• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Formation of high-density cold molecules via electromagnetic trap

    2022-10-26 09:46:04YaBingJi紀(jì)亞兵BinWei魏斌HengJiaoGuo郭恒嬌QingLiu劉青
    Chinese Physics B 2022年10期
    關(guān)鍵詞:楊濤劉青建平

    Ya-Bing Ji(紀(jì)亞兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒嬌), Qing Liu(劉青),

    Tao Yang(楊濤)1,3, Shun-Yong Hou(侯順永)1,?, and Jian-Ping Yin(印建平)1,?

    1State Key Laboratory of Precision Spectroscopy,East China Normal University,Shanghai 200241,China

    2Key Laboratory of Nondestructive Test(Ministry of Education),Nanchang Hangkong University,Nanchang 330063,China

    3Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China

    Keywords: Stark effect,Zeeman effect,cold molecules

    1. Introduction

    Recently, a great effort has been made to develop ultracold molecules into being as large and profound as the work performed with ultracold atoms, pushed forward by favorable prospects for advances in fundamental physics,[1–3]cold collisions,[4–6]and strongly correlated quantum systems.[7–10]Trapping is a crucial step in each of these fields, and a major goal is to prepare high density and slow molecules in a specific quantum state. A promising approach is taking advantage of the capability of controlling the motion of neutral molecules via inhomogeneous electric or magnetic fields,such as Stark or Zeeman deceleration, electric traps, and magnetic traps.[4,11,12]Electrostatic quadrupole traps[11,13]and magnetic traps[14]have been demonstrated to successfully confine various species.The external field traps can be designed based on the direct current (dc) Zeeman effect, dc Stark effect, alternating current Stark effect, or a combination of either two effects.[12,15–19]The combination of the electric field and magnetic fields allows increasing trap depth,[20]controlling over state purity,[21]and fascinating new phenomena.[21–24]

    In this paper, we propose to design an electromagnetic trap(EMT)for diatomic2Σ molecules,which allows producing high-density cold molecules in a small volume. To verify the feasibility of this scheme,theoretical analysis,and numerical calculations are carried out by using MgF molecules. Our calculations show that the number of molecules in the trap can be increased by 40%compared with the case using only electric fields. This trapped molecular sample with tight spatial distribution offers a platform for various cold molecular applications, such as optical confinement and ultracold molecular preparation.

    2. Electromagnetic trap scheme

    2.1. Electromagnetic trap design

    As indicated in Fig.1, the EMT consists of an octupole,two parallel disks, and a set of anti-Helmholtz coils. The octupole is composed of eight cylindrical rods each with 14 mm in length and 2 mm in diameter,which are spaced equidistantly on the outside of a 12-mm-diameter circle,the four rods of the octupole are spaced by 5 mm for detecting the laser at the access to the trap. The innermost of the EMT are two parallel slotted disk electrodes with a gap of 10 mm in between. Each disk is 7 mm in diameter and has a 2-mm-diameter hole in the center, allowing molecules to enter into the trap. The larger number of rods makes it a nearly perfect circle rather than a quadrupole or hexapole,so as to increase trap depth. The configuration of the anti-Helmholtz coil is similar to a Zeeman decelerator system developed by Meerakker’s group.[25]The pair of copper coils has a center-to-center distance of 13.2 mm,and each coil consists of a copper capillary with 1.5 mm in outer diameter and 0.6 mm in inner diameter.These hollow capillaries allow cooling liquid to flow rapidly for limiting the heating caused by the high current pulses,and the copper coils and the electrodes can be supported by non-metallic materials,such as Teflon,to minimize the influence of eddy currents.

    Fig. 1. (a) Schematic diagram of EMT composed of a set of an anti-Helmholtz coil, octupole electrodes, and two disk electrodes. (b) Section view of trap, together with coordinate frame and dimensions of each part.The light-yellow area indicates the passage of MgF molecules into the trap.All distances are in unit of mm.

    2.2. Molecular properties of MgF

    We choose MgF molecules in the X2Σ+state as a tester in our proposal out of the following considerations: (i) The MgF has an unpaired electron,leading to both non-zero electric dipole moments and non-zero magnetic dipole moments.Such molecules are important for quantum simulation, for they can be used to simulate a large variety of lattice spin models for quantum information.[26](ii) Smaller mass than other alkaline-earth monofluorides, implying less kinetic energy at the same speed thus making it easier to control. (iii)Highly diagonal Franck–Condon factors and the short lifetime for the first excited state A2Π1/2,[27]manifesting an energy level structure that is favorable for laser cooling and magneticoptical trapping.

    First, we examine perturbations to the molecular structure in a pure electric field or a pure magnetic field. In pure Hund’s case (b) the molecule is of symmetry2Σ, in which the electronic spin and the resulting magnetic dipole moment are completely decoupled from the molecular axis. Thus, the electric dipole and the magnetic dipole can independently follow the external electric field and magnetic field.[23]The MgF molecule in the X2Σ+ground state conforms to Hund’s case(b)coupling,where the rotational angular momentumNcouples withSto form the total angular momentumJ,whileMis the corresponding space-fixed projection quantum number.

    The total Hamiltonian is composed of the zero-field term,the interaction term between the system and the electric fieldEz, or the interaction term between the system and the magnetic fieldBz,which can be written as

    whereB,D, andγare the molecular rotational constant, the centrifugal distortion constant, and the spin-rotational coupling constant,respectively.

    For MgF molecules in the X2Σ+state,[27]B=15496.8 MHz,γ=50.697 MHz, andD=0.0323 MHz. In the presence of a strong electric field such that ?μeEz ?γ,the spin–rotation interaction can be omitted,and the electric field dependent Hamiltonian ?HEzcan be expressed as

    Takingμeas the molecular dipole moment along with the internuclearzaxis(q=0),the matrix elements of ?HEzare given as follows:

    In the case of a large magnetic field,since a paramagnetic2Σ molecule has an unpaired electron, only the interaction between the electron spin and the magnetic field along thezdirection will be considered. The Zeeman energy levels are better described in terms of their decoupled projection quantum numbers,MNandMS,in which the electron spin is decoupled from the molecular frame,and quantized by the external magnetic field. This decoupling is known as the Paschen–Back effect.[28]Basis eigenwave functions in this coupling scheme are then written as|ηΛN(S)JMJ〉,while the total Hamiltonian in a large magnetic field can be expressed as

    wheregsis the free-electrongfactor andμBis the magnetic moment. In Hund’s case (b) basis set, these matrix elements are presented as the rotation term (Eq. (6)), the spin–rotation interaction term (Eq. (7)), and the Zeeman interaction term(Eq.(8)).After the supersonic expansion, the rotational temperature of the molecular beam is usually several Kelvin,and most of the molecules reside in lower rotational states. The energy of the lowest rotational levels of MgF electronic ground state in the electric field or magnetic field is shown in Fig.2. The operation principle of our loading concept is similar to the principle of other electrically or magnetically trapping the molecules in a low-field-seeking (LFS) quantum state.[29]When the external field is a higher electric or magnetic field,Stark or Zeeman energy increases,so the motion of molecules in the LFS quantum state can be controlled by the gradient of field. It is important to note that the Stark shift shows the opposite behavior at a higher electric field due to the small rotational constant.Therefore,the field strength should be relatively low and kept below the turn-over point. For simplicity,it is assumed that all the molecules are populated in theN=2,MN=0,MS=1/2 state in our calculations,leading to the feasibility of manipulation for molecules of such a state in both electric and magnetic fields.

    Fig. 2. (a) Stark energy levels in the lowest rotational state of the MgF molecule in the X2Σ+ state with N =2, with electric field strength of the turn-over point labelled;(b)N=2,MN =0 rotational level of MgF molecule as a function of magnetic field strength, with dashed line indicating relevant energy level used in our calculations. The unit 1 Gs=10-4 T.

    The acceleration of an MgF molecule under the influence of an electric field is calculated from

    Here,-(dW/dE) is the effective dipole moment, and|E(x,y,z)|represents the magnitude of the local electric field.The method of calculating the magnetic field is similar to the above.

    2.3. Loading strategy

    The EMT is adjacent to the end of a Stark decelerator,which can produce the slowed-down cold molecules for the next loading into the EMT.The loading process and the trapping process are completed in four steps.To calculate the electric field and magnetic field generated by our trap,we choose maximum electric fields on axis and current parameters that are similar to the ones used in these experiments.[30,31]Figure 3 shows the distribution of electric field or magnetic field at each stage,calculated by using finite element software. Figure 3(a)shows the loading process where the front disk electrode (closer to the Stark decelerator) is grounded, and +Uand-Uare applied to the back disk and all eight rods of the octupole, respectively. In this process, MgF molecules in the LFS state will experience a repulsive dipolar force when climbing the potential hill of the electrostatic trap, which is stage I. In stage II, the molecules pass through the center of the trap and come to a near-standstill, and the front disk is rapidly switched to +U, such that a true three-dimensional(3D) trapping potential well is formed as shown in Fig. 3(b).In stage III, the synchronous molecule starts to return to the center of the well after half an oscillation period,and the copper coil is switched on and there flows a 1.5-kA current in it.The directions of the magnetic fields produced by solenoids are mutually antiparallel to each other,resulting in the formation of a quadrupole trap for confining molecules in LFS quantum states,the field distribution is shown in Fig.3(c). During this final stage of trap loading,i.e.stage IV,the currents in the coils are fast switched from 1.5 kA to 4.5 kA,and the magnetic potential well, therefore, becomes tighter than in stage III as shown in Fig.3(d),which facilitates further compression of the packet. Once the velocity of the synchronous molecule comes to 0 m/s again,all incentives will be turned off,and the molecular sample will be manipulated by other means like optical dipole forces.[32–34]In the last three stages,the non-zero minimal field strength in the trap center is beneficial to avoiding Majorana transitions,in which the LFS state molecules might transit to the HFS states and escape from the trap region.[35]

    The heights of the trap barriers are shown in Figs. 3(e)and 3(f), given in K (T=WStark/k, withkis the Boltzmann constant),for MgF molecules at four stages,the potentials are calculated by diagonalizing an effective Hamiltonian that includes both Stark term and Zeeman term. The molecules do slow down when they leave the EMT center and lose the same kinetic energy as potential energy. If only the electric field was applied, the transverse well is about 0.15 K and the longitudinal trap depth reaches 1.2 K. When an additional magnetic field(4.5-kA current)is applied,the transverse trap depth reaches 0.5 K,and the longitudinal trap depth is 1.8 K,which is sufficient to trap a cold molecular packet with 20 m/s in speed.The field distribution and potential energy curves along the other transverse direction,i.e.y-axis direction,are not presented,because they are the same as those alongx-axis direction. Note that the synchronous molecule is not in the center of the well when switching to stage II,however,this allows us to perform some simple manipulations of molecules in stages III for the resulting molecular packet with higher density.

    To help verify the feasibility of the loading scheme with MgF,we perform a set of 3D semiclassical Monte Carlo simulations to get molecular trajectories through the apparatus.The incident molecular number of slow MgF beam is 105,with initial distribution centered atz=-8.5 mm,vz=15 m/s,y=0 mm,vy=0 m/s, andx=0 mm,vx=0 m/s. The position distribution and the velocity distribution of the initial molecular beam are both Gaussian distributions with the 6D emittance [6 mm×6.5 m/s]×[4 mm×5 m/s]×[4 mm×5 m/s](in thez-,y-,andx-axis directions,respectively).[36,37]Molecular collision or Majorana loss plays a minor role in our manipulation, and the spin-flip loss can be reduced by using a simple external bias coil,[19]so they were not included in the simulations.[23]A package of cold MgF molecules in the X2Σ+(N=2,|MN|=0) state is produced by Stark deceleration and free flight into the trap through a small hole on the front disk in the absence of the electric field. When the synchronous molecule reaches the position where the longitudinal potential energy in stage I is minimal,the trap is switched into a loading configuration.

    Fig.3. Distribution of electric field strength(in units of kV/cm)in the x–z plane with applied high voltage U =15 kV in(a)stage I and(b)stage Π;magnetic field strength(in unit of kGs)distribution when currents of(c)1.5 kA and(d)4.5 kA applied to each copper capillary;potential energy curves of MgF molecule calculated along(e)z axis and(f)x axis for four stages,with the center of the well set to be the origin of coordinates.

    3. Results

    Three-dimensional particle trajectory simulation is performed, and the calculated phase-space distributions of MgF molecules are sketched in Fig. 4 at four different times. Figure 4(a) shows the snapshots of the longitudinal molecular phase-space distribution at the end of the first stage. Figures 4(b) and 4(c) respectively show the phase space distribution of molecules in the second stage and third stage after oscillating in the trap for half a period. Figure 4(d) displays the phase space distribution at the end of stage IV,and figures 4(e)–4(h) indicate the corresponding transverse phase-space distributions. By precisely controlling the time of molecules staying in the potential well at each stage, we can obtain the minimum space or velocity distribution of molecules. During stage III,the synchronous molecule spends the same amount of time on the downward slop and the upward slope of the potential. Molecules ahead of the synchronous molecules take more time on the rising slope of the potential than on the falling slope, so they slow down relative to the molecules ahead of the synchronous molecule and take more time on the rising slope of the potential than on the falling slope, so they slow down relative to the synchronous molecules. Similarly, molecules behind the synchronous molecule are accelerated relative to the synchronous molecule.Therefore, a longitudinal spatial focusing is achieved. From these figures,we can see that from stage I to stage IV,the phase spatial distribution of molecules changes, so its corresponding spatial distribution will also change, which can be nicely seen in Fig. 5. At the beginning of the first stage (t=0 ms),the molecular beam is focused both longitudinally and transversely,and the spatial volume of the molecule is compressed to about 3 mm×3 mm×1.3 mm,while having a relatively large velocity spread(FWHM)of 5 m/s,5 m/s,and 33 m/s in thexaxis,y-axis, andz-axis directions, respectively. The FWHM of its longitudinal spatial distribution is 1.3 mm obtained by Gaussian fitting as shown in Fig. 5(a). When the molecules stay in stage IV for 160 μs, the spatial distribution of the molecules is further compressed to 1.8 mm×1.8 mm×1.2 mm as shown in Fig.5(d). At present,the beam velocity distribution increases to 8.8 m/s, 8.8 m/s, and 52 m/s in thex-axis,y-axis, andz-axis directions, respectively, and the beam density increases by 21.6%in our trap.The cold molecular sample with high number density and small volume is quite suitable for laser confinement and other molecular experiments such as on cold collision.

    The calculated trap loading efficiency (η) is defined as the ratio of the molecular number obtained in the trap to the initial number of molecules. Figure 6 shows the load efficiency of the electric trap and the electromagnetic trap each as a function of incident velocity that isvzin the initial molecular distribution.The hole in the first disk is used as a skimmer to minimize the chance of spreading molecules entering into the trap, only part of the beam can be loaded when the incident velocity is lower,caused by the molecular spread during the free-flying stage. The higher initial velocity reduces the loading time of the molecules, thus weakening the transverse spreading and leading to more molecules in the trap. Note that for each incident velocity, in our simulation process different loading sequences with the pre-calculated optimal timings are applied to the loading and trapping. Compared with the loading efficiency of 26%when the electric field is used alone,the loading efficiency of molecules with adding a magnetic field reaches 38%,that is a 45%increase.

    Fig.4. The calculated phase-space distribution of the MgF molecules at the end of each stage in((a)–(d))longitudinal direction and((e)–(h))transverse direction at the end of loading stage (t =0.826 ms), with bunch current turning on at t=1.016 ms and off at t=1.136 ms and at the end of the electromagnetic trap(t=1.296 ms),respectively,and the center of the potential well defined as the origin of the coordinates.

    Fig.5.Longitudinal spatial fitting of molecular samples from stage I to stage IV obtained by Gaussian fitting.

    Fig. 6. Calculated loading efficiency of the electric trap (yellow) and the electromagnetic trap(green)as a function of incident velocity.

    4. Conclusions

    In this paper, an electromagnetic trap scheme for producing 3D spatially focused cold molecular packets of stateselected is introduced. Comparing with the case using only electric fields, the number of molecular samples in the trap can increase 40%, and the molecular longitudinal length can be compressed to about a millimeter. The EMT described here provides a good early-stage preparation for the gradientintensity cooling of MgF molecules with a blue-detuned hollow beam, and the magnetic field can be relaxed or switched off in a very short time, which enables the initiation of a magneto-optical trap. Such a trap might also be a viable way of studying cold molecular collisions, quantum effect in molecular systems, and many other similar applications to those realized in atomic systems.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 91536218, 11874151, and 11834003), the Fundamental Research Funds for the Central Universities,China,the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning, China, and the Young Top-Notch Talent Support Program of Shanghai,China.

    猜你喜歡
    楊濤劉青建平
    Her dream came true她的夢(mèng)想成真了
    聚焦2022年高考中關(guān)于“集合”的經(jīng)典問(wèn)題
    傳承好紅巖精神 走好新時(shí)代長(zhǎng)征路
    九龍坡:一江繞半島 藝術(shù)煥新生
    Quantum dynamics on a lossy non-Hermitian lattice?
    THE EXISTENCE OF A NONTRIVIAL WEAK SOLUTION TO A DOUBLE CRITICAL PROBLEM INVOLVING A FRACTOL LOL
    綠水青山圖(一)
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    幸福夢(mèng)
    Views on Learning to Teach
    成人免费观看视频高清| 最近最新中文字幕大全免费视频 | 一区二区三区激情视频| 男人舔女人的私密视频| tube8黄色片| 热re99久久精品国产66热6| av在线播放精品| 日日爽夜夜爽网站| 大片免费播放器 马上看| 精品国产国语对白av| 日日爽夜夜爽网站| 一本久久精品| 一级黄片播放器| 亚洲国产精品成人久久小说| 亚洲午夜精品一区,二区,三区| 丝袜脚勾引网站| 极品少妇高潮喷水抽搐| 国产精品av久久久久免费| 在线观看免费午夜福利视频| 久久99热这里只频精品6学生| 国产精品久久久久久精品电影小说| 涩涩av久久男人的天堂| 国产精品.久久久| 午夜av观看不卡| 国产片内射在线| 9热在线视频观看99| av在线app专区| 女人久久www免费人成看片| 91国产中文字幕| 欧美另类一区| 午夜91福利影院| 国产精品一区二区精品视频观看| 久久精品国产a三级三级三级| 天天躁狠狠躁夜夜躁狠狠躁| 最近最新中文字幕大全免费视频 | 在线观看免费视频网站a站| 久久中文字幕一级| xxx大片免费视频| 女人爽到高潮嗷嗷叫在线视频| 久久人人97超碰香蕉20202| 99re6热这里在线精品视频| 丝袜人妻中文字幕| 久久综合国产亚洲精品| 亚洲精品第二区| 精品一区二区三卡| 一级,二级,三级黄色视频| www.精华液| 亚洲精品日本国产第一区| 一个人免费看片子| 永久免费av网站大全| 精品久久蜜臀av无| 女性被躁到高潮视频| av线在线观看网站| 国产亚洲精品久久久久5区| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦视频在线资源免费观看| 黄色 视频免费看| 深夜精品福利| 婷婷色综合大香蕉| 我的亚洲天堂| 91字幕亚洲| 19禁男女啪啪无遮挡网站| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇内射三级| 亚洲av在线观看美女高潮| 免费高清在线观看日韩| 精品欧美一区二区三区在线| 国产黄色视频一区二区在线观看| 久久精品熟女亚洲av麻豆精品| 久久精品国产亚洲av高清一级| 各种免费的搞黄视频| 国产在视频线精品| h视频一区二区三区| 欧美精品一区二区大全| 国产成人啪精品午夜网站| 亚洲国产精品成人久久小说| 国产精品久久久人人做人人爽| 母亲3免费完整高清在线观看| 熟女少妇亚洲综合色aaa.| 老司机影院成人| 天天影视国产精品| 波野结衣二区三区在线| 国产男女内射视频| 性色av一级| a级片在线免费高清观看视频| 免费看十八禁软件| 免费av中文字幕在线| 一级黄片播放器| 人人妻人人爽人人添夜夜欢视频| 视频区图区小说| 热re99久久国产66热| 国产深夜福利视频在线观看| 满18在线观看网站| 久久影院123| 韩国高清视频一区二区三区| 成人亚洲精品一区在线观看| 大码成人一级视频| 午夜两性在线视频| 欧美日本中文国产一区发布| 精品国产一区二区久久| 一本综合久久免费| 人妻 亚洲 视频| 亚洲激情五月婷婷啪啪| 91老司机精品| 日本五十路高清| 一级毛片黄色毛片免费观看视频| 精品欧美一区二区三区在线| 妹子高潮喷水视频| 日韩,欧美,国产一区二区三区| 美女主播在线视频| 亚洲欧美一区二区三区久久| 国产精品国产av在线观看| 香蕉国产在线看| 国产99久久九九免费精品| 中文字幕亚洲精品专区| 男女之事视频高清在线观看 | 老熟女久久久| 人成视频在线观看免费观看| 50天的宝宝边吃奶边哭怎么回事| 国产日韩欧美亚洲二区| 色精品久久人妻99蜜桃| 校园人妻丝袜中文字幕| 涩涩av久久男人的天堂| 久久99精品国语久久久| 啦啦啦视频在线资源免费观看| 亚洲av在线观看美女高潮| 国产伦人伦偷精品视频| 久久久久精品国产欧美久久久 | 亚洲少妇的诱惑av| 电影成人av| 国产片内射在线| 国产一级毛片在线| 色94色欧美一区二区| 七月丁香在线播放| 99热全是精品| 成人亚洲精品一区在线观看| 免费av中文字幕在线| 久久久久久免费高清国产稀缺| 国产欧美日韩精品亚洲av| 精品久久久久久电影网| 亚洲欧美精品综合一区二区三区| 五月开心婷婷网| 最新在线观看一区二区三区 | 青春草亚洲视频在线观看| 国产视频一区二区在线看| 国产精品二区激情视频| 亚洲精品乱久久久久久| 国产黄色视频一区二区在线观看| 精品久久久久久久毛片微露脸 | 国产视频首页在线观看| 国产日韩欧美亚洲二区| 青草久久国产| 亚洲欧美清纯卡通| 亚洲国产精品999| 日韩伦理黄色片| 一级毛片我不卡| 亚洲国产看品久久| 婷婷色综合大香蕉| 国产黄色视频一区二区在线观看| 午夜福利免费观看在线| 国产日韩一区二区三区精品不卡| 国产日韩欧美亚洲二区| 午夜av观看不卡| av国产久精品久网站免费入址| 免费黄频网站在线观看国产| 成人手机av| 久久 成人 亚洲| 午夜福利视频在线观看免费| 国产精品 国内视频| e午夜精品久久久久久久| 欧美国产精品va在线观看不卡| 在线亚洲精品国产二区图片欧美| 国产在线免费精品| 久久久久精品国产欧美久久久 | 一个人免费看片子| 日本色播在线视频| 老司机影院成人| 亚洲,欧美,日韩| e午夜精品久久久久久久| 亚洲专区国产一区二区| 久久鲁丝午夜福利片| 欧美黄色淫秽网站| 超碰97精品在线观看| 夫妻性生交免费视频一级片| 亚洲精品乱久久久久久| 午夜精品国产一区二区电影| 老鸭窝网址在线观看| 亚洲欧美日韩高清在线视频 | 久久久久久久国产电影| 久久久久久久久久久久大奶| 精品高清国产在线一区| 尾随美女入室| 熟女少妇亚洲综合色aaa.| 国产无遮挡羞羞视频在线观看| 亚洲人成77777在线视频| 中文精品一卡2卡3卡4更新| 黄网站色视频无遮挡免费观看| 看十八女毛片水多多多| 国产一区二区 视频在线| 国产深夜福利视频在线观看| 青草久久国产| 欧美日韩av久久| 岛国毛片在线播放| www.熟女人妻精品国产| 涩涩av久久男人的天堂| 别揉我奶头~嗯~啊~动态视频 | 国产亚洲精品第一综合不卡| 欧美人与性动交α欧美精品济南到| 又黄又粗又硬又大视频| 国产一区二区三区综合在线观看| www.精华液| 亚洲 国产 在线| 欧美在线一区亚洲| 精品高清国产在线一区| av欧美777| 18禁黄网站禁片午夜丰满| 午夜激情av网站| 国产精品.久久久| 欧美中文综合在线视频| av线在线观看网站| 69精品国产乱码久久久| 久久人人爽人人片av| 国产欧美亚洲国产| 丰满迷人的少妇在线观看| av线在线观看网站| 日本午夜av视频| 老司机亚洲免费影院| 一本一本久久a久久精品综合妖精| 性少妇av在线| 蜜桃国产av成人99| 国产男女超爽视频在线观看| 精品一区二区三区av网在线观看 | 好男人视频免费观看在线| 另类亚洲欧美激情| 十分钟在线观看高清视频www| 一级黄片播放器| 亚洲九九香蕉| 成人影院久久| 成年动漫av网址| 精品一区二区三区四区五区乱码 | 高清黄色对白视频在线免费看| 人人妻人人添人人爽欧美一区卜| 欧美黑人精品巨大| 国产精品亚洲av一区麻豆| 麻豆乱淫一区二区| 亚洲一码二码三码区别大吗| 国产成人a∨麻豆精品| 日韩欧美一区视频在线观看| 少妇人妻久久综合中文| 国产精品国产三级国产专区5o| 国产av精品麻豆| 中国国产av一级| 亚洲欧美色中文字幕在线| 婷婷色综合大香蕉| 精品国产超薄肉色丝袜足j| 色网站视频免费| 天堂8中文在线网| 亚洲成人免费av在线播放| 只有这里有精品99| 亚洲精品第二区| 国产伦人伦偷精品视频| 欧美日韩国产mv在线观看视频| 欧美激情 高清一区二区三区| 最新在线观看一区二区三区 | 婷婷色麻豆天堂久久| netflix在线观看网站| 91麻豆精品激情在线观看国产 | 久久热在线av| 国产高清视频在线播放一区 | 久久精品aⅴ一区二区三区四区| 夫妻性生交免费视频一级片| 国产精品一国产av| 50天的宝宝边吃奶边哭怎么回事| 国产一级毛片在线| 岛国毛片在线播放| 欧美日韩一级在线毛片| 色播在线永久视频| 18禁观看日本| 人体艺术视频欧美日本| 一本—道久久a久久精品蜜桃钙片| 亚洲成人手机| 精品亚洲乱码少妇综合久久| 国产有黄有色有爽视频| 亚洲国产中文字幕在线视频| 国产精品一区二区精品视频观看| 国产伦理片在线播放av一区| 后天国语完整版免费观看| 大片电影免费在线观看免费| 狂野欧美激情性bbbbbb| 午夜福利一区二区在线看| 这个男人来自地球电影免费观看| 国产精品久久久久久精品电影小说| 天天添夜夜摸| 久久国产亚洲av麻豆专区| 欧美黄色片欧美黄色片| 国产精品 欧美亚洲| videos熟女内射| 日本色播在线视频| 999精品在线视频| av网站免费在线观看视频| 夜夜骑夜夜射夜夜干| 岛国毛片在线播放| 亚洲,一卡二卡三卡| 久久久欧美国产精品| 可以免费在线观看a视频的电影网站| 成年av动漫网址| 嫁个100分男人电影在线观看 | 青草久久国产| 丰满饥渴人妻一区二区三| 大话2 男鬼变身卡| 亚洲自偷自拍图片 自拍| 精品久久久久久久毛片微露脸 | 99国产精品一区二区三区| 亚洲av电影在线进入| 亚洲,一卡二卡三卡| 91成人精品电影| 美女大奶头黄色视频| 最近手机中文字幕大全| 午夜福利,免费看| 视频区图区小说| 丝袜在线中文字幕| 日本午夜av视频| 国产亚洲一区二区精品| 一级,二级,三级黄色视频| 美女国产高潮福利片在线看| 交换朋友夫妻互换小说| 97人妻天天添夜夜摸| 免费观看av网站的网址| 99国产精品一区二区三区| 亚洲九九香蕉| 最近手机中文字幕大全| 色网站视频免费| 丝袜美足系列| 成人亚洲精品一区在线观看| 好男人视频免费观看在线| 女人久久www免费人成看片| 一级毛片女人18水好多 | 亚洲中文日韩欧美视频| 啦啦啦 在线观看视频| 91老司机精品| 日本黄色日本黄色录像| 午夜免费鲁丝| 国产av精品麻豆| 啦啦啦中文免费视频观看日本| 成年动漫av网址| 婷婷丁香在线五月| av欧美777| 一边亲一边摸免费视频| 成人午夜精彩视频在线观看| 夫妻午夜视频| 欧美黑人精品巨大| 精品一区在线观看国产| 欧美激情 高清一区二区三区| 亚洲精品国产色婷婷电影| 国产精品香港三级国产av潘金莲 | 欧美黄色片欧美黄色片| 校园人妻丝袜中文字幕| 岛国毛片在线播放| 亚洲国产欧美网| 亚洲中文av在线| 久久99热这里只频精品6学生| 91精品三级在线观看| 青青草视频在线视频观看| 尾随美女入室| 啦啦啦中文免费视频观看日本| 国产一区二区三区综合在线观看| 免费一级毛片在线播放高清视频 | 久久毛片免费看一区二区三区| 国产精品欧美亚洲77777| 久热这里只有精品99| 国产亚洲午夜精品一区二区久久| 国产精品国产av在线观看| 精品一区在线观看国产| 人人妻人人爽人人添夜夜欢视频| 亚洲色图综合在线观看| 国产欧美亚洲国产| 99久久99久久久精品蜜桃| 夫妻性生交免费视频一级片| 中文字幕精品免费在线观看视频| 天堂中文最新版在线下载| 亚洲 欧美一区二区三区| 成年人免费黄色播放视频| 黄色a级毛片大全视频| 欧美黄色片欧美黄色片| 日日夜夜操网爽| 五月开心婷婷网| 午夜福利视频精品| 香蕉丝袜av| av电影中文网址| 叶爱在线成人免费视频播放| 欧美 亚洲 国产 日韩一| 男女免费视频国产| 欧美日韩av久久| 亚洲激情五月婷婷啪啪| 啦啦啦啦在线视频资源| 欧美日韩一级在线毛片| 97在线人人人人妻| 又粗又硬又长又爽又黄的视频| 久久精品熟女亚洲av麻豆精品| 亚洲欧洲日产国产| 亚洲精品一二三| 天堂8中文在线网| 久久鲁丝午夜福利片| 少妇猛男粗大的猛烈进出视频| 黄色一级大片看看| 午夜福利影视在线免费观看| 国产精品久久久久久人妻精品电影 | 在线看a的网站| 手机成人av网站| 电影成人av| 亚洲成人免费电影在线观看 | 久久久国产欧美日韩av| 婷婷丁香在线五月| 蜜桃在线观看..| 欧美日韩视频高清一区二区三区二| 日韩,欧美,国产一区二区三区| 国产1区2区3区精品| 美女高潮到喷水免费观看| 一区二区三区四区激情视频| 90打野战视频偷拍视频| 老司机亚洲免费影院| 日韩人妻精品一区2区三区| 亚洲熟女毛片儿| 两性夫妻黄色片| 亚洲精品国产av蜜桃| 免费不卡黄色视频| 天天影视国产精品| 成人影院久久| 国产精品九九99| 国产成人精品久久二区二区免费| 成人免费观看视频高清| 超碰成人久久| 亚洲国产精品一区二区三区在线| 一边摸一边做爽爽视频免费| 在线观看免费午夜福利视频| 国产一级毛片在线| 国产精品国产三级专区第一集| 一本大道久久a久久精品| 99re6热这里在线精品视频| xxx大片免费视频| 黑人巨大精品欧美一区二区蜜桃| 一区二区三区精品91| 亚洲一区中文字幕在线| 国产在线免费精品| 久久午夜综合久久蜜桃| 久久精品熟女亚洲av麻豆精品| 两人在一起打扑克的视频| 欧美成人精品欧美一级黄| 日韩一本色道免费dvd| 免费日韩欧美在线观看| 99国产综合亚洲精品| 亚洲av电影在线观看一区二区三区| 国产日韩欧美在线精品| 亚洲伊人久久精品综合| 啦啦啦啦在线视频资源| 久久免费观看电影| 日本欧美国产在线视频| 成人免费观看视频高清| 日本av手机在线免费观看| 国产欧美日韩一区二区三 | 大香蕉久久成人网| 国产成人免费观看mmmm| 日韩精品免费视频一区二区三区| 精品一区二区三区av网在线观看 | 亚洲av成人不卡在线观看播放网 | 精品国产乱码久久久久久男人| 亚洲国产欧美网| 亚洲av日韩在线播放| 亚洲欧美激情在线| 99热国产这里只有精品6| 男女午夜视频在线观看| 男女高潮啪啪啪动态图| 久久久久精品人妻al黑| 一级毛片我不卡| 天天躁夜夜躁狠狠久久av| 天堂俺去俺来也www色官网| 精品国产一区二区久久| av欧美777| 天堂8中文在线网| 国产高清不卡午夜福利| 国产精品久久久久成人av| 亚洲成色77777| 啦啦啦中文免费视频观看日本| 丝袜美腿诱惑在线| 老司机亚洲免费影院| 天堂中文最新版在线下载| 夜夜骑夜夜射夜夜干| 中国美女看黄片| 悠悠久久av| 桃花免费在线播放| 蜜桃在线观看..| 91精品伊人久久大香线蕉| 高清黄色对白视频在线免费看| 国产亚洲一区二区精品| 七月丁香在线播放| 蜜桃在线观看..| 91精品伊人久久大香线蕉| 高清黄色对白视频在线免费看| 久久久精品区二区三区| 最新在线观看一区二区三区 | 啦啦啦在线观看免费高清www| 热99久久久久精品小说推荐| 国产成人精品久久二区二区免费| 母亲3免费完整高清在线观看| 欧美成人精品欧美一级黄| 亚洲精品乱久久久久久| 一本一本久久a久久精品综合妖精| 欧美日韩国产mv在线观看视频| a级毛片在线看网站| 欧美日韩黄片免| 极品人妻少妇av视频| 考比视频在线观看| 热re99久久国产66热| 母亲3免费完整高清在线观看| 国产高清视频在线播放一区 | 9热在线视频观看99| 69精品国产乱码久久久| 精品一区二区三卡| 亚洲色图综合在线观看| 永久免费av网站大全| 欧美成人精品欧美一级黄| 大码成人一级视频| 捣出白浆h1v1| 亚洲一区中文字幕在线| 别揉我奶头~嗯~啊~动态视频 | 亚洲av欧美aⅴ国产| 中文字幕制服av| 2018国产大陆天天弄谢| 大香蕉久久网| 水蜜桃什么品种好| 久久久精品国产亚洲av高清涩受| av欧美777| 黄色毛片三级朝国网站| 电影成人av| 成人国产一区最新在线观看 | 黄色一级大片看看| 丝袜脚勾引网站| 18禁黄网站禁片午夜丰满| 精品一品国产午夜福利视频| 一区二区三区四区激情视频| 人成视频在线观看免费观看| 成年av动漫网址| √禁漫天堂资源中文www| 视频区欧美日本亚洲| av不卡在线播放| 91国产中文字幕| 欧美精品高潮呻吟av久久| 我的亚洲天堂| 国产成人精品久久二区二区91| 国产高清视频在线播放一区 | 国产精品99久久99久久久不卡| 视频区图区小说| 80岁老熟妇乱子伦牲交| 亚洲国产欧美网| 国产精品国产三级专区第一集| 国产亚洲精品第一综合不卡| 黄片播放在线免费| 久久精品国产亚洲av高清一级| 少妇粗大呻吟视频| 大片电影免费在线观看免费| 国产精品.久久久| 久久久久国产精品人妻一区二区| 久久久精品国产亚洲av高清涩受| 久久天堂一区二区三区四区| netflix在线观看网站| 一区二区三区精品91| 亚洲欧美色中文字幕在线| 免费在线观看日本一区| 亚洲一码二码三码区别大吗| 天天躁夜夜躁狠狠躁躁| 精品一区在线观看国产| 香蕉丝袜av| 免费在线观看影片大全网站 | 女人高潮潮喷娇喘18禁视频| 亚洲情色 制服丝袜| 亚洲国产精品一区二区三区在线| 久久久久久久国产电影| 国产高清videossex| 少妇裸体淫交视频免费看高清 | 丝袜喷水一区| 国产成人av激情在线播放| 永久免费av网站大全| 亚洲图色成人| 制服人妻中文乱码| 日本a在线网址| 国产爽快片一区二区三区| 亚洲欧洲精品一区二区精品久久久| 成在线人永久免费视频| 亚洲精品中文字幕在线视频| 中文精品一卡2卡3卡4更新| 视频区欧美日本亚洲| 日韩中文字幕欧美一区二区 | 黄片小视频在线播放| 最近手机中文字幕大全| 99精品久久久久人妻精品| 欧美变态另类bdsm刘玥| 夜夜骑夜夜射夜夜干| 观看av在线不卡| 久热这里只有精品99| av电影中文网址| 99香蕉大伊视频| 热99久久久久精品小说推荐| 老司机深夜福利视频在线观看 | 精品少妇内射三级| 国产色视频综合| 精品一品国产午夜福利视频| 欧美日韩国产mv在线观看视频| 亚洲熟女精品中文字幕| 成人午夜精彩视频在线观看| 亚洲欧美清纯卡通| 99热国产这里只有精品6| 宅男免费午夜| 亚洲一区中文字幕在线| 国产成人91sexporn| 深夜精品福利|