to return to the center of the well after half an oscillation period,and the copper coil is switched on and there flows a 1.5-kA current in it.The directions of the magnetic fields produced by solenoids are mutually antiparallel to each other,resulting in the formation of a quadrupole trap for confining molecules in LFS quantum states,the field distribution is shown in Fig.3(c). During this final stage of trap loading,i.e.stage IV,the currents in the coils are fast switched from 1.5 kA to 4.5 kA,and the magnetic potential well, therefore, becomes tighter than in stage III as shown in Fig.3(d),which facilitates further compression of the packet. Once the velocity of the synchronous molecule comes to 0 m/s again,all incentives will be turned off,and the molecular sample will be manipulated by other means like optical dipole forces.[32–34]In the last three stages,the non-zero minimal field strength in the trap center is beneficial to avoiding Majorana transitions,in which the LFS state molecules might transit to the HFS states and escape from the trap region.[35]

    The heights of the trap barriers are shown in Figs. 3(e)and 3(f), given in K (T=WStark/k, withkis the Boltzmann constant),for MgF molecules at four stages,the potentials are calculated by diagonalizing an effective Hamiltonian that includes both Stark term and Zeeman term. The molecules do slow down when they leave the EMT center and lose the same kinetic energy as potential energy. If only the electric field was applied, the transverse well is about 0.15 K and the longitudinal trap depth reaches 1.2 K. When an additional magnetic field(4.5-kA current)is applied,the transverse trap depth reaches 0.5 K,and the longitudinal trap depth is 1.8 K,which is sufficient to trap a cold molecular packet with 20 m/s in speed.The field distribution and potential energy curves along the other transverse direction,i.e.y-axis direction,are not presented,because they are the same as those alongx-axis direction. Note that the synchronous molecule is not in the center of the well when switching to stage II,however,this allows us to perform some simple manipulations of molecules in stages III for the resulting molecular packet with higher density.

    To help verify the feasibility of the loading scheme with MgF,we perform a set of 3D semiclassical Monte Carlo simulations to get molecular trajectories through the apparatus.The incident molecular number of slow MgF beam is 105,with initial distribution centered atz=-8.5 mm,vz=15 m/s,y=0 mm,vy=0 m/s, andx=0 mm,vx=0 m/s. The position distribution and the velocity distribution of the initial molecular beam are both Gaussian distributions with the 6D emittance [6 mm×6.5 m/s]×[4 mm×5 m/s]×[4 mm×5 m/s](in thez-,y-,andx-axis directions,respectively).[36,37]Molecular collision or Majorana loss plays a minor role in our manipulation, and the spin-flip loss can be reduced by using a simple external bias coil,[19]so they were not included in the simulations.[23]A package of cold MgF molecules in the X2Σ+(N=2,|MN|=0) state is produced by Stark deceleration and free flight into the trap through a small hole on the front disk in the absence of the electric field. When the synchronous molecule reaches the position where the longitudinal potential energy in stage I is minimal,the trap is switched into a loading configuration.

    Fig.3. Distribution of electric field strength(in units of kV/cm)in the x–z plane with applied high voltage U =15 kV in(a)stage I and(b)stage Π;magnetic field strength(in unit of kGs)distribution when currents of(c)1.5 kA and(d)4.5 kA applied to each copper capillary;potential energy curves of MgF molecule calculated along(e)z axis and(f)x axis for four stages,with the center of the well set to be the origin of coordinates.

    3. Results

    Three-dimensional particle trajectory simulation is performed, and the calculated phase-space distributions of MgF molecules are sketched in Fig. 4 at four different times. Figure 4(a) shows the snapshots of the longitudinal molecular phase-space distribution at the end of the first stage. Figures 4(b) and 4(c) respectively show the phase space distribution of molecules in the second stage and third stage after oscillating in the trap for half a period. Figure 4(d) displays the phase space distribution at the end of stage IV,and figures 4(e)–4(h) indicate the corresponding transverse phase-space distributions. By precisely controlling the time of molecules staying in the potential well at each stage, we can obtain the minimum space or velocity distribution of molecules. During stage III,the synchronous molecule spends the same amount of time on the downward slop and the upward slope of the potential. Molecules ahead of the synchronous molecules take more time on the rising slope of the potential than on the falling slope, so they slow down relative to the molecules ahead of the synchronous molecule and take more time on the rising slope of the potential than on the falling slope, so they slow down relative to the synchronous molecules. Similarly, molecules behind the synchronous molecule are accelerated relative to the synchronous molecule.Therefore, a longitudinal spatial focusing is achieved. From these figures,we can see that from stage I to stage IV,the phase spatial distribution of molecules changes, so its corresponding spatial distribution will also change, which can be nicely seen in Fig. 5. At the beginning of the first stage (t=0 ms),the molecular beam is focused both longitudinally and transversely,and the spatial volume of the molecule is compressed to about 3 mm×3 mm×1.3 mm,while having a relatively large velocity spread(FWHM)of 5 m/s,5 m/s,and 33 m/s in thexaxis,y-axis, andz-axis directions, respectively. The FWHM of its longitudinal spatial distribution is 1.3 mm obtained by Gaussian fitting as shown in Fig. 5(a). When the molecules stay in stage IV for 160 μs, the spatial distribution of the molecules is further compressed to 1.8 mm×1.8 mm×1.2 mm as shown in Fig.5(d). At present,the beam velocity distribution increases to 8.8 m/s, 8.8 m/s, and 52 m/s in thex-axis,y-axis, andz-axis directions, respectively, and the beam density increases by 21.6%in our trap.The cold molecular sample with high number density and small volume is quite suitable for laser confinement and other molecular experiments such as on cold collision.

    The calculated trap loading efficiency (η) is defined as the ratio of the molecular number obtained in the trap to the initial number of molecules. Figure 6 shows the load efficiency of the electric trap and the electromagnetic trap each as a function of incident velocity that isvzin the initial molecular distribution.The hole in the first disk is used as a skimmer to minimize the chance of spreading molecules entering into the trap, only part of the beam can be loaded when the incident velocity is lower,caused by the molecular spread during the free-flying stage. The higher initial velocity reduces the loading time of the molecules, thus weakening the transverse spreading and leading to more molecules in the trap. Note that for each incident velocity, in our simulation process different loading sequences with the pre-calculated optimal timings are applied to the loading and trapping. Compared with the loading efficiency of 26%when the electric field is used alone,the loading efficiency of molecules with adding a magnetic field reaches 38%,that is a 45%increase.

    Fig.4. The calculated phase-space distribution of the MgF molecules at the end of each stage in((a)–(d))longitudinal direction and((e)–(h))transverse direction at the end of loading stage (t =0.826 ms), with bunch current turning on at t=1.016 ms and off at t=1.136 ms and at the end of the electromagnetic trap(t=1.296 ms),respectively,and the center of the potential well defined as the origin of the coordinates.

    Fig.5.Longitudinal spatial fitting of molecular samples from stage I to stage IV obtained by Gaussian fitting.

    Fig. 6. Calculated loading efficiency of the electric trap (yellow) and the electromagnetic trap(green)as a function of incident velocity.

    4. Conclusions

    In this paper, an electromagnetic trap scheme for producing 3D spatially focused cold molecular packets of stateselected is introduced. Comparing with the case using only electric fields, the number of molecular samples in the trap can increase 40%, and the molecular longitudinal length can be compressed to about a millimeter. The EMT described here provides a good early-stage preparation for the gradientintensity cooling of MgF molecules with a blue-detuned hollow beam, and the magnetic field can be relaxed or switched off in a very short time, which enables the initiation of a magneto-optical trap. Such a trap might also be a viable way of studying cold molecular collisions, quantum effect in molecular systems, and many other similar applications to those realized in atomic systems.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 91536218, 11874151, and 11834003), the Fundamental Research Funds for the Central Universities,China,the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning, China, and the Young Top-Notch Talent Support Program of Shanghai,China.

    猜你喜歡
    楊濤劉青建平
    Her dream came true她的夢(mèng)想成真了
    聚焦2022年高考中關(guān)于“集合”的經(jīng)典問(wèn)題
    傳承好紅巖精神 走好新時(shí)代長(zhǎng)征路
    九龍坡:一江繞半島 藝術(shù)煥新生
    Quantum dynamics on a lossy non-Hermitian lattice?
    THE EXISTENCE OF A NONTRIVIAL WEAK SOLUTION TO A DOUBLE CRITICAL PROBLEM INVOLVING A FRACTOL LOL
    綠水青山圖(一)
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    幸福夢(mèng)
    Views on Learning to Teach
    日本撒尿小便嘘嘘汇集6| 亚洲av免费在线观看| 亚洲成人久久性| 欧美激情久久久久久爽电影| h日本视频在线播放| 99国产精品一区二区蜜桃av| 欧美绝顶高潮抽搐喷水| 欧美性猛交黑人性爽| 亚洲中文日韩欧美视频| 成人二区视频| 成年av动漫网址| 成人av在线播放网站| 女同久久另类99精品国产91| 岛国在线免费视频观看| 又黄又爽又免费观看的视频| 夜夜爽天天搞| 亚洲精品影视一区二区三区av| 嫩草影院新地址| av视频在线观看入口| 久久久成人免费电影| 久久欧美精品欧美久久欧美| 天天一区二区日本电影三级| 国产精品亚洲美女久久久| 91精品国产九色| 热99在线观看视频| 国产大屁股一区二区在线视频| 十八禁网站免费在线| 麻豆一二三区av精品| 国产精品女同一区二区软件| 天天一区二区日本电影三级| 午夜福利在线观看吧| 国产成人精品久久久久久| 国产日本99.免费观看| 干丝袜人妻中文字幕| 乱人视频在线观看| 久久精品影院6| 亚洲av.av天堂| 此物有八面人人有两片| 欧美+日韩+精品| 国内久久婷婷六月综合欲色啪| 久99久视频精品免费| 久久久国产成人精品二区| 国产蜜桃级精品一区二区三区| 国内精品久久久久精免费| 俄罗斯特黄特色一大片| 国产精品一区二区三区四区免费观看 | 赤兔流量卡办理| 观看美女的网站| 国产精品,欧美在线| 中文字幕熟女人妻在线| 欧美成人一区二区免费高清观看| 欧美一区二区国产精品久久精品| 伦精品一区二区三区| 六月丁香七月| 12—13女人毛片做爰片一| 97超级碰碰碰精品色视频在线观看| 搡老岳熟女国产| 老师上课跳d突然被开到最大视频| 少妇的逼好多水| 国产伦一二天堂av在线观看| 亚洲婷婷狠狠爱综合网| 国产高潮美女av| 亚洲精品456在线播放app| 免费电影在线观看免费观看| 精品久久久久久久人妻蜜臀av| 天美传媒精品一区二区| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品成人久久小说 | 人妻制服诱惑在线中文字幕| 美女内射精品一级片tv| 日本免费一区二区三区高清不卡| 欧美中文日本在线观看视频| 国产精品国产三级国产av玫瑰| 亚洲中文日韩欧美视频| 国产精品久久久久久av不卡| 久久热精品热| 亚洲av不卡在线观看| 亚洲18禁久久av| 欧美日韩国产亚洲二区| 高清毛片免费观看视频网站| 日韩精品青青久久久久久| 亚洲图色成人| 丰满乱子伦码专区| 久久久成人免费电影| 欧美一区二区国产精品久久精品| 欧美日韩一区二区视频在线观看视频在线 | 久久欧美精品欧美久久欧美| 亚洲第一电影网av| 露出奶头的视频| 91麻豆精品激情在线观看国产| 长腿黑丝高跟| 乱人视频在线观看| 夜夜爽天天搞| 最近视频中文字幕2019在线8| 色在线成人网| 亚洲第一电影网av| 黄色视频,在线免费观看| 亚洲美女黄片视频| 国产精品免费一区二区三区在线| 变态另类成人亚洲欧美熟女| 免费在线观看成人毛片| 色吧在线观看| 日韩国内少妇激情av| 国产美女午夜福利| 香蕉av资源在线| 特级一级黄色大片| 人妻少妇偷人精品九色| 日本 av在线| 三级国产精品欧美在线观看| 少妇被粗大猛烈的视频| 亚洲中文日韩欧美视频| 最近手机中文字幕大全| 3wmmmm亚洲av在线观看| 在线国产一区二区在线| 在线观看午夜福利视频| 无遮挡黄片免费观看| 成人综合一区亚洲| 久久午夜福利片| 97人妻精品一区二区三区麻豆| 免费人成在线观看视频色| 亚洲va在线va天堂va国产| 国产不卡一卡二| 中国美白少妇内射xxxbb| 成人av在线播放网站| 日韩欧美三级三区| .国产精品久久| 国产av一区在线观看免费| 赤兔流量卡办理| 亚洲av二区三区四区| 成人鲁丝片一二三区免费| 天堂√8在线中文| 舔av片在线| 亚洲精品国产av成人精品 | 天堂av国产一区二区熟女人妻| 中文在线观看免费www的网站| 99久国产av精品| 国产成人a区在线观看| 亚洲婷婷狠狠爱综合网| 日韩精品有码人妻一区| 国产白丝娇喘喷水9色精品| 欧美成人精品欧美一级黄| 国产蜜桃级精品一区二区三区| 日本黄色视频三级网站网址| 亚洲性久久影院| 亚洲国产日韩欧美精品在线观看| 成人精品一区二区免费| 欧美潮喷喷水| 乱人视频在线观看| 久久人人精品亚洲av| 一个人免费在线观看电影| 国产精品福利在线免费观看| 日韩精品中文字幕看吧| 91在线观看av| 特级一级黄色大片| 久久九九热精品免费| 精品久久久久久久末码| 国产黄色小视频在线观看| 欧美一区二区国产精品久久精品| 久久精品国产自在天天线| 神马国产精品三级电影在线观看| 悠悠久久av| 两个人的视频大全免费| 久久精品91蜜桃| 欧美三级亚洲精品| 亚洲中文字幕日韩| 亚洲av二区三区四区| 亚洲欧美成人精品一区二区| 免费一级毛片在线播放高清视频| 精品国内亚洲2022精品成人| 人妻丰满熟妇av一区二区三区| 99热这里只有是精品50| av在线老鸭窝| 十八禁国产超污无遮挡网站| 欧美极品一区二区三区四区| 麻豆av噜噜一区二区三区| 麻豆av噜噜一区二区三区| 51国产日韩欧美| 精品欧美国产一区二区三| 男插女下体视频免费在线播放| 色播亚洲综合网| 欧美日韩乱码在线| 久久综合国产亚洲精品| 欧美一区二区亚洲| 69人妻影院| 亚洲av第一区精品v没综合| 日日干狠狠操夜夜爽| 免费人成视频x8x8入口观看| 亚洲七黄色美女视频| 欧美色视频一区免费| 在现免费观看毛片| 99久国产av精品国产电影| 国产片特级美女逼逼视频| 高清毛片免费观看视频网站| 亚洲最大成人手机在线| 亚洲欧美清纯卡通| 99久久精品国产国产毛片| 97热精品久久久久久| 一个人观看的视频www高清免费观看| 日本免费a在线| 亚洲av一区综合| 欧美性感艳星| 91在线精品国自产拍蜜月| 日韩成人av中文字幕在线观看 | 99在线视频只有这里精品首页| 午夜爱爱视频在线播放| av女优亚洲男人天堂| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品成人久久小说 | 狠狠狠狠99中文字幕| 嫩草影院新地址| 亚洲aⅴ乱码一区二区在线播放| av视频在线观看入口| 午夜福利在线观看吧| 男人的好看免费观看在线视频| 一边摸一边抽搐一进一小说| 国模一区二区三区四区视频| 俺也久久电影网| 最近2019中文字幕mv第一页| 国产精品美女特级片免费视频播放器| 国产日本99.免费观看| 成人鲁丝片一二三区免费| 欧美高清性xxxxhd video| 精品一区二区三区av网在线观看| 青春草视频在线免费观看| av在线亚洲专区| 日本熟妇午夜| 精品不卡国产一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 国产女主播在线喷水免费视频网站 | a级毛片免费高清观看在线播放| 一本一本综合久久| 欧美 日韩 精品 国产| a级毛色黄片| 亚洲av综合色区一区| 午夜精品国产一区二区电影| 亚洲美女搞黄在线观看| 国产免费又黄又爽又色| 两个人免费观看高清视频 | 色婷婷av一区二区三区视频| 亚洲色图综合在线观看| 亚洲精品中文字幕在线视频 | 日本av免费视频播放| 久久人人爽av亚洲精品天堂| 一级黄片播放器| 男人添女人高潮全过程视频| 夜夜看夜夜爽夜夜摸| 色吧在线观看| 久久国内精品自在自线图片| 熟妇人妻不卡中文字幕| 成年人免费黄色播放视频 | 久久综合国产亚洲精品| 久久久久国产精品人妻一区二区| 精品一区二区三卡| 我的老师免费观看完整版| 一本—道久久a久久精品蜜桃钙片| 久久午夜福利片| 精品人妻一区二区三区麻豆| 亚洲中文av在线| 观看av在线不卡| 嫩草影院新地址| 三上悠亚av全集在线观看 | 毛片一级片免费看久久久久| 超碰97精品在线观看| 久久av网站| 久久99精品国语久久久| 伦理电影免费视频| 亚洲精品成人av观看孕妇| 久久亚洲国产成人精品v| 国产精品偷伦视频观看了| 一级毛片电影观看| 精品人妻熟女av久视频| 久热这里只有精品99| 亚洲精品aⅴ在线观看| 日韩三级伦理在线观看| 午夜福利影视在线免费观看| 精品亚洲成国产av| 欧美xxⅹ黑人| 国产精品免费大片| 国产精品久久久久久精品电影小说| 在线观看免费视频网站a站| 亚洲av欧美aⅴ国产| 夫妻午夜视频| 少妇熟女欧美另类| 欧美老熟妇乱子伦牲交| 精品人妻偷拍中文字幕| 男女国产视频网站| 麻豆精品久久久久久蜜桃| 91精品一卡2卡3卡4卡| 亚洲精品久久久久久婷婷小说| 国产视频首页在线观看| 丝袜脚勾引网站| 午夜免费观看性视频| 这个男人来自地球电影免费观看 | 三级国产精品欧美在线观看| 免费久久久久久久精品成人欧美视频 | 好男人视频免费观看在线| 久久久久久久久久久丰满| 国产成人精品福利久久| 精品国产乱码久久久久久小说| av国产精品久久久久影院| 国产精品伦人一区二区| 黄色一级大片看看| 亚洲国产av新网站| 一本久久精品| 久久狼人影院| 亚洲av中文av极速乱| 成人漫画全彩无遮挡| 国产视频内射| 久久鲁丝午夜福利片| 国产精品秋霞免费鲁丝片| 精品少妇内射三级| 亚洲国产毛片av蜜桃av| 我的老师免费观看完整版| 一级毛片电影观看| 色视频www国产| 不卡视频在线观看欧美| 国产成人免费观看mmmm| 亚洲欧美清纯卡通| 亚洲丝袜综合中文字幕| 国产精品国产三级专区第一集| 亚洲情色 制服丝袜| 午夜精品国产一区二区电影| 成人亚洲欧美一区二区av| 一级毛片 在线播放| 国产精品99久久99久久久不卡 | 亚洲精品久久午夜乱码| 韩国高清视频一区二区三区| 十八禁网站网址无遮挡 | 自线自在国产av| 在线看a的网站| 91久久精品国产一区二区三区| a级毛色黄片| 十八禁网站网址无遮挡 | 欧美 日韩 精品 国产| 伦理电影大哥的女人| 日韩不卡一区二区三区视频在线| 午夜老司机福利剧场| 久久国产精品男人的天堂亚洲 | 亚洲精品一区蜜桃| 亚洲欧美精品自产自拍| 97在线视频观看| 婷婷色av中文字幕| 国产探花极品一区二区| 国产精品秋霞免费鲁丝片| 国产精品嫩草影院av在线观看| 国产精品不卡视频一区二区| av福利片在线| 婷婷色综合www| 久久毛片免费看一区二区三区| 欧美日韩精品成人综合77777| 欧美 日韩 精品 国产| 在线精品无人区一区二区三| 极品人妻少妇av视频| 亚洲人与动物交配视频| 一个人看视频在线观看www免费| 哪个播放器可以免费观看大片| 国产精品久久久久久av不卡| 国产乱人偷精品视频| 边亲边吃奶的免费视频| 国产综合精华液| 国产亚洲av片在线观看秒播厂| 纵有疾风起免费观看全集完整版| 偷拍熟女少妇极品色| 亚洲av在线观看美女高潮| 人妻夜夜爽99麻豆av| 人人澡人人妻人| av黄色大香蕉| a级毛片在线看网站| 卡戴珊不雅视频在线播放| 一个人免费看片子| 国产永久视频网站| 欧美性感艳星| 91成人精品电影| 婷婷色麻豆天堂久久| 黄色毛片三级朝国网站 | 女人精品久久久久毛片| 国产 精品1| 日韩熟女老妇一区二区性免费视频| 国产亚洲91精品色在线| 国产中年淑女户外野战色| 国产精品一区二区三区四区免费观看| 国产国拍精品亚洲av在线观看| 久久99热6这里只有精品| 女人久久www免费人成看片| 亚州av有码| 啦啦啦啦在线视频资源| 高清午夜精品一区二区三区| 9色porny在线观看| 亚洲国产精品国产精品| 伊人亚洲综合成人网| 亚洲色图综合在线观看| 精品一区二区三卡| 亚洲熟女精品中文字幕| 国产亚洲最大av| 国产片特级美女逼逼视频| 亚洲精品成人av观看孕妇| 纯流量卡能插随身wifi吗| 一个人免费看片子| 大又大粗又爽又黄少妇毛片口| tube8黄色片| 赤兔流量卡办理| 黄色配什么色好看| 免费不卡的大黄色大毛片视频在线观看| 最近的中文字幕免费完整| 女人久久www免费人成看片| 欧美国产精品一级二级三级 | 少妇被粗大猛烈的视频| 亚洲欧美一区二区三区国产| 伦理电影大哥的女人| 久久久久人妻精品一区果冻| 国产日韩欧美亚洲二区| 这个男人来自地球电影免费观看 | 少妇被粗大猛烈的视频| 男人爽女人下面视频在线观看| 精品人妻熟女毛片av久久网站| 一级片'在线观看视频| 国产一级毛片在线| 国产免费福利视频在线观看| 国精品久久久久久国模美| 免费人成在线观看视频色| 国产精品秋霞免费鲁丝片| 亚洲精品成人av观看孕妇| 欧美日韩综合久久久久久| 嫩草影院新地址| 99久久精品一区二区三区| 汤姆久久久久久久影院中文字幕| 嫩草影院入口| 少妇的逼水好多| 一级毛片 在线播放| 91精品国产九色| 国产免费一级a男人的天堂| 日日摸夜夜添夜夜爱| 18+在线观看网站| 各种免费的搞黄视频| 国产欧美日韩一区二区三区在线 | 日日啪夜夜撸| 高清欧美精品videossex| 欧美激情极品国产一区二区三区 | 国产在线免费精品| 男女边吃奶边做爰视频| 十八禁高潮呻吟视频 | 一级av片app| 亚洲精品乱码久久久久久按摩| 能在线免费看毛片的网站| 久久久久国产网址| 91久久精品国产一区二区三区| 久久久久久久亚洲中文字幕| 少妇被粗大猛烈的视频| 麻豆精品久久久久久蜜桃| 天堂中文最新版在线下载| 久久 成人 亚洲| 亚洲成色77777| 边亲边吃奶的免费视频| 欧美日韩国产mv在线观看视频| 久热这里只有精品99| www.色视频.com| 国产亚洲一区二区精品| 国产免费福利视频在线观看| 亚洲丝袜综合中文字幕| 日本vs欧美在线观看视频 | 午夜日本视频在线| 婷婷色综合www| 五月开心婷婷网| 亚洲情色 制服丝袜| 久久这里有精品视频免费| 97超视频在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | 免费黄频网站在线观看国产| 黄色怎么调成土黄色| 亚洲精品国产av蜜桃| 这个男人来自地球电影免费观看 | 久久久久国产网址| 国产精品秋霞免费鲁丝片| 国产日韩欧美视频二区| 国产成人精品无人区| 久久国产亚洲av麻豆专区| kizo精华| 日本猛色少妇xxxxx猛交久久| 乱码一卡2卡4卡精品| 最新中文字幕久久久久| 欧美丝袜亚洲另类| 日韩一本色道免费dvd| 国产精品嫩草影院av在线观看| 亚洲成人av在线免费| 亚洲精品久久午夜乱码| 尾随美女入室| 国产男人的电影天堂91| 久久久久久久亚洲中文字幕| 日本vs欧美在线观看视频 | 一区二区三区免费毛片| 十八禁网站网址无遮挡 | 国产精品不卡视频一区二区| 精品久久久久久久久av| 99热这里只有是精品50| 桃花免费在线播放| 亚洲精品乱码久久久v下载方式| 欧美日韩视频精品一区| 国产精品一二三区在线看| 日韩一本色道免费dvd| 国产片特级美女逼逼视频| 高清午夜精品一区二区三区| 亚洲va在线va天堂va国产| 成人亚洲精品一区在线观看| 中文字幕av电影在线播放| 国产探花极品一区二区| 免费大片18禁| 中国美白少妇内射xxxbb| 在线 av 中文字幕| 成年美女黄网站色视频大全免费 | 日本欧美国产在线视频| av天堂中文字幕网| 天堂8中文在线网| 中文资源天堂在线| 成人特级av手机在线观看| 亚洲丝袜综合中文字幕| 国产一区亚洲一区在线观看| 国产乱人偷精品视频| 亚洲美女视频黄频| 中文字幕亚洲精品专区| 日本av免费视频播放| 国产无遮挡羞羞视频在线观看| 免费人妻精品一区二区三区视频| 97精品久久久久久久久久精品| 交换朋友夫妻互换小说| 国内精品宾馆在线| 亚洲欧美一区二区三区黑人 | 久久久久久久国产电影| 日韩中字成人| 久热久热在线精品观看| 国产精品国产三级专区第一集| 国产中年淑女户外野战色| 精品人妻偷拍中文字幕| 亚洲人与动物交配视频| 久久热精品热| 国产美女午夜福利| 一级,二级,三级黄色视频| 欧美精品亚洲一区二区| 日韩一本色道免费dvd| 最近的中文字幕免费完整| 亚洲精品自拍成人| 秋霞在线观看毛片| 男人舔奶头视频| 久久人人爽人人片av| 成人毛片60女人毛片免费| 2021少妇久久久久久久久久久| 在线看a的网站| 国产片特级美女逼逼视频| 交换朋友夫妻互换小说| 狂野欧美激情性bbbbbb| 天天躁夜夜躁狠狠久久av| 97精品久久久久久久久久精品| 免费高清在线观看视频在线观看| 欧美 亚洲 国产 日韩一| 夫妻性生交免费视频一级片| 国产精品久久久久久av不卡| 成人免费观看视频高清| 99九九在线精品视频 | 久久97久久精品| 女性生殖器流出的白浆| 嫩草影院入口| av天堂中文字幕网| 一本大道久久a久久精品| 大话2 男鬼变身卡| 色婷婷久久久亚洲欧美| 中文天堂在线官网| 少妇 在线观看| 中文欧美无线码| 亚洲精品456在线播放app| 国产欧美日韩综合在线一区二区 | 久久久久久久久久久免费av| av国产久精品久网站免费入址| 成人亚洲欧美一区二区av| 性色avwww在线观看| 欧美三级亚洲精品| 国产片特级美女逼逼视频| 久久免费观看电影| 国产精品一二三区在线看| 五月伊人婷婷丁香| 黑人巨大精品欧美一区二区蜜桃 | 国产精品麻豆人妻色哟哟久久| 国产亚洲91精品色在线| 久久久精品免费免费高清| 噜噜噜噜噜久久久久久91| 十八禁网站网址无遮挡 | 国产av一区二区精品久久| 一级二级三级毛片免费看| 精品人妻熟女毛片av久久网站| 在线观看免费高清a一片| 欧美日韩综合久久久久久| 日本欧美国产在线视频| 在线观看av片永久免费下载| 麻豆精品久久久久久蜜桃| 欧美日韩视频精品一区| 高清毛片免费看| 丰满人妻一区二区三区视频av| 精品久久久噜噜| 国产视频首页在线观看| 99re6热这里在线精品视频| 国产黄片视频在线免费观看| 国产黄片美女视频| 亚洲av免费高清在线观看| 美女大奶头黄色视频| 热re99久久精品国产66热6| 少妇丰满av| 老女人水多毛片| 亚洲国产欧美在线一区| 国产在线男女| 久久精品久久精品一区二区三区| 国产在线免费精品| 日韩欧美精品免费久久| 91久久精品电影网| 在线观看www视频免费| 极品人妻少妇av视频| 美女中出高潮动态图| 亚洲av电影在线观看一区二区三区|