• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Concentration maxima of methane in the bottom waters over the Chukchi Sea shelf: implication of its biogenic source

    2022-10-19 05:38:04LIYuhongZHANGJiexiaYEWangwangJINHaiyanZHUANGYanpeiZHANLiyang
    Advances in Polar Science 2022年3期

    LI Yuhong, ZHANG Jiexia, YE Wangwang, JIN Haiyan, ZHUANG Yanpei & ZHAN Liyang*

    Concentration maxima of methane in the bottom waters over the Chukchi Sea shelf: implication of its biogenic source

    LI Yuhong1, ZHANG Jiexia1, YE Wangwang1, JIN Haiyan2, ZHUANG Yanpei3& ZHAN Liyang1*

    1Key Laboratory of Global Change and Marine–Atmospheric Chemistry (GCMAC) of Ministry of Natural Resources (MNR), Third Institute of Oceanography (TIO), MNR, Xiamen 361005, China;2Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, MNR, Hangzhou 310012, China;3Polar and Marine Research Institute, Jimei University, Xiamen 361021, China

    Chukchi Sea shelf, methane, sources, nutrient, organic carbon, organic matter

    1 Introduction

    Methane (CH4) is the most abundant hydrocarbon in the atmosphere and plays an important role in radiation balance and atmospheric chemistry (Cicerone and Oremland, 1988). The atmospheric CH4concentration has been increasing steadily, with a modern-day level of 1.91 ppmv (parts per million by volume), which is more than twice the preindustrial value of 0.71 ppmv (IPCC, 2007). CH4accounts for 15%–20% of the radiative forcing, and the elevated CH4concentration has further intensified greenhouse effects (Chappellaz et al., 1993). To understand the dynamics of atmospheric CH4, various sources of natural CH4need to be constrained.

    Oceans are net sources of atmospheric CH4(Bange et al., 1994; Bates et al., 1996), and 6–12 Tg CH4are emitted from the global ocean per year (Weber et al., 2019). Methanogenesis, an anaerobic microbial process mediated by archaea, amounts to approximately 0.1% of ocean primary productivity, is most prevalent in sediments with a high sedimentation rate (Henrichs and Reeburgh, 1987; Reeburgh, 2007), and is thought to dominate marine CH4emissions. However, seepages of thermogenic CH4and the breakdown of CH4hydrates may also be significant contributors to these emissions (Kvenvolden and Rogers, 2005). Recent estimates suggest that 7×105–4×106Tg CH4are stored as hydrates in the ocean (Buffett and Archer, 2004); this value is at least 2 orders of magnitude larger than the atmospheric CH4reservoir (~ 5000 Tg).

    A large amount of organic carbon is buried in Arctic Ocean sediments (Gramberg et al., 1983; Shakhova and Semiletov, 2007), which makes the Arctic Ocean a potential CH4source. The Arctic Ocean is particularly sensitive to global warming, and the effects of warming on ecosystems will be the most dramatic in the Arctic (Holland and Bitz, 2003). Recently, many studies have proposed that the Arctic shelf is an important CH4source, and an additional release of CH4might result from the temperature destabilization of gas hydrates on the shallow continental shelves in the Laptev and East Siberian Seas (Shakhova and Semiletov, 2007; Shakhova et al., 2010), Spitsbergen continental margin (Damm et al., 2005; Westbrook et al., 2009). Organic matter stored in the sediment might be mobilized onto the shelves, leading to further biogenic CH4release via methanogenesis in the White Sea and Storfjorden (Savvichev et al., 2004; Damm et al., 2007). However, the sources of CH4are still not well understood in the Arctic shelf due to the complexity of the processes involved and the difficult access to these remote regions. In the Chukchi Sea, limited research has revealed CH4accumulation in the bottom waters (Li et al., 2017; Kudo et al., 2018; Bui et al., 2019). In conjunction with13CCH4values (Fenwick et al., 2017; Kudo et al., 2022), the most likely CH4source in this region is biogenic production, resulting from the decomposition of organic carbon in the seafloor. To date, it is believed that methane from the Arctic continental shelf is dominated by thermogenic origin, with a secondary of biogenic source (Berchet et al., 2020).

    In this study, we present data for CH4in a water column over the Chukchi Sea shelf (CSS). We were able to obtain the characteristics of the vertical distribution of CH4in relation to the water mass structure. We also compare CH4with nutrient data and discuss possible processes that produce CH4in seawater.

    2 Study area and methodology

    2.1 Study area and its hydrographic setting

    The CSS is one of the largest continental shelves in the world and has high biological productivity; Pacific Ocean waters transit through the Bering Strait and enter the Chukchi Sea (Figure 1). Three main transport pathways have been identified in the CSS: the inflow of warmer, fresher Alaskan Coastal Current (ACC) waters through the eastern channel (Coachman and Aagaard, 1966; Gong and Pickart, 2015); the transport of Bering Shelf Water (BSW) through the central channel between the Herald and Hanna Shoals (Woodgate et al., 2005); and the transport of colder, saltier, more nutrient-rich Anadyr Water in the west, which tends to follow Hope Valley toward Herald Canyon (Weingartner et al., 2005). Shipboard observations were conducted on the R/Vduring the 5th Chinese National Arctic Research Expedition (CHINARE); seawater samples for CH4and otherparameters were collected along 169°E meridian (named SR section) in September 2012. The sampling depths were 5, 20, 30, 40, 50, 70, 100 m and 5 m above sea floor.

    2.2 Methods

    CH4samples were transferred to a Biochemical Oxygen Demand (BOD) bottle (250 mL), with approximately twofold overflow of the bottle volume to avoid bubbles. To inhibit biological activity, 120 μL of saturated HgCl2solution was added to the water samples. The bottles were sealed with greased stoppers that were then fixed with a clip. The sample bottles were kept in the dark at 4 ℃until transport back to the laboratory on land for analysis. Subsamples were taken following the method of Butler and Elkins (1991). The headspace method was adopted to pretreat the water samples, and high-purity N2was introduced to create an around 7 mL headspace in 50 mL preweighed bottles. After shaking for 1 h at 30.0 ℃, full equilibrium was achieved. The 5-mL gas samples were injected into an Agilent 7890A gas chromatography equipped with a flame ionization detector (FID). The CH4gas standards were provided by the National Institute of Metrology, China. There is a linear relationship between the FID signal and the CH4concentration; a single-point standard was inserted after every 12 samples to enable assessment of the drift of the FID. The precision of repeated analyses of 10 water samples was approximately 5% (Li et al., 2017).

    Figure 1 Sampling stations along the SR section (blue circles) in the CSS during the 5th CHINARE. The inflow of the Bering Strait is separated into three main branches: Anadyr Water (AW), Bering Shelf Water (BSW), and Alaska Coastal Water (ACC).

    3 Results and discussion

    3.1 Hydrology and nutrient distributions

    Due to the influence of warm and saline Pacific water and cold and fresh ice-melt water, wide temperature and salinity ranges were observed in the water column of the SR transect, with values ranging from approximately ?1.6–7.6℃ and 26.4–34.4, respectively (Figure 2). Cold and even freezing temperatures were observed in the northern bottom region, and warm water was distributed mainly in the southern surface layer. High-salinity (>32) water was present only in the bottom of the column, whereas low-salinity water (<32) water was widely distributed in the narrow surface waters. The distribution pattern of temperature was the opposite of that of salinity along the transect. Despite the change in temperature, the pattern of potential density was similar to that of salinity, which indicates that the water masses were mainly controlled by salinity. High stratifications could be observed in the distribution patterns, with the intensive dispersal of dense water masses at the bottom and vice versa.

    Physical characteristics of the water masses were identified (Figure 3), and high-temperature and low-salinity waters (T≈6℃, S≈27) on the southern surface were distinguished from BSW (Walsh et al., 1989). An extremely fresh and relatively cold water mass (T≈?1℃, S≈27) in the northern surface typically originates from near-surface ice-melt water (SIMW) (Weingartner et al., 2005). A high-salinity water with freezing temperatures (T≈0℃, S≈33) dispersed in the bottom layer is typically regarded as a portion of remnant winter-transformed water (WW) from the previous winter (Weingartner et al., 1998; Spall, 2007). In the study area, a salinity gradient generated a pronounced pycnocline at depths of 20–30 m, and vertical diffusive transport and the mixing of biogenic elements were restricted and trapped in the bottom waters.

    Figure 3 Temperature-salinity diagrams and CH4concentrations in the SR section of the CSS.

    3.2 Distributions of CH4 in the CSS

    The vertical distribution of CH4along section SR is presented in Figure 4, showing that the CH4concentrations showed marked variations; CH4in the surface waters (approximately 5 m below the sea surface) ranged from 4.6 nmol·L?1to 14.6 nmol·L?1, which were significantly higher values than the expected atmospheric equilibrium concentrations of 3.2–4.1 nmol·L?1, with saturations from 114% to 398%. This result means that surface waters in the CSS were supersaturated with CH4and could be a potential source of atmospheric CH4. In the water column,CH4concentrations ranged from 4.8 nmol·L?1to 38.8 nmol·L?1, and the maximum concentrations of CH4were distributed in the bottom waters of stations SR03, SR10, and SR11, representing CH4supersaturation of up to 962% in the dense and cold bottom waters of the CSS. The ambient dissolved oxygen (DO) of the water column ranged from 7.3 mg·L?1to 13.9 mg·L?1, with high concentrations located in the surface waters of stations SR03, SR11, SR12 and the lowest values at the bottom waters of the same stations. There were consistently high concentrations of CH4and low DO levels in the bottom waters of stations SR03, SR10 and SR11 (Figure 4, Table 1). Nutrient-rich Pacific water and sea-ice melting increase the light-stimulated primary production of ice algae andphytoplankton, maintaining high concentrations of DO in the surface and shallow depths, as well as low grazing pressure and a high flux of organic carbon settling to the seafloor (Grebmeier et al., 2006); furthermore, respiratory action consumes O2and reduces the concentration of DO in the bottom waters. In general, the distribution pattern of CH4is similar to that of salinity and potential density, with an increasing trend from the surface to bottom water (WW). Water masses are a factor controlling the gradient shape in the Chukchi Sea, suggesting that high concentrations of CH4are trapped below the pycnocline (Fenwick et al., 2017; Kudo et al., 2022); thus, the CH4concentration in surface waters is limited during the autumn stratification period (Kudo et al., 2022). The distribution of CH4showed a clear increasing downward gradient, indicating that high concentrations of CH4in near-bottom waters at these stations might correlate with the production and emission of CH4from the organic-rich sediment interface.

    Table 1 Mean (in brackets) and variation ranges of the main parameters in different water masses in the CSS

    Figure 4 Distributions of methane (CH4), methane saturations and dissolved oxygen (DO) in the SR section of the CSS.

    3.3 Sources of CH4 in the CSS

    3.4 Comparison with other areas in the Arctic Ocean

    CH4can be produced through the bacterial degradation of organic materials in sediments and subsequent release into the overlying near-bottom waters through sediment water exchange, seepages of thermogenic methane from the decomposition of hydrates, the leakage of gas, and serpentinization reactions that may occur in specific areas (Reeburgh, 2007). As this area does not apparently contain subsea permafrost or gas hydrates (Ruppel, 2015), and13CCH4values are indicative of biogenic production (Whiticar and Faber, 1986), the most likely CH4source in this region is seafloor methanogenesis resulting from the decomposition of organic carbon (Fenwick et al., 2017). In the CSS areas, the concentrations in the bottom layer were higher (up to 55.9 nmol·L?1), whereas13C values were lower (down to ?63.8‰) than in the surface layer, indicating that CH4was produced mainly by organic matter degradation in seafloor sediment via methanogens (Kudo et al., 2022). As a result, the release of CH4from the sediments into the water column results in a dome-like structure of relatively high CH4concentrations in the dense bottom water of the CSS. We summarized CH4concentrations and sources in different areas of the Arctic Ocean (Table 3) and distinguished the origin of CH4from sedimentary release. Compared to the open ocean, in the East Siberia Sea, because of a lack of sunlight and highly turbid waters, primary production is suppressed by factors of 100 to 1000, whereas the CH4levels are elevated 10-fold, which could be attributed to the thawing of the subsea permafrost and the consequentially increased permeability for CH4(Shakhova et al., 2010). In SW-Spitsbergen, CH4concentrations 2 orders of magnitude higher than the equilibrium concentrations with the atmosphere are discharged from thermogenic processes or hydrate on top of sandy and gravelly banks, with distinctly heavy13CCH4values (Damm et al., 2005). The highest concentration of CH4in the White Sea and Storfjorden was approximately 50 nmol·L?1in the bottom waters because of high accumulation rates of organic carbon (Damm et al., 2007; Savvichev et al., 2004); thus, both areas are ideal environments for the formation of biogenic methane near the sediment surface (Daniel and Jochen, 2005). For dome-like structure formation and turbulent mixing models, a dilution factor of 104is assumed (Lupton et al., 1985). Therefore, a potential initial CH4concentration of approximately 0.4 mmol·L?1in the sediments is sufficient to create a plume with the CH4concentrations detected in the CSS bottom waters (approximately 40 nmol·L?1) and the maximum CH4concentration of 2 mmol·L?1in the seafloor over the CSS (Matveeva et al., 2015). Indeed, the Chukchi Sea bottom sediments have been shown to support methanogenesis rates of up to 67 μmol·m?2·d?1(Savvichev et al., 2007). This intensive CH4production in shallow sediment could supply CH4to the bottom waters, resulting in high CH4concentrations (Fenwick et al., 2017). Thus, we suggest that the decomposition of organic carbon from primary production underlies the biogenic formation of CH4in the CSS.

    Table 2 Correlation analysis between ΔCH4 and +, , , , and with Pearson and Spearman models

    Note: **<0.01, indicating all correlations are significant at the 0.01 level.

    Table 3 CH4 concentrations and sources in different areas of the Arctic Ocean

    4 Conclusion

    This work was supported by the Scientific Research Foundation of the Third Institute of Oceanography, MNR (Grant nos. 2022011, 2018031 and 2018024) and the Natural Science Foundation of Fujian Province, China (Grant no. 2020J01102). We appreciate two anonymous reviewers, and Associate Editor Dr. Daiki Nomura for their constructive comments that have further improved the manuscript.

    Bange H W, Bartell U H, Rapsomanikis S, et al. 1994. Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochem Cycles, 8(4): 465-480, doi:10.1029/ 94gb02181.

    Bates T S, Kelly K C, Johnson J E, et al. 1996. A reevaluation of the open ocean source of methane to the atmosphere. J Geophys Res, 101(D3): 6953-6961, doi:10.1029/95jd03348.

    Berchet A, Pison I, Crill P M, et al. 2020. Using ship-borne observations of methane isotopic ratio in the Arctic Ocean to understand methane sources in the Arctic. Atmos Chem Phys, 20(6): 3987-3998, doi:10.5194/acp-20-3987-2020.

    Berner R A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am J Sci, 282(4): 451-473, doi:10.2475/ajs.282.4.451.

    Buffett B, Archer D. 2004. Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth Planet Sci Lett, 227(3-4): 185-199, doi:10.1016/j.epsl.2004.09.005.

    Bui O T N, Kameyama S, Kawaguchi Y, et al. 2019. Influence of warm-core eddy on dissolved methane distributions in the southwestern Canada Basin during late summer/early fall 2015. Polar Sci, 22: 100481, doi:10.1016/j.polar.2019.100481.

    Butler J H, Elkins J W. 1991. An automated technique for the measurement of dissolved N2O in natural waters. Mar Chem, 34(1-2): 47-61, doi:10.1016/0304-4203(91)90013-M.

    Chappellaz J, Bluniert T, Raynaud D, et al. 1993. Synchronous changes in atmospheric CH4and Greenland climate between 40 and 8 kyr BP. Nature, 366(6454): 443-445, doi:10.1038/366443a0.

    Cicerone R J, Oremland R S. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles, 2(4): 299-327, doi:10.1029/gb002i004p00299.

    Coachman L K, Aagaard K. 1966. On the water exchange through Bering Strait. Limnol Oceanogr, 11(1): 44-59, doi:10.4319/lo.1966.11.1. 0044.

    Damm E, Mackensen A, Budéus G, et al. 2005. Pathways of methane in seawater: plume spreading in an Arctic shelf environment (SW- Spitsbergen). Cont Shelf Res, 25(12-13): 1453-1472, doi:10.1016/j. csr.2005.03.003.

    Damm E, Schauer U, Rudels B, et al. 2007. Excess of bottom-released methane in an Arctic shelf sea polynya in winter. Cont Shelf Res, 27(12): 1692-1701, doi:10.1016/j.csr.2007.02.003.

    Daniel W, Jochen K. 2005. Recent distribution and accumulation of organic carbon on the continental margin west of Spitsbergen, Geochem Geophy Geosy, 6(9): 117-134, doi:10.1029/2005GC000916.

    Devol A H, Codispoti L A, Christensen J P. 1997. Summer and winter denitrification rates in western Arctic shelf sediments. Cont Shelf Res, 17(9): 1029-1050, doi:10.1016/S0278-4343(97)00003-4.

    Fenwick L, Capelle D, Damm E, et al. 2017. Methane and nitrous oxide distributions across the North American Arctic Ocean during summer, 2015. J Geophys Res, 122(1): 390-412, doi:10.1002/2016JC012493.

    Gentz T, Damm E, Schneider von Deimling J, et al. 2014. A water column study of methane around gas flares located at the West Spitsbergen continental margin. Cont Shelf Res, 72: 107-118, doi:10.1016/j.csr. 2013.07.013.

    Gong D, Pickart R S. 2015. Summertime circulation in the eastern Chukchi Sea. Deep Sea Res Part II Top Stud Oceanogr, 118: 18-31, doi:10.1016/j.dsr2.2015.02.006.

    Gramberg I S, Kulakov Y N, Pogrebitskiy Y Y, et al. 1983. Arctic oil- and gas-bearing superbasin. Paper presented at the 11th World Petroleum Congress, London, UK, August 1983.

    Grebmeier J M, Bluhm B A, Cooper L W, et al. 2015. Ecosystem characteristics and processes facilitating persistent macrobenthic biomass hotspots and associated benthivory in the Pacific Arctic. Prog Oceanogr, 136: 92-114, doi:10.1016/j.pocean.2015.05.006.

    Grebmeier J M, Cooper L W, Feder H M, et al. 2006. Ecosystem dynamics of the Pacific-influenced northern Bering and Chukchi Seas in the Amerasian Arctic. Prog Oceanogr, 71(2-4): 331-361, doi:10.1016/j. pocean.2006.10.001.

    Henrichs S M, Reeburgh W S. 1987. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol J, 5(3-4): 191-237, doi:10.1080/01490458709385971.

    Holland M M, Bitz C M. 2003. Polar amplification of climate change in coupled models. Clim Dyn, 21(3): 221-232, doi:10.1007/s00382- 003-0332-6.

    Intergovernmental Panel on Climate Change (IPCC). 2007. Climate change 2007–the physical science basis: Working Group I contribution to the fourth assessment report of the IPCC. Cambridge: Cambridge University Press.

    Ivanov M V, Pimenov N V, Rusanov I I, et al. 2002. Microbial processes of the methane cycle at the north-western shelf of the black sea. Estuar Coast Shelf Sci, 54(3): 589-599, doi:10.1006/ecss.2000.0667.

    Knies J, Damm E, Gutt J, et al. 2004. Near-surface hydrocarbon anomalies in shelf sediments off Spitsbergen: evidences for past seepages. Geochem Geophys Geosyst, 5(6): 135112194, doi:10.1029/2003gc 000687.

    Kudo K, Toyoda S, Yamada K, et al. 2022. Source analysis of dissolved methane in Chukchi Sea and Bering Strait during summer–autumn of 2012 and 2013. Mar Chem, 243: 104119, doi:10.1016/j.marchem. 2022.104119.

    Kudo K, Yamada K, Toyoda S, et al. 2018. Spatial distribution of dissolved methane and its source in the western Arctic Ocean. J Oceanogr, 74(3): 305-317, doi:10.1007/s10872-017-0460-y.

    Kvenvolden K A, Lilley M D, Lorenson T D, et al. 1993. The Beaufort Sea continental shelf as a seasonal source of atmospheric methane. Geophys Res Lett, 20(22): 2459-2462, doi:10.1029/93gl02727.

    Kvenvolden K A, Rogers B W. 2005. Gaia’s breath—global methane exhalations. Mar Petroleum Geol, 22(4): 579-590, doi:10.1016/j. marpetgeo.2004.08.004.

    Lammers S, Suess E, Hovland M. 1995. A large methane plume east of Bear Island (Barents Sea): implications for the marine methane cycle. Geol Rundsch, 84(1): 59-66, doi:10.1007/BF00192242.

    Lapham L, Marshall K, Magen C, et al. 2017. Dissolved methane concentrations in the water column and surface sediments of Hanna Shoal and Barrow Canyon, Northern Chukchi Sea. Deep Sea Res Part II Top Stud Oceanogr, 144: 92-103, doi:10.1016/j.dsr2.2017.01.004.

    Lepore K, Moran S B, Grebmeier J M, et al. 2007. Seasonal and interannual changes in particulate organic carbon export and deposition in the Chukchi Sea. J Geophys Res, 112(C10): C10024, doi:10.1029/2006jc003555.

    Li Y, Zhan L, Zhang J, et al. 2017. A significant methane source over the Chukchi Sea shelf and its sources. Cont Shelf Res, 148: 150-158, doi:10.1016/j.csr.2017.08.019.

    Lupton J E, Delaney J R, Johnson H P, et al. 1985. Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes. Nature, 316(6029): 621-623, doi:10.1038/316621a0.

    Matveeva T, Savvichev A, Semenova A, et al. 2015. Source, origin, and spatial distribution of shallow sediment methane in the Chukchi Sea. Oceanography, 28(3): 202-217, doi:10.5670/oceanog.2015.66.

    Moran S B, Kelly R P, Hagstrom K, et al. 2005. Seasonal changes in POC export flux in the Chukchi Sea and implications for water column-benthic coupling in Arctic shelves. Deep Sea Res Part II Top Stud Oceanogr, 52(24-26): 3427-3451, doi:10.1016/j.dsr2.2005. 09.011.

    Nishino S, Kikuchi T, Fujiwara A, et al. 2016. Water mass characteristics and their temporal changes in a biological hotspot in the southern Chukchi Sea. Biogeosciences, 13(8): 2563-2578, doi:10.5194/bg-13- 2563-2016.

    Reeburgh W S. 2007. Oceanic methane biogeochemistry. Chem Rev, 107(2): 486-513, doi:10.1021/cr050362v.

    Ruppel C. 2015. Permafrost-associated gas hydrate: Is it really approximately 1% of the global system? J Chem Eng Data, 60(2): 429-436, doi:10.1021/je500770m.

    Savvichev A S, Rusanov I I, Iusupov S K, et al. 2004. The biogeochemical cycle of methane in the coastal zone and littoral of the Kandalaksha Bay of the White Sea. Mikrobiologiia, 73(4): 540-552.

    Savvichev A S, Rusanov I I, Pimenov N V, et al. 2007. Microbial processes of the carbon and sulfur cycles in the Chukchi Sea. Microbiology, 76(5): 603-613, doi:10.1134/s0026261707050141.

    Shakhova N, Semiletov I. 2007. Methane release and coastal environment in the East Siberian Arctic shelf. J Mar Syst, 66(1-4): 227-243, doi:10.1016/j.jmarsys.2006.06.006.

    Shakhova N, Semiletov I, Salyuk A, et al. 2010. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science, 327(5970): 1246-1250, doi:10.1126/science.1182221.

    Spall M A. 2007. Circulation and water mass transformation in a model of the Chukchi Sea. J Geophys Res, 112(C5): C05025, doi:10.1029/ 2005jc003364.

    Steinbach J, Holmstrand H, Shcherbakova K, et al. 2021. Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf. Proc Natl Acad Sci, 118(10): e2019672118, doi:10.1073/pnas.2019672118.

    Walsh J J, McRoy C P, Coachman L K, et al. 1989. Carbon and nitrogen cycling within the Bering/Chukchi Seas: source regions for organic matter effecting AOU demands of the Arctic Ocean. Prog Oceanogr, 22(4): 277-359, doi:10.1016/0079-6611(89)90006-2.

    Weber T, Wiseman N A, Kock A. 2019. Global ocean methane emissions dominated by shallow coastal waters. Nat Commun, 10: 4584, doi:10.1038/s41467-019-12541-7.

    Weingartner T, Aagaard K, Woodgate R, et al. 2005. Circulation on the north central Chukchi Sea shelf. Deep Sea Res Part II Top Stud Oceanogr, 52(24-26): 3150-3174, doi:10.1016/j.dsr2.2005.10.015.

    Weingartner T J, Cavalieri D J, Aagaard K, et al. 1998. Circulation, dense water formation, and outflow on the northeast Chukchi Shelf. J Geophys Res, 103(C4): 7647-7661, doi:10.1029/98jc00374.

    Westbrook G K, Thatcher K E, Rohling E J, et al. 2009. Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys Res Lett, 36(15): L15608, doi:10.1029/2009gl039191.

    Whiticar M J, Faber E. 1986. Methane oxidation in sediment and water column environments—isotope evidence. Org Geochem, 10(4-6): 759-768, doi:10.1016/S0146-6380(86)80013-4.

    Wiesenburg D A, Guinasso N L. 1979. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J Chem Eng Data, 24(4): 356-360, doi:10.1021/je60083a006.

    Winkelmann D, Knies J. 2005. Recent distribution and accumulation of organic carbon on the continental margin west off Spitsbergen. Geochem Geophys Geosyst, 6(9): 117-134, doi:10.1029/2005 gc000916.

    Woodgate R A, Aagaard K, Weingartner T J. 2005. A year in the physical oceanography of the Chukchi Sea: moored measurements from autumn 1990–1991. Deep Sea Res Part II Top Stud Oceanogr, 52(24-26): 3116-3149, doi:10.1016/j.dsr2.2005.10.016.

    10.13679/j.advps.2022.0095

    1 July 2022;

    7 September 2022;

    30 September 2022

    : Li Y H, Zhang J X, Ye W W, et al. Concentration maxima of methane in the bottom waters over the Chukchi Sea shelf: implication of its biogenic source. Adv Polar Sci, 2022, 33(3): 235-243,doi:10.13679/j.advps.2022.0095

    , ORCID: 0000-0002-1380-453X, E-mail: zhanliyang@tio.org.cn

    999久久久精品免费观看国产| 亚洲精品在线观看二区| 国产黄a三级三级三级人| 亚洲黑人精品在线| 麻豆av噜噜一区二区三区| 中文字幕久久专区| 日韩中文字幕欧美一区二区| 国产成年人精品一区二区| 一夜夜www| 99热这里只有是精品在线观看 | 97碰自拍视频| 久久久久久国产a免费观看| 青草久久国产| 久久久精品大字幕| 国语自产精品视频在线第100页| 欧美+亚洲+日韩+国产| www.999成人在线观看| 一边摸一边抽搐一进一小说| 国产又黄又爽又无遮挡在线| 日本黄色视频三级网站网址| 男女床上黄色一级片免费看| 亚洲国产色片| 成人精品一区二区免费| 全区人妻精品视频| 热99在线观看视频| 亚洲欧美日韩卡通动漫| 亚洲国产精品久久男人天堂| 99视频精品全部免费 在线| 精品久久久久久久久亚洲 | 精品人妻熟女av久视频| 看黄色毛片网站| 国产高潮美女av| 国产成年人精品一区二区| 一本久久中文字幕| 看免费av毛片| 日韩精品青青久久久久久| 99在线人妻在线中文字幕| 日本一二三区视频观看| 成人一区二区视频在线观看| 成人毛片a级毛片在线播放| 亚州av有码| 亚洲欧美清纯卡通| 99热精品在线国产| 午夜福利在线在线| 最近中文字幕高清免费大全6 | 国产精品永久免费网站| 夜夜看夜夜爽夜夜摸| 国产免费av片在线观看野外av| 色播亚洲综合网| 色综合欧美亚洲国产小说| 国产探花极品一区二区| 久久精品夜夜夜夜夜久久蜜豆| 91在线精品国自产拍蜜月| 亚洲精品456在线播放app | 少妇人妻一区二区三区视频| 69av精品久久久久久| 99久国产av精品| 国产免费男女视频| 男女做爰动态图高潮gif福利片| 岛国在线免费视频观看| av黄色大香蕉| 精品一区二区三区人妻视频| a级毛片a级免费在线| 热99re8久久精品国产| 精品久久久久久久人妻蜜臀av| 国产乱人视频| 国产伦人伦偷精品视频| 久久精品国产亚洲av天美| 99国产精品一区二区三区| 少妇人妻一区二区三区视频| 中国美女看黄片| 级片在线观看| 国产精品综合久久久久久久免费| 欧美性猛交╳xxx乱大交人| 亚洲成a人片在线一区二区| 国产精品人妻久久久久久| 麻豆久久精品国产亚洲av| АⅤ资源中文在线天堂| 亚洲成a人片在线一区二区| 亚洲,欧美,日韩| 美女免费视频网站| 日韩欧美精品免费久久 | or卡值多少钱| 成人亚洲精品av一区二区| 国产精品国产高清国产av| 国产不卡一卡二| 毛片一级片免费看久久久久 | 免费人成在线观看视频色| 欧美一区二区精品小视频在线| 久久久久久国产a免费观看| 热99re8久久精品国产| 国产亚洲精品av在线| 日本与韩国留学比较| 嫩草影院新地址| 校园春色视频在线观看| 在线a可以看的网站| 亚洲av.av天堂| 亚洲五月婷婷丁香| 国产精品电影一区二区三区| 亚洲精品一区av在线观看| 制服丝袜大香蕉在线| 久久精品国产99精品国产亚洲性色| 国产精品乱码一区二三区的特点| 亚洲综合色惰| av女优亚洲男人天堂| 麻豆一二三区av精品| av天堂在线播放| 制服丝袜大香蕉在线| 精品99又大又爽又粗少妇毛片 | 亚洲激情在线av| 男人的好看免费观看在线视频| 午夜精品一区二区三区免费看| 一区二区三区高清视频在线| 亚洲无线在线观看| 精品日产1卡2卡| 国产黄片美女视频| 国产高清视频在线观看网站| 国产亚洲欧美98| 国产精品乱码一区二三区的特点| 欧美黑人欧美精品刺激| 18禁黄网站禁片午夜丰满| 色5月婷婷丁香| 婷婷色综合大香蕉| 嫁个100分男人电影在线观看| 怎么达到女性高潮| 色在线成人网| 亚洲黑人精品在线| 脱女人内裤的视频| 精华霜和精华液先用哪个| 一个人观看的视频www高清免费观看| 国内久久婷婷六月综合欲色啪| 在线观看66精品国产| 精品午夜福利在线看| 日韩 亚洲 欧美在线| 国产精品亚洲美女久久久| 欧美bdsm另类| 成人av在线播放网站| 亚洲午夜理论影院| 草草在线视频免费看| 午夜免费激情av| 亚洲欧美日韩高清在线视频| 午夜福利18| 免费搜索国产男女视频| 天堂av国产一区二区熟女人妻| av中文乱码字幕在线| 狠狠狠狠99中文字幕| 直男gayav资源| 国内精品美女久久久久久| 90打野战视频偷拍视频| 日本三级黄在线观看| 精品一区二区三区视频在线观看免费| 国产精品女同一区二区软件 | 国产熟女xx| 国产不卡一卡二| 亚洲最大成人手机在线| 日日摸夜夜添夜夜添小说| 亚洲美女黄片视频| 97热精品久久久久久| 国产av麻豆久久久久久久| 亚洲av成人不卡在线观看播放网| 一个人免费在线观看电影| 国产精品永久免费网站| 99国产极品粉嫩在线观看| 亚洲欧美日韩卡通动漫| 午夜视频国产福利| 国产免费av片在线观看野外av| 麻豆国产av国片精品| 亚洲国产日韩欧美精品在线观看| 国产精品一及| 可以在线观看的亚洲视频| 国产探花极品一区二区| 国产成人福利小说| 日本在线视频免费播放| 神马国产精品三级电影在线观看| 亚洲精品久久国产高清桃花| 色5月婷婷丁香| 丰满的人妻完整版| 国产视频内射| 午夜福利在线观看免费完整高清在 | 国内毛片毛片毛片毛片毛片| 又黄又爽又刺激的免费视频.| 91午夜精品亚洲一区二区三区 | 蜜桃亚洲精品一区二区三区| 99久久久亚洲精品蜜臀av| 日韩欧美免费精品| 脱女人内裤的视频| 99久久精品热视频| 国内精品久久久久久久电影| 亚洲经典国产精华液单 | 在线播放无遮挡| 男女做爰动态图高潮gif福利片| 成人性生交大片免费视频hd| 白带黄色成豆腐渣| 亚洲自偷自拍三级| 亚洲人成网站在线播| 欧美日韩黄片免| 超碰av人人做人人爽久久| av黄色大香蕉| 精华霜和精华液先用哪个| 禁无遮挡网站| 亚洲色图av天堂| 九色成人免费人妻av| 国产精品久久久久久久久免 | 性插视频无遮挡在线免费观看| 中文字幕久久专区| 少妇丰满av| 精品熟女少妇八av免费久了| 欧美区成人在线视频| 露出奶头的视频| 国内久久婷婷六月综合欲色啪| 大型黄色视频在线免费观看| 嫁个100分男人电影在线观看| 搡老熟女国产l中国老女人| 宅男免费午夜| 校园春色视频在线观看| 日本与韩国留学比较| 久久久久九九精品影院| 亚洲最大成人中文| 午夜福利免费观看在线| 精品久久久久久久久久免费视频| 少妇丰满av| 日韩 亚洲 欧美在线| 国产白丝娇喘喷水9色精品| 国产三级黄色录像| 淫妇啪啪啪对白视频| 久久国产乱子伦精品免费另类| 男插女下体视频免费在线播放| 国产精品不卡视频一区二区 | 18+在线观看网站| 亚洲av.av天堂| 色视频www国产| 动漫黄色视频在线观看| 一个人观看的视频www高清免费观看| a级一级毛片免费在线观看| www日本黄色视频网| 国产真实乱freesex| 白带黄色成豆腐渣| or卡值多少钱| av专区在线播放| av欧美777| 美女 人体艺术 gogo| av福利片在线观看| av在线天堂中文字幕| 国产精品一区二区免费欧美| 国内揄拍国产精品人妻在线| 首页视频小说图片口味搜索| 91字幕亚洲| 欧美成人一区二区免费高清观看| 国产精品乱码一区二三区的特点| 黄色视频,在线免费观看| 国产大屁股一区二区在线视频| 人人妻人人澡欧美一区二区| 久久九九热精品免费| 黄色配什么色好看| 嫩草影院精品99| 久久国产精品人妻蜜桃| 久久亚洲精品不卡| 91麻豆av在线| 亚洲美女黄片视频| 老司机午夜十八禁免费视频| 每晚都被弄得嗷嗷叫到高潮| 久久久久国内视频| 成年版毛片免费区| 乱人视频在线观看| 午夜免费男女啪啪视频观看 | 成年女人看的毛片在线观看| 日本 欧美在线| 91九色精品人成在线观看| 天堂动漫精品| 久久国产精品人妻蜜桃| 亚洲综合色惰| 国产精品久久电影中文字幕| 日本五十路高清| 午夜精品在线福利| 国产亚洲精品久久久久久毛片| 一级毛片久久久久久久久女| 欧美高清成人免费视频www| 美女高潮喷水抽搐中文字幕| 欧美日韩亚洲国产一区二区在线观看| 国产免费一级a男人的天堂| 精品熟女少妇八av免费久了| 久久精品影院6| 久久精品国产99精品国产亚洲性色| 成人特级黄色片久久久久久久| 久久精品综合一区二区三区| 久久久久性生活片| 好看av亚洲va欧美ⅴa在| 91av网一区二区| 国产成人影院久久av| 国产伦精品一区二区三区四那| 91午夜精品亚洲一区二区三区 | 国产精品一区二区三区四区久久| 热99re8久久精品国产| 一个人看视频在线观看www免费| 日本 av在线| 亚洲最大成人手机在线| 国产在线男女| av国产免费在线观看| 中国美女看黄片| 日日夜夜操网爽| 亚洲欧美日韩无卡精品| 亚洲国产精品成人综合色| 国产成人a区在线观看| 此物有八面人人有两片| 亚洲aⅴ乱码一区二区在线播放| av在线老鸭窝| av天堂在线播放| 成人无遮挡网站| 日韩欧美在线乱码| 亚洲美女视频黄频| 毛片女人毛片| h日本视频在线播放| 制服丝袜大香蕉在线| 人人妻人人看人人澡| 国产国拍精品亚洲av在线观看| 亚洲第一电影网av| 国产蜜桃级精品一区二区三区| 特大巨黑吊av在线直播| 久久国产乱子免费精品| 蜜桃亚洲精品一区二区三区| 18禁黄网站禁片免费观看直播| 桃色一区二区三区在线观看| 村上凉子中文字幕在线| 首页视频小说图片口味搜索| 深夜a级毛片| 51国产日韩欧美| 每晚都被弄得嗷嗷叫到高潮| 99精品久久久久人妻精品| 国产老妇女一区| 性插视频无遮挡在线免费观看| 欧美日韩瑟瑟在线播放| 久久6这里有精品| 国产伦在线观看视频一区| 欧美性猛交黑人性爽| 成人一区二区视频在线观看| 日本精品一区二区三区蜜桃| 夜夜躁狠狠躁天天躁| 在线免费观看的www视频| av黄色大香蕉| 精品乱码久久久久久99久播| 国产在线精品亚洲第一网站| 亚洲精品色激情综合| 国产又黄又爽又无遮挡在线| 亚洲精品色激情综合| 久久人妻av系列| 亚洲综合色惰| 九色国产91popny在线| 亚洲av.av天堂| 亚洲第一电影网av| 美女黄网站色视频| 亚洲av成人精品一区久久| 国产精品,欧美在线| 又爽又黄a免费视频| 久久精品国产亚洲av香蕉五月| 特大巨黑吊av在线直播| 久久亚洲精品不卡| 国产在视频线在精品| 久久99热这里只有精品18| 亚洲男人的天堂狠狠| 男人舔女人下体高潮全视频| 丰满人妻熟妇乱又伦精品不卡| 热99在线观看视频| 国产综合懂色| 我的女老师完整版在线观看| 国产又黄又爽又无遮挡在线| 免费高清视频大片| 欧美最黄视频在线播放免费| 久久久久久大精品| 国产熟女xx| 深爱激情五月婷婷| 欧美激情国产日韩精品一区| 狠狠狠狠99中文字幕| 亚洲最大成人中文| 日本 欧美在线| av福利片在线观看| 给我免费播放毛片高清在线观看| 12—13女人毛片做爰片一| 别揉我奶头~嗯~啊~动态视频| 国产高清视频在线播放一区| 一级黄片播放器| 日本五十路高清| 日本黄色片子视频| 美女免费视频网站| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产亚洲av香蕉五月| 亚洲第一电影网av| 国产高清视频在线观看网站| 看片在线看免费视频| 丰满乱子伦码专区| 欧美激情国产日韩精品一区| 国产精品久久久久久人妻精品电影| 国语自产精品视频在线第100页| 嫩草影院入口| 国产午夜福利久久久久久| 成年人黄色毛片网站| 色哟哟哟哟哟哟| 亚洲国产色片| av天堂在线播放| 欧美黄色淫秽网站| 午夜a级毛片| 色尼玛亚洲综合影院| 久久久成人免费电影| 99久久成人亚洲精品观看| 我的女老师完整版在线观看| 免费人成在线观看视频色| 欧美一区二区国产精品久久精品| 亚洲一区二区三区不卡视频| 久久久久久久精品吃奶| 中文亚洲av片在线观看爽| 午夜福利视频1000在线观看| 成人毛片a级毛片在线播放| 中文字幕精品亚洲无线码一区| 国产精品久久久久久亚洲av鲁大| 久久草成人影院| av欧美777| 99久久成人亚洲精品观看| 日韩欧美三级三区| 天堂av国产一区二区熟女人妻| 久久久精品欧美日韩精品| 欧美绝顶高潮抽搐喷水| 亚洲五月天丁香| 亚洲成人免费电影在线观看| 欧美日韩福利视频一区二区| 亚洲美女黄片视频| 日本三级黄在线观看| 日韩欧美三级三区| 中文字幕av在线有码专区| 乱人视频在线观看| 免费无遮挡裸体视频| 国产成人影院久久av| 国产免费一级a男人的天堂| 热99re8久久精品国产| 村上凉子中文字幕在线| 亚洲不卡免费看| 99热只有精品国产| 看黄色毛片网站| 在线观看美女被高潮喷水网站 | 淫秽高清视频在线观看| 亚洲最大成人中文| 嫁个100分男人电影在线观看| 12—13女人毛片做爰片一| 在线看三级毛片| www日本黄色视频网| 99久久成人亚洲精品观看| 亚洲熟妇中文字幕五十中出| 亚洲国产日韩欧美精品在线观看| 免费人成视频x8x8入口观看| 永久网站在线| 欧美色欧美亚洲另类二区| 搡老岳熟女国产| 黄色丝袜av网址大全| 长腿黑丝高跟| 成人永久免费在线观看视频| 久久午夜福利片| 精品国产亚洲在线| aaaaa片日本免费| 国产一区二区在线观看日韩| 十八禁国产超污无遮挡网站| or卡值多少钱| 国产乱人伦免费视频| 国产亚洲av嫩草精品影院| 91字幕亚洲| 蜜桃亚洲精品一区二区三区| 青草久久国产| 18+在线观看网站| 两个人视频免费观看高清| 欧美+日韩+精品| 国产精品久久视频播放| 免费在线观看影片大全网站| 女人被狂操c到高潮| 色综合亚洲欧美另类图片| 脱女人内裤的视频| 一个人免费在线观看电影| 又紧又爽又黄一区二区| 51国产日韩欧美| 免费看a级黄色片| 欧美高清性xxxxhd video| 久久久久久久久久黄片| 久久久久久久久中文| 两个人视频免费观看高清| 99视频精品全部免费 在线| 国产精品美女特级片免费视频播放器| 五月伊人婷婷丁香| 夜夜躁狠狠躁天天躁| 99国产综合亚洲精品| 网址你懂的国产日韩在线| 男人和女人高潮做爰伦理| 亚洲精品一区av在线观看| 久久伊人香网站| 99在线人妻在线中文字幕| 特级一级黄色大片| 禁无遮挡网站| 村上凉子中文字幕在线| 日韩欧美国产在线观看| 噜噜噜噜噜久久久久久91| 伦理电影大哥的女人| 欧美色视频一区免费| 亚洲成人精品中文字幕电影| 最近最新中文字幕大全电影3| 亚洲无线在线观看| 国产乱人伦免费视频| av女优亚洲男人天堂| 亚洲国产精品sss在线观看| 国产综合懂色| 极品教师在线免费播放| 国产亚洲精品久久久久久毛片| 少妇人妻精品综合一区二区 | aaaaa片日本免费| 国产伦精品一区二区三区视频9| 高潮久久久久久久久久久不卡| 超碰av人人做人人爽久久| 国产视频一区二区在线看| 非洲黑人性xxxx精品又粗又长| 久久精品夜夜夜夜夜久久蜜豆| 99精品在免费线老司机午夜| 91在线精品国自产拍蜜月| 999久久久精品免费观看国产| 夜夜夜夜夜久久久久| 亚洲激情在线av| 9191精品国产免费久久| 最近最新免费中文字幕在线| 久久精品人妻少妇| 国产精品久久电影中文字幕| 国产精品日韩av在线免费观看| 成人国产综合亚洲| 国产欧美日韩一区二区精品| 精品久久久久久久久亚洲 | 欧美一区二区精品小视频在线| 色av中文字幕| 女生性感内裤真人,穿戴方法视频| 黄色一级大片看看| 精品人妻熟女av久视频| 国产精品av视频在线免费观看| 日日夜夜操网爽| 丝袜美腿在线中文| 亚洲专区中文字幕在线| 亚洲不卡免费看| 欧美一区二区国产精品久久精品| 波野结衣二区三区在线| 午夜激情欧美在线| 日韩欧美一区二区三区在线观看| 成人精品一区二区免费| 久久午夜福利片| av天堂在线播放| 最近最新中文字幕大全电影3| 欧美一区二区亚洲| 999久久久精品免费观看国产| 成年女人毛片免费观看观看9| 国产成年人精品一区二区| 99国产精品一区二区三区| 一本一本综合久久| 欧美又色又爽又黄视频| 又爽又黄无遮挡网站| 男女下面进入的视频免费午夜| 国产综合懂色| 国产一区二区激情短视频| 91九色精品人成在线观看| 一区二区三区四区激情视频| 国产老妇女一区| 麻豆成人午夜福利视频| 蜜臀久久99精品久久宅男| 亚洲成人久久爱视频| 又爽又黄a免费视频| 国产精品久久久久久精品电影| 精品久久久噜噜| 欧美性猛交╳xxx乱大交人| 黄色配什么色好看| 美女cb高潮喷水在线观看| 午夜日本视频在线| 国产91av在线免费观看| 亚洲一级一片aⅴ在线观看| 小蜜桃在线观看免费完整版高清| 久久精品久久精品一区二区三区| 99视频精品全部免费 在线| 51国产日韩欧美| 3wmmmm亚洲av在线观看| 免费黄频网站在线观看国产| 麻豆国产97在线/欧美| 精品少妇黑人巨大在线播放| 日韩欧美精品免费久久| 日韩人妻高清精品专区| 国产精品久久久久久久久免| 日韩大片免费观看网站| 波多野结衣巨乳人妻| 美女xxoo啪啪120秒动态图| 99久久九九国产精品国产免费| 禁无遮挡网站| 国产精品福利在线免费观看| av线在线观看网站| 亚洲av福利一区| 亚洲欧美成人精品一区二区| 国产高清有码在线观看视频| 肉色欧美久久久久久久蜜桃 | 欧美+日韩+精品| 一二三四中文在线观看免费高清| 日本-黄色视频高清免费观看| 麻豆乱淫一区二区| 亚洲国产av新网站| 欧美97在线视频| 欧美一区二区亚洲| 精品国产露脸久久av麻豆| 97精品久久久久久久久久精品| 少妇丰满av| 亚洲丝袜综合中文字幕| 精品少妇久久久久久888优播| 熟女电影av网| 亚洲精品成人av观看孕妇| 亚洲成人中文字幕在线播放| 亚洲精品一区蜜桃| 亚洲国产欧美人成| 99re6热这里在线精品视频| videossex国产| 亚洲av中文av极速乱| 99久久人妻综合| a级毛片免费高清观看在线播放|