• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dissolved nutrient distributions in the Antarctic Cosmonaut Sea in austral summer 2021

    2022-10-18 13:01:50HUANGWenhaoYANGXufengZHAOJunLIDongPANJianming
    Advances in Polar Science 2022年3期

    HUANG Wenhao, YANG Xufeng, ZHAO Jun*, LI Dong & PAN Jianming

    Dissolved nutrient distributions in the Antarctic Cosmonaut Sea in austral summer 2021

    HUANG Wenhao1,2, YANG Xufeng1,2, ZHAO Jun1,2*, LI Dong1,2& PAN Jianming1,2

    1Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Hangzhou 310012, China;2Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

    Dissolved nutrients are essential to marine productivity and ecosystem structures in the Southern Ocean. The spatial distributions of dissolved nutrients in the Cosmonaut Sea were studied during the 37th Chinese National Antarctic Research Expedition in 2021. The relative standard deviations of the nitrate (NO3-N), nitrite (NO2-N), ammonium (NH4-N), phosphate (PO4-P), and silicate (SiO3-Si) concentrations found in duplicate samples (=2) were 1.01%, 9.04%, 6.45%, 0.94%, and 0.67%, respectively. The mean NO3-N, NO2-N, NH4-N, PO4-P, and SiO3-Si concentrations in the mixed layer were 26.41±4.13, 0.15±0.09, 0.51±0.22, 1.73±0.23, and 41.48±6.94 μmol·L?1, respectively, and were higher than the relevant limitation concentrations. The concentrations were generally bounded horizontally by the Southern Boundary (SB) of the Antarctic Circumpolar Current, the NO3-N, NO2-N, NH4-N, and PO4-P concentrations being higher northeast than southwest of the SB but the SiO3-Si concentrations being higher southwest than northeast, indicating that the SB dominates nutrient distributions in the mixed layer. The NO3-N, NH4-N, and PO4-P concentrations gradually increased moving vertically down from the mixed layer to 200 m deep and then remained at 33.73±3.51, 0.26±0.13, and 2.28±0.10 μmol·L?1, respectively, to the bottom. The SiO3-Si concentration increased as depth increased and reached a maximum in the bottom layer. The NO2-N concentration decreased rapidly as depth increased and was ~0 μmol·L?1at >150 m deep. Circumpolar Deep Water upwelling may cause high nutrient concentrations in shallower layers up to the 100 m layer between 62.5°S and 64°S.

    dissolved nutrients, water masses, mixed layer, circulation, Antarctic, Cosmonaut Sea

    1 Introduction

    Dissolved nutrients are required for the growth of phytoplankton (i.e., primary productivity) in the ocean, which is critical to marine ecosystems (Millero, 2013). The Southern Ocean generally has high nutrient and low chlorophyll concentrations (Boyd et al., 2000). The Antarctic marine biological pump is markedly different from the other oceans because of the geographical environment characteristics of Antarctic Ocean (Arrigo et al., 2008). Upwelling of Circumpolar Deep Water (CDW) and Antarctic Intermediate Water off Antarctic coasts provide abundant nutrients near Antarctica (Pollard et al., 2006). An ocean circulation model has indicated that nutrients exported from the Southern Ocean leads to ~75% of primary productivity in the oceans north of 30°S (Weber and Deutsch, 2010). Nutrient supplies and cycles in the Southern Ocean are therefore very important to marine primary productivity across the world.

    The Cosmonaut Sea, which is west of Enderby Land in East Antarctica and borders the Cooperation Sea (to the east) and the Lisser–Larsen Sea (to the west), is an important fishery and component of the Southern Ocean ecosystem (Nicol and Foster, 2003; Wright et al., 2010). In recent decades, global warming has quadrupled the rate at which Antarctic glaciers are melting (Shepherd et al., 2018) and increased interannual sea ice changes in the Cosmonaut Sea (Geddes and Moore, 2007). These changes may cause fluctuations in the availability of light, the mixed layer depth (MLD), and the concentration of bioavailable iron, which may affect nutrient cycles and the ecosystem of the Cosmonaut Sea. A systematic multi-disciplinary study called the BROKE-West survey was performed in the austral summer of 2006. In that study, interactions between nutrient cycling and circulation, light, trace elements, and plankton in the Cosmonaut Sea and adjacent seas were investigated (Westwood et al., 2010; Williams et al., 2010; Wright et al., 2010). Since then, however, few spatial and temporal studies of dissolved nutrients and their effects on primary productivity and ecosystem structures in the Cosmonaut Sea have been performed. More research into the distributions of dissolved nutrients in the Cosmonaut Sea is required to improve our understanding of marine ecosystems and changes in these ecosystems.

    In this study, we present the concentrations and distributions of dissolved nutrients detailly in the Cosmonaut Sea in austral summer 2021, collected during the 37th Chinese National Antarctic Research Expedition (CHINARE). The data under high-quality control updated nutrient data set in the Southern Ocean. This study would provide an important reference for further study on nutrient dynamics and the ecosystem in the Cosmonaut Sea.

    2 Materials and methods

    2.1 Oceanography

    Water masses and circulation are key to dissolved nutrient distributions in the Cosmonaut Sea. The CDW and three important surface/subsurface circulations (the Weddell Gyre (WG), the Southern Boundary (SB) of the Antarctic Circumpolar Current, and the Antarctic Slope Current (ASC)) affect the Cosmonaut Sea (Figure 1). CDW and Antarctic surface water above it are the main water masses in the top 250 m of the water column (Orsi et al., 1995). Strong CDW intrusion can cause local increases in dissolved nutrient concentrations (Meijers et al., 2010). The WG (the dominant circulation in the western part of 40°E in the Cousmonaut Sea) causes the seasonal mixed layer to be shallower, warmer, and fresher in the western than eastern research region (Williams et al., 2010). East of the WG, the SB extends southeastwards, reaching 65.5°S and 60°E, and is a key factor leading to high nitrate concentrations in the northeastern part of the Cosmonaut Sea (Westwood et al., 2010). The ASC, which is a robust narrow westward flowing jet, has flow rates as high as 30 cm·s?1and causes high chlorophyllconcentrations along the shore (Meijers et al., 2010).

    Figure 1 Stations at which samples were collected to determine dissolved nutrient concentrations in the austral summer between 5 and 25 January 2021 as a part of the 37th CHINARE. The green triangles indicate areas with strong upwelling. The solid orange line indicates the southern boundary of the Antarctic Circumpolar Current (SB), the solid blue line indicates the Weddell Gyre (WG), and the solid purple line indicates the Antarctic Slope Current (ASC) (Westwood et al., 2010; Williams et al., 2010).

    2.2 Sample collection

    Hydrological parameters (potential temperature, salinity, and potential density) were determined and recorded using a pre-calibrated Sea-Bird SBE-9/11 plus CTD (conductivity- temperature-depth) system (SeaBird, USA). A total of 419 water samples, including 28 parallel samples from 33 stations on six transects (C2’, C4, C5, C5/6, C6, and C7), were collected from the Cosmonaut Sea by the R/Vbetween 5 and 25 January 2021 as part of the 37th CHINARE. The sampling depths were widely accepted standard water layer sampling depths (the surface layer (i.e., 5 m in Table 1 and Table S1), depths of 25, 50, 75, 100, 150, 200, 300, 500, 1000, 2000 and 3000 m, and the bottom layer) (Figure 1 and Table S1). Each water sample was passed through a Whatman cellulose acetate filter membrane with 0.45 μm pores (Whatman, USA). The filtrate was collected in a clean Nalgene polyethylene bottle (HDPE, Nalgene, USA) and stored at ?20℃.

    2.3 Experimental methods

    The ammonium (NH4-N) concentrations in the samples were determined onboard the research vessel using the indophenol blue photometric method using a calibrated 7230G visible light spectrophotometer (INESA, China). The analytical procedure is described in detail in “Specifications for the oceanographic survey – Part 4: Survey of chemical parameters in sea water”(GB/T 12763.4—2007) (General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of China, 2007). The nitrate (NO3-N), nitrite (NO2-N), phosphate (PO4-P), and silicate (SiO3-Si) concentrations were determined onboard the research vessel using the cadmium copper column reduction diazo method, the diazo azo method, the phosphomolybdenum blue method, and the silicon-molybdenum blue method, respectively, using an AA3 automatic nutrient analyzer (SEAL, Germany). The analytical procedures are described in the “Code of practice for marine monitoring technology Part 1: seawater” (HY/T 147.1—2013) (State Oceanic Administration, 2013). Artificial seawater with a similar salinity to the samples was used to prepare the standards and to clean the injector to prevent differences in salinity affecting the results. The concentrations of various dissolved nutrients in the seawater samples were calculated from the linear relationships between the light absorption values and nutrient concentrations for the standards. Natural seawater samples containing NO3-N, NO2-N, NH4-N, PO4-P, and SiO3-Si at concentrations of 2.25, 0.42, 1.30, 2.88, and 18.54 μmol·L?1, respectively, were determined, and the relative standard deviations (RSDs) were 2.4%, 2.6%, 1.2%, 5.2% and 6.4%, respectively. Duplicate samples were collected from one layer at each station and used as quality control samples (Table 1). The standard solutions (GBW 08617-08645) used were produced by the Marine Reference Material Center, Second Institute of Oceanography, Ministry of Natural Resources of China.

    2.4 Calculating the MLD

    The potential seawater density (, in kg·m?3) was calculated from the potential temperature, salinity, and pressure data collected. The MLD for the water column was calculated from the depth of the maximum water column buoyancy frequency (2, in rad2·s?2) (Carvalho et al., 2016) using Eq. (1),

    whereandare gravity and water depth, respectively.

    2.5 Statistical analysis

    Two-tailed tests of significance were performed using SPSS 25 software (IBM, USA) to identify significant relationships between the measured parameters.

    3 Results and discussion

    3.1 Parallel sample analyses

    The RSDs for the NO3-N, NO2-N, NH4-N, PO4-P, and SiO3-Si concentrations found in the samples from the parallel sample stations were 0.08%–3.23%, 0%–47.14%, 0%–17.31%, 0%–4.31%, and 0.01%–5.79%, respectively, and the mean concentrations were 1.01%, 9.04%, 6.45%, 0.94%, and 0.67%, respectively, as shown in Table 1. The RSDs for most of the samples were better than the acceptable thresholds for the analytical methods. Some of the RSDs, particularly for the NO2-N and NH4-N concentrations, were poor because of their low concentrations. The results for the parallel samples generally indicated that the dataset was reliable.

    3.2 Horizontal dissolved nutrient distributions

    The mean NO3-N, PO4-P, and SiO3-Si concentrations in the surface layer samples were 25.84±3.31, 1.66±0.27, and 41.63±6.62 μmol·L?1, respectively, which were higher than the relevant nutrient limits (15, 0.1, and 5 μmol·L?1, respectively) (Justi? et al., 1995; Franck et al., 2000). The mean NO2-N and NH4-N concentrations were 0.15±0.09 and 0.49±0.22 μmol·L?1, respectively. The NO3-N, NO2-N, NH4-N, and PO4-P concentrations in surface water generally decreased from the northeast to the southwest of the SB (Figure 2, see Figure 1 for the location of the SB). The highest NO3-N, NO2-N, NH4-N, and PO4-P concentrations were 30.17 μmol·L?1(C5-06), 0.29 μmol·L?1(C4-02), 1.37 μmol·L?1(C5-03) and 1.96 μmol·L?1(C5-05 and C5-06), respectively, which were all found at northeast of the SB. The lowest NO3-N, NO2-N, NH4-N, and PO4-P concentrations were 17.11 μmol·L?1(C4-09), 0.02 μmol·L?1(C4-07, C4-09 and C4-10), 0.22 μmol·L?1(C5’-08), and 0.96 μmol·L?1(C4-10), respectively, which were located at southwest of the SB. The SiO3-Si concentrations in the surface water samples had the opposite distribution: lower in the northeast side of SB and higher in the southwest side of SB. The highest SiO3-Si concentration (54.03 μmol·L?1) was found at station C2’-13 and the lowest SiO3-Si concentration (24.63 μmol·L?1) was found at station C7-03 (Table S1).

    Table 1 Concentrations, mean concentrations, and relative standard deviations (RSD) of dissolved nutrients in the samples from the 28 parallel sample stations

    The MLDs in the study area ranged from 14 m at station C4-09 to 85 m at station C5’-08, and the mean MLD was 37±17 m, which was similar to the MLD found in the BROKE-West survey (MLD 26±15 m,>0.05) (Figure S1). The low MLD between 30°E and 60°E may have been caused by the WG . The NO3-N, NO2-N, NH4-N, PO4-P, and SiO3-Si concentrations in the mixed layer were 26.41±4.13 (15.74–39.76), 0.15±0.09 (0–0.29), 0.51±0.22 (0.18–1.37), 1.73±0.23 (1.01–1.99), and 41.48±6.94 (22.87–55.11) μmol·L?1, respectively. Similar NO3-N and SiO3-Si concentrations (25.9±2.5 and 48.0±8.8 μmol·L?1, respectively) were found in the BROKE-West survey (Westwood et al., 2010), indicating that little interannual variation in dissolved nutrient concentrations occur in the mixed layer in the Cosmonaut Sea.

    The mean NO3-N, PO4-P, and SiO3-Si concentrations in the 200 m layer (33.23±2.50, 2.30±0.13, and 69.36± 9.80 μmol·L?1, respectively) were higher than the concentrations in the surface layer, but the mean NO2-N and NH4-N concentrations (0 and 0.25±0.14 μmol·L?1, respectively) were lower than the concentrations in the surface layer. The horizontal NO3-N, PO4-P, and SiO3-Si concentration distributions in the 200 m layer and surface layer were similar, indicating that circulation strongly affects the distributions of NO3-N, PO4-P, and SiO3-Si in the euphotic zone. The NO2-N concentrations were below the detection limit, and there was no clear trend in the NH4-N concentration distribution.

    The mean NO3-N, NO2-N, NH4-N, and PO4-P concentrations in the bottom water were 38.46±4.66, 0±0.01, 0.34±0.14, and 2.26±0.09 μmol·L?1, respectively, which were not significantly different from the concentrations in the 200 m layer (>0.05). The SiO3-Si concentration in the bottom water was 99.70± 14.20 μmol·L?1, which was significantly higher than the concentration in the 200 m layer (<0.01). The NO3-N concentrations in the bottom water were generally higher near the shore and lower in the open ocean, unlike the concentrations in the surface layer. Significantly lower PO4-P and SiO3-Si concentrations and higher NO2-N concentrations were found in the ice-edge region between 55°E and 60°E than elsewhere.

    Figure 2 Horizontal distributions of dissolved nutrients (NO3-N, NO2-N, NH4-N, PO4-P, and SiO3-Si) in the surface layer, at the bottom of the euphotic zone (200 m layer), and in the bottom layer of the Cosmonaut Sea (units: μmol·L?1).

    3.3 Vertical dissolved nutrient distributions

    The vertical NO3-N and PO4-P concentration distributions were similar (Figures 3 and 6), the concentrations gradually increasing moving down from the surface layer to the 200 m layer and then remaining stable at >200 m. The NO2-N concentration decreased rapidly as depth increased and was ~0 μmol·L?1at >150 m deep (Figure 4). The maximum NH4-N concentration was generally reached at75–200 m deep, then the concentration decreased slightly as depth increased and then remained stable as the depth increased further (Figure 5). The NO3-N, NO2-N, NH4-N, and PO4-P concentrations at >200 m deep were 33.73±3.51, 0±0.01, 0.26±0.13, and 2.28±0.10 μmol·L?1, respectively. In contrast, the SiO3-Si concentration increased as depth increased and was highest in the bottom layer (Figure 7), the concentrations being 78.46±12.67 μmol·L?1at 200– 1000 m deep and 100.40±10.59 μmol·L?1at >1000 m deep. Along transects C4 and C5, the NO3-N, NH4-N, PO4-P, and SiO3-Si concentrations near the 100 m layer were all higher between 62.5°S and 64°S than further south. This may have been because large inputs of dissolved nutrients caused by CDW upwelling (Meijers et al., 2010) affected the nutrient concentration distributions.

    Figure 3 Vertical nitrate (NO3-N) distribution along transect C2’ (a), transect C4 (b), transect C5 (c), and transect C7 (d) in the Cosmonaut Sea.

    Figure 4 Vertical nitrite (NO2-N) distribution along transect C2’ (a), transect C4 (b), transect C5 (c), and transect C7 (d) in the Cosmonaut Sea.

    Figure 5 Vertical ammonium (NH4-N) distribution along transect C2’ (a), transect C4 (b), transect C5 (c), and transect C7 (d) in the Cosmonaut Sea.

    Figure 6 Vertical phosphate (PO4-P) distribution along transect C2’ (a), transect C4 (b), transect C5 (c), and transect C7 (d) in the Cosmonaut Sea.

    4 Summary

    We investigated the spatial characteristics of dissolved nutrient concentrations in the Cosmonaut Sea during the 37th CHINARE in the austral summer of 2021. The sample analyses gave good quality data, and the RSDs for the NO3-N, NO2-N, NH4-N, PO4-P, and SiO3-Si concentrations found in duplicate samples (=2) were better than required. The horizontal NO3-N, NO2-N, NH4-N, and PO4-P concentration distributions in the mixed layer were similar, increasing gradually from southwest to northeast of the SB. The SiO3-Si concentration distribution followed the opposite trend. This indicated that circulation strongly affected the nutrient distributions in the mixed layer. The NO3-N and PO4-P concentrations gradually increased moving down from the surface to 200 m deep and then remained stable moving further down. The NO2-N concentration decreased rapidly as depth increased and was ~0 μmol·L?1at >150 m deep. The maximum NH4-N concentration was generally at 75–200 m deep. The SiO3-Si concentration increased as depth increased and reached a maximum in the bottom layer. We found that CDW upwelling locally affects the vertical distributions of dissolved nutrients. The dissolved nutrient concentrations were generally higher than the limiting concentrations throughout the study area, indicating that no macronutrient limitation occurred in the Cosmonaut Sea in the austral summer of 2021, similar to results in the BROKE-West survey. The data will be useful for reference in future studiesof nutrient dynamics and ecosystems in the Cosmonaut Sea.

    Figure 7 Vertical silicate (SiO3-Si) distribution along transect C2’ (a), transect C4 (b), transect C5 (c), and transect C7 (d) in the Cosmonaut Sea.

    The authors wish to thank the 37th CHINARE team members and the crew of R/Vfor helping collect samples and Dr. Yubing Feng for helping calculate MLDs. The study was financially supported by National Polar Special Program “Impact and Response of Antarctic Seas to Climate Change” (Grant nos. IRASCC 01-01-02A, IRASCC 02-02) and by the National Natural Science Foundation of China (NSFC) (Grant no. 41976228).

    Arrigo K, van Dijken G, Bushinsky S. 2008. Primary production in the Southern Ocean, 1997-2006. J Geophys Res Oceans, 113(C8): C08004, doi:10.1029/2007JC004551.

    Boyd P W, Watson A J, Law C S, et al. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407(6805): 695-702, doi:10.1038/35037500.

    Carvalho F, Kohut J, Oliver M J, et al. 2016. Mixing and phytoplankton dynamics in a submarine canyon in the West Antarctic Peninsula. J Geophys Res Oceans, 121(7): 5069-5083, doi:10.1002/2016JC01 1650.

    Chen J Y, Han Z B, Hu C Y, et al. 2017. Distribution and seasonal depletion of nutrients in Prydz Bay, Antarctica. Chin J Polar Res, 29(3): 327-337, doi:10.13679/j.jdyj.2017.3.327 (in Chinese with English abstract).

    Franck V M, Brzezinski M A, Coale K H, et al. 2000. Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr, 47(15-16): 3315-3338, doi:10.1016/S0967- 0645(00)00070-9.

    Geddes J A, Moore G W K. 2007. A climatology of sea ice embayments in the Cosmonaut Sea, Antarctica. Geophys Res Lett, 34(2): L02505, doi:10.1029/2006GL027910.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of China. 2007. Specifications for the oceanographic survey – Part 4: Survey of chemical parameters in sea water, GB/T 12763.4—2007 (in Chinese).

    Justi? D, Rabalais N N, Turner R E. 1995. Stoichiometric nutrient balance and origin of coastal eutrophication. Mar Pollut Bull, 30(1): 41-46, doi:10.1016/0025-326X(94)00105-I.

    Meijers A J S, Klocker A, Bindoff N L, et al. 2010. The circulation and water masses of the Antarctic shelf and continental slope between 30 and 80°E. Deep Sea Res Part II Top Stud Oceanogr, 57(9-10): 723-737, doi:10.1016/j.dsr2.2009.04.019.

    Millero F J. 2013. Chemical Oceanography. 4th edition. London: CRC Press.

    Nicol S, Foster J. 2003. Recent trends in the fishery for Antarctic krill. Aquat Living Resour, 16(1): 42-45, doi:10.1016/S0990-7440(03) 00004-4.

    Orsi A H, Whitworth T III, Nowlin W D Jr. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I Oceanogr Res Pap, 42(5): 641-673, doi:10.1016/0967-0637 (95)00021-W.

    Pollard R, Tréguer P, Read J. 2006. Quantifying nutrient supply to the Southern Ocean. J Geophys Res Oceans, 111(C5): C05011, doi:10. 1029/2005JC003076.

    Shepherd A, Fricker H A, Farrell S L. 2018. Trends and connections across the Antarctic cryosphere. Nature, 558(7709): 223-232, doi:10.1038/s 41586-018-0171-6.

    State Oceanic Administration. 2013. Code of practice for marine monitoring technology Part 1: Seawater, HY/T 147.1—2013 (in Chinese).

    Sun W P, Hu C Y, Han Z B, et al. 2012. Distribution of nutrients and chlin Prydz Bay during the austral summer of 2011. Chin J Polar Res, 24(2): 178-186, doi:10.3724/SP.J.1084.2012.00178 (in Chinese with English abstract).

    Tréguer P, Nelson D M, van Bennekom A J, et al. 1995. The silica balance in the world ocean: a reestimate. Science, 268(5209): 375-379, doi:10.1126/science.268.5209.375.

    Weber T S, Deutsch C. 2010. Ocean nutrient ratios governed by plankton biogeography. Nature, 467(7315): 550-554, doi:10.1038/nature09403.

    Westwood K J, Griffiths B F, Meiners K M, et al. 2010. Primary productivity off the Antarctic coast from 30°-80°E; BROKE-West survey, 2006. Deep Sea Res Part II Top Stud Oceanogr, 57(9-10): 794-814, doi:10.1016/j.dsr2.2008.08.020.

    Williams G D, Nicol S, Aoki S, et al. 2010. Surface oceanography of BROKE-West, along the Antarctic margin of the south-west Indian Ocean (30-80°E). Deep Sea Res Part II Top Stud Oceanogr, 57(9-10): 738-757, doi:10.1016/j.dsr2.2009.04.020.

    Wright S W, van den Enden R L, Pearce I, et al. 2010. Phytoplankton community structure and stocks in the Southern Ocean (30-80°E) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Res Part II Top Stud Oceanogr, 57(9-10): 758-778, doi:10.1016/j.dsr2.2009.06.015.

    Text S1 operational quality supervision

    The whole polar field operation and sample analysis follow the operational quality supervision, including human, machine, sample, method, and environment. The “human” means all executors on sampling and analyzing of dissolved nutrients have received professional train for the projects; “machine” means all instruments for sampling and analyzing of dissolved nutrients have been verified and calibrated during the investigation, and all measuring instruments are traceable to their sources using comparison and relevant documents; “sample” means all related processes, including sampling, storage, and transportation of dissolved nutrients, are strictly carried out by relevant provisions; “method” means corresponding rules and regulations are followed during the whole process on sampling and analyzing of dissolved nutrients, including laboratory management regulations, equipment operating procedures, and investigation operation standards and norms; and “environment” means the environment for sampling, analysis and storage of dissolved nutrients are clean and in order.

    Table S1 The concentrations of dissolved nutrients (NO3-N, NO2-N, NH4-N, PO4-P and SiO3-Si) in the Cosmonaut Sea of the whole water depth

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) C7-0659.92°E64.90°S4056528.730.220.451.5128.27 2525.950.200.291.5831.36 5031.440.150.282.1246.02 7533.670.070.432.2155.73 10044.400.020.212.3268.47 15037.26–0.372.1576.31 20035.96–0.232.2377.99 30034.51–0.362.3979.31 50033.59–0.172.2982.21 100033.23–0.212.2390.26 200039.53–0.172.3094.96 C7-0559.95°E64.68°S4179524.860.250.471.5730.37 2527.300.180.531.7036.56 5030.140.150.551.9244.98 7532.360.090.292.1950.78 10035.07–0.402.3963.41 15036.46–0.272.4774.72 20035.55–0.292.4277.48 30035.22–0.242.3579.56 50034.63–0.282.2782.10 100040.15–0.282.2289.77 200034.41–0.352.32102.85 300035.14–0.272.2697.74 415653.980.050.492.2991.96 C7-0460.02°E64.36°S4215527.680.200.711.7839.48 2529.190.160.771.9141.68 5036.420.150.521.9646.59 7532.200.090.402.2154.07 10034.55–0.382.3565.27 15035.87–0.352.4574.95

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 20034.84–0.312.4576.32 30034.80–0.372.3878.96 50032.86–0.402.2579.81 100032.62–0.362.2290.87 200033.97–0.392.33106.88 300034.43–0.402.33105.00 420736.320.010.412.1179.86 C7-0360.08°E64.04°S4359523.290.240.621.4424.63 2525.130.210.721.6326.05 5029.000.170.841.9737.73 7528.630.150.711.9939.65 10030.83–0.632.0948.14 15044.07–0.432.5271.16 20035.59–0.462.5074.38 30034.93–0.362.2077.14 50032.66–0.502.2879.29 100032.29–0.472.2585.85 200033.56–0.532.31103.37 300033.88–0.492.3093.48 434339.60–0.732.3195.36 C7-0259.91°E63.31°S4347524.500.260.551.5526.25 2525.540.240.251.4426.79 5034.610.210.901.9036.58 7527.630.160.351.9740.91 10030.89–0.182.1550.30 15035.56–0.152.4771.82 20035.32–0.172.4775.61 30030.06–0.142.2267.45 50033.07–0.182.2880.34 100032.51–0.152.2588.90 200033.97–0.172.3299.85 300034.31–0.142.34104.19 432640.94–0.172.30110.18 C6-0155.02°E62.67°S4992527.340.230.351.8237.45 2533.170.240.301.7336.64 5027.200.180.261.8436.46 7528.310.170.332.0141.91 10031.520.080.182.2353.93 15035.60–0.142.4971.50 20035.58–0.152.4674.37 30034.72–0.122.4477.67 50032.93–0.122.2780.42 100022.99–0.132.1160.69

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 200033.56–0.152.33106.70 300033.40–0.142.35102.21 400033.79–0.352.33112.40 496238.36–0.162.31124.14 C6-0255.01°E63.35°S4868526.560.220.461.7735.29 2517.890.130.401.4922.87 5027.800.150.451.9640.63 7530.050.170.382.1247.80 10025.960.010.192.0447.18 15032.67–0.222.1964.21 20035.26–0.232.4476.01 30032.40–0.182.3475.47 50033.19–0.142.2781.21 100044.34–0.192.2188.78 200028.99–0.172.1692.70 300034.49–0.252.15102.17 400039.21–0.222.34112.95 485232.61–0.372.2799.04 C6-0354.98°E63.99°S4454526.960.250.591.8640.19 2523.610.190.581.7433.17 5028.170.190.481.8440.00 7531.800.110.342.2155.19 10035.070.020.272.4469.62 15034.41–0.272.3473.50 20035.56–0.282.4078.09 30041.82–0.272.3379.30 50037.58–0.272.2782.93 100032.23–0.312.2293.24 200032.96–0.242.31109.23 300032.09–0.332.19105.11 444435.89–0.312.1888.98 C5/6-0552.60°E64.66°S4079528.630.270.431.9543.82 2529.460.160.251.9446.14 5029.320.160.331.9546.50 7533.070.090.272.2561.54 10033.890.030.182.3270.87 15034.03–0.182.3275.05 20033.57–0.162.2276.25 30027.80–0.152.1067.65 50031.70–0.172.1984.41 100032.53–0.152.2698.61 200030.03–0.592.0487.52 300032.34–0.462.22102.22 404337.320.030.512.0286.93

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) C5/6-0652.50°E65.03°S2999527.590.200.531.8143.66 2529.000.180.401.9144.81 5038.280.150.351.9645.74 7533.070.071.382.1655.15 10026.590.011.532.0044.55 15027.26–1.582.0850.81 20034.00–0.212.2672.98 C5/6-0752.59°E65.36°S2793528.270.180.421.8544.26 2525.640.160.411.6538.96 5029.480.120.461.9446.33 7529.550.080.412.0248.56 10032.660.050.302.1554.72 15032.52–0.192.1655.92 20033.04–0.272.1558.38 30031.25–0.212.1967.50 50033.17–0.262.2382.13 100033.00–0.222.2698.48 200033.27–0.292.25105.55 278339.38–0.362.26105.48 C5/6-0852.48°E65.64°S570528.270.150.551.8544.31 2528.310.140.491.8944.90 5028.680.050.491.9649.08 7532.050.040.402.1354.06 10032.600.020.432.1354.95 15032.55–0.332.1555.77 20030.64–0.292.1054.30 30029.36–0.232.0455.28 51042.02–0.302.2184.90 C5/6-0952.95°E65.60°S456528.180.180.531.8138.84 2524.980.110.601.7839.38 5028.810.050.401.9450.05 7527.390.060.551.9244.42 10032.200.030.872.1353.90 15033.470.021.102.0448.66 20030.81–0.182.1254.45 30030.87–0.182.1464.69 43527.22–0.232.1064.71 C5’-0851.57°E65.65°S1345527.290.090.221.7645.07 2526.880.060.181.7445.11 5028.550.060.721.9348.34 7529.200.060.771.9949.15 10037.400.060.792.0651.44 15030.790.020.632.1453.37

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 20032.08–0.162.1854.83 30028.70–0.122.0852.02 50031.21–0.172.1175.76 100033.49–0.162.2998.95 131435.350.020.232.1482.32 C5-0749.90°E65.34°S2117528.340.130.471.8745.84 2528.740.140.461.8545.52 5029.000.110.501.9446.76 7530.970.060.482.0951.07 10031.680.100.342.2052.64 15031.720.010.212.1653.39 20032.48–0.222.1653.89 30032.45–0.302.1555.66 50027.87–0.222.0965.70 100034.08–0.252.3097.56 209238.41–0.352.2796.53 C5-0649.79°E65.02°S2504530.170.180.361.9646.67 2539.760.220.361.9344.57 5029.280.140.341.9947.46 7532.130.100.262.1552.18 10030.430.080.191.9250.08 15031.08–0.182.0551.24 20032.35–0.172.1854.44 30032.51–0.182.2464.04 50033.06–0.172.2879.76 100033.48–0.182.3093.56 200033.63–0.222.3097.68 250339.77–0.242.2894.82 C5-0550.01°E64.68°S3568529.510.180.591.9647.19 2529.940.180.671.9547.42 5036.270.180.511.9647.49 7531.130.060.552.1050.87 10032.370.080.292.1652.52 15031.94–0.272.1753.18 20033.29–0.252.2159.95 30033.38–0.222.3078.02 50033.64–0.252.2680.77 100033.11–0.182.2990.46 200033.78–0.422.34102.28 300033.99–0.242.3199.62 352041.25–0.422.2993.88 C5-0350.05°E63.99°S4443528.930.201.371.9246.22 2525.780.180.531.8340.92

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 5028.880.191.231.9346.53 7530.800.111.242.0651.68 10032.350.040.462.3356.33 15032.87–0.352.2264.27 20033.26–0.852.2668.80 30033.89–0.532.3176.55 50033.57–0.392.2679.27 100033.08–0.422.2988.46 200033.68–0.452.3397.73 300033.93–0.592.3097.38 400033.220.010.612.1975.28 441739.78–0.702.2693.80 C5-0250.03°E63.33°S4853527.260.210.311.8137.90 2527.540.210.451.8338.28 5029.390.130.481.9943.84 7532.850.130.332.2355.92 10033.62–0.192.3764.80 15035.99–0.142.4674.14 20035.22–0.242.4076.56 30034.99–0.132.3278.62 50034.05–0.132.2381.09 100031.09–0.182.1484.75 200034.96–0.162.34104.35 300034.09–0.142.33109.07 400033.94–0.212.31107.73 483438.84–0.272.21115.29 C5-0150.04°E62.68°S5000527.860.260.591.8337.17 2527.420.250.471.7836.94 5027.630.210.411.8136.37 7535.380.170.441.9039.49 10029.640.180.512.0343.91 15036.530.040.352.4568.93 20035.94–0.142.4074.82 30034.57–0.212.3677.85 50032.95–0.182.2781.64 100032.82–0.152.2689.94 200033.84–0.162.35105.14 300033.79–0.162.36107.81 400034.17–0.162.33109.08 498441.63–0.252.31113.88 C4-0145.07°E62.66°S4749527.160.270.481.8840.90 2527.840.260.461.9141.99 5028.610.180.371.9441.46

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 7536.100.190.372.0745.66 10030.940.170.332.1952.19 15034.66–0.172.4673.58 20034.73–0.182.4578.17 30033.55–0.152.3979.58 50032.43–0.182.3083.98 100032.47–0.162.3296.69 200033.44–0.232.39110.53 300033.32–0.242.39114.32 400033.48–0.242.36114.81 474939.49–0.332.35126.53 C4-0245.04°E63.34°S4595527.530.290.631.9343.54 2527.630.160.541.9243.33 5029.730.150.452.0044.88 7535.750.170.332.0647.89 10035.49–0.372.4675.09 15035.36–0.212.4179.65 20034.32–0.232.3482.01 30030.77–0.182.2883.13 50032.79–0.232.3095.48 100033.31–0.212.37110.31 200033.50–0.212.36114.08 300033.80–0.232.35114.95 C4-0345.02°E64.00°S4425527.440.280.501.8446.21 2527.730.250.581.9245.91 5028.420.130.572.0448.17 7532.920.100.372.3867.15 10034.320.010.392.4776.84 15034.00–0.362.4979.43 20033.77–0.382.4081.59 30033.52–0.362.3282.87 50031.88–0.342.2986.35 100032.10–0.382.3096.12 200032.95–0.382.37111.15 300033.77–0.472.36113.52 441339.16–0.372.33120.09 C4-0545.03°E64.67°S3971525.560.090.231.8046.34 2525.970.090.261.8346.71 5028.950.090.592.1151.65 7521.170.080.331.9735.70 10036.510.070.152.1853.43 15030.89–0.172.2156.87

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 20031.25–0.162.2464.01 30025.89–0.172.0563.11 50032.19–0.122.2782.39 100032.34–0.162.3195.59 200032.86–0.142.33104.87 300033.10–0.142.32111.03 392438.95–0.192.32104.07 C4-0745.03°E65.35°S3501523.170.020.261.2443.83 2522.650.010.691.6447.13 5034.440.100.882.1655.24 7529.950.130.662.2255.96 10030.000.140.392.2155.74 15030.37–0.182.2560.41 20029.96–0.182.1565.13 30031.91–0.142.3381.85 50031.56–0.222.0687.29 100027.290.020.142.1380.53 200032.21–0.222.27100.48 300032.40–0.142.33106.31 348238.87–0.342.31107.15 C4-0945.00°E66.01°S3319517.110.020.891.2144.18 2533.730.050.962.1153.25 5037.110.100.502.2454.74 7530.390.040.282.2055.29 10030.430.010.162.2055.06 15031.75–0.262.2458.66 20037.80–0.402.3470.52 30032.03–0.302.3780.68 50031.13–0.232.2185.47 100031.37–0.212.3398.97 200032.56–0.302.36106.92 324637.64–0.342.34107.30 C4-1044.99°E66.35°S2573519.650.020.240.9645.35 2519.160.010.531.4830.83 5034.650.080.962.2458.10 7529.610.050.421.9133.34 10030.020.060.282.2862.74 15031.07–0.162.3373.84 20031.40–0.182.3478.79 C4-1244.47°E67.14°S1174519.450.030.321.4445.28 2521.530.020.621.6547.01 5026.820.050.691.9539.90 7529.360.050.232.1955.14 10029.380.030.172.1755.04

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 15029.92–0.212.1854.55 20024.56–0.181.9244.45 30029.74–0.132.2356.17 50030.83–0.162.2677.16 C2’-0634.01°E65.17°S1588524.480.020.331.2343.47 2519.68–0.431.4247.57 5029.520.021.172.1856.97 7535.000.070.402.2357.70 10031.830.060.232.3061.13 15032.31–0.152.4267.49 20032.69–0.112.3769.85 30032.81–0.122.2479.59 50032.49–0.122.3583.98 100033.37–0.272.40101.65 157841.830.010.252.40108.27 C2’-0833.98°E65.56°S3276520.350.030.361.4149.43 2522.460.010.751.6250.86 5038.020.031.542.3562.14 7533.120.060.392.3464.74 10041.360.080.652.3264.52 15043.370.020.292.3468.01 20032.08–0.512.3876.39 30031.15–0.352.3482.14 50030.53–0.352.3188.27 100030.06–0.242.1996.52 200030.94–0.292.37107.87 326437.53–0.452.36107.01 C2’-0933.72°E66.01°S1194525.540.040.251.2346.95 2521.490.020.481.4949.37 5041.730.061.472.2560.30 7530.930.050.742.2863.94 10031.520.040.222.3065.11 15031.82–0.212.3465.63 20031.58–0.182.3070.68 30029.44–0.071.9444.85 50032.23–0.122.3287.13 100032.80–0.152.37102.04 119438.22–0.262.2199.68 C2’-1133.71°E66.67°S1256518.150.020.411.3246.97 2515.7400.751.4937.71 5025.250.040.992.1251.00 7529.100.040.372.1651.55 10038.690.070.292.2862.04 15031.46–0.222.3064.34

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 20031.50–0.212.3469.50 30028.96–0.182.2371.45 50031.77–0.182.3388.60 112038.40–0.242.35105.07 C2’-1333.72°E?67.33°S1308524.730.060.571.8054.03 2526.600.060.581.8855.11 5025.210.050.502.0151.33 7539.300.100.292.1956.47 10023.550.010.232.1149.55 15030.43–0.152.2664.68 20030.65–0.192.2767.92 30030.73–0.142.3378.24 50031.00–0.172.3586.26 100030.64–0.212.3398.55 130028.18–0.252.0884.39

    Note: “–” means below the detection limit. Parallel samples (see Table 1 for detailed information) were presented with mean values.

    Figure S1 The horizontal distribution of the mixed layer depth (MLD)in the Cosmonaut Sea from this study (a) and BROKE-West survey (b, 22 stations between 30°E and 60°E were selected) (Westwood et al., 2010).

    Figure S2 The concentrations of nitrate (NO3-N) in the Cosmonaut Sea of the whole water depth.

    Figure S3 The concentrations of nitrite (NO2-N) in the Cosmonaut Sea above 200 m (the concentrations of NO2-N below 200 m were lower than the detection limits and therefore were not shown here) and the bottom layer.

    Figure S4 The concentrations of ammonium (NH4-N)in the Cosmonaut Sea of the whole water depth.

    Figure S5 The concentrations of phosphate (PO4-P) in the Cosmonaut Sea of the whole water depth.

    Figure S6 The concentrations of silicate (SiO3-Si) in the Cosmonaut Sea of the whole water depth.

    10.13679/j.advps.2022.0099

    11 March 2022;

    13 September 2022;

    30 September 2022

    : Huang W H, Yang X F, Zhao J, et al. Dissolved nutrient distributions in the Antarctic Cosmonaut Sea in austral summer 2021. Adv Polar Sci, 2022(3): 267-290,doi:10.13679/j.advps.2022.0099

    , ORCID: 0000-0001-6592-3365, E-mail: jzhao@sio.org.cn

    国产乱人视频| 国产成人福利小说| 日韩欧美三级三区| 亚州av有码| 精品久久国产蜜桃| 深爱激情五月婷婷| 一夜夜www| av在线天堂中文字幕| 亚洲自偷自拍三级| 草草在线视频免费看| 成人三级黄色视频| 亚洲自拍偷在线| 日日啪夜夜撸| 国产精品98久久久久久宅男小说| 天堂影院成人在线观看| 欧美极品一区二区三区四区| 麻豆av噜噜一区二区三区| 嫩草影院入口| 九色成人免费人妻av| 国产精品日韩av在线免费观看| 无遮挡黄片免费观看| 伦理电影大哥的女人| av在线亚洲专区| 亚洲欧美激情综合另类| 国产欧美日韩一区二区精品| 国产欧美日韩一区二区精品| 18禁黄网站禁片午夜丰满| 亚洲av第一区精品v没综合| 亚洲自偷自拍三级| 午夜福利18| 欧美激情国产日韩精品一区| 联通29元200g的流量卡| 午夜福利成人在线免费观看| 久久久久性生活片| x7x7x7水蜜桃| 99精品久久久久人妻精品| 女人十人毛片免费观看3o分钟| 美女黄网站色视频| 亚洲欧美日韩无卡精品| 深夜a级毛片| 精品人妻1区二区| 精品久久久久久久久亚洲 | 搡老岳熟女国产| 日韩中字成人| 久久精品国产亚洲av香蕉五月| 亚洲综合色惰| 成人毛片a级毛片在线播放| 看十八女毛片水多多多| 国产激情偷乱视频一区二区| 欧洲精品卡2卡3卡4卡5卡区| 国产高清有码在线观看视频| 国产精品国产高清国产av| 国国产精品蜜臀av免费| 可以在线观看毛片的网站| 色综合站精品国产| 尾随美女入室| 99精品久久久久人妻精品| 简卡轻食公司| 国内精品美女久久久久久| 老司机午夜福利在线观看视频| 久久婷婷人人爽人人干人人爱| 国产又黄又爽又无遮挡在线| АⅤ资源中文在线天堂| 99热精品在线国产| 成人av在线播放网站| 男女之事视频高清在线观看| 亚洲国产欧洲综合997久久,| 久久中文看片网| 一级a爱片免费观看的视频| 2021天堂中文幕一二区在线观| 亚洲美女黄片视频| 亚洲美女视频黄频| 88av欧美| 日本精品一区二区三区蜜桃| 国产男靠女视频免费网站| 永久网站在线| 国产精品一区二区免费欧美| 天堂网av新在线| 国产精品野战在线观看| 欧美高清成人免费视频www| 国产精品嫩草影院av在线观看 | 成年女人毛片免费观看观看9| 精品人妻一区二区三区麻豆 | 久久久久国内视频| 九色成人免费人妻av| 搡老妇女老女人老熟妇| 国产淫片久久久久久久久| 精品一区二区三区视频在线| 国产淫片久久久久久久久| 国产视频内射| 日本黄色片子视频| 啪啪无遮挡十八禁网站| 99久久精品国产国产毛片| 国产成人影院久久av| 韩国av在线不卡| 国产久久久一区二区三区| 国产久久久一区二区三区| 日韩欧美在线乱码| 欧美日韩综合久久久久久 | 五月玫瑰六月丁香| 乱人视频在线观看| 哪里可以看免费的av片| 一个人免费在线观看电影| 久久九九热精品免费| 99在线视频只有这里精品首页| 久久久精品欧美日韩精品| 99国产极品粉嫩在线观看| 男女做爰动态图高潮gif福利片| 长腿黑丝高跟| 男人舔女人下体高潮全视频| 床上黄色一级片| 噜噜噜噜噜久久久久久91| 色播亚洲综合网| 国产v大片淫在线免费观看| 99热这里只有是精品50| 内射极品少妇av片p| 精品一区二区三区视频在线观看免费| 国产 一区精品| 国产精品av视频在线免费观看| 国产不卡一卡二| 看黄色毛片网站| 日韩精品中文字幕看吧| 国产午夜福利久久久久久| 久久欧美精品欧美久久欧美| 久久久久久久午夜电影| 国产一区二区亚洲精品在线观看| 亚洲av美国av| 久久精品国产自在天天线| 日韩人妻高清精品专区| 久久久久免费精品人妻一区二区| 国产在线精品亚洲第一网站| 国产白丝娇喘喷水9色精品| 老司机福利观看| 国产精品爽爽va在线观看网站| 大又大粗又爽又黄少妇毛片口| 国产成人aa在线观看| 日日干狠狠操夜夜爽| 桃色一区二区三区在线观看| 亚洲午夜理论影院| 久久精品人妻少妇| 综合色av麻豆| 亚洲四区av| 欧美3d第一页| 又黄又爽又刺激的免费视频.| 午夜亚洲福利在线播放| 国产精品日韩av在线免费观看| 桃红色精品国产亚洲av| 国产亚洲欧美98| 中文字幕久久专区| 少妇高潮的动态图| 少妇高潮的动态图| 国产v大片淫在线免费观看| 麻豆一二三区av精品| 成人国产一区最新在线观看| 国产高清视频在线观看网站| 欧美成人性av电影在线观看| 国产麻豆成人av免费视频| 欧洲精品卡2卡3卡4卡5卡区| 国产av麻豆久久久久久久| 99精品在免费线老司机午夜| 日韩高清综合在线| 欧美成人a在线观看| 久久久久九九精品影院| 亚洲真实伦在线观看| 我的老师免费观看完整版| 精品人妻1区二区| 男女做爰动态图高潮gif福利片| 亚州av有码| 亚洲内射少妇av| 欧美区成人在线视频| 日韩精品有码人妻一区| 99在线人妻在线中文字幕| 一区二区三区四区激情视频 | 欧美激情久久久久久爽电影| 91午夜精品亚洲一区二区三区 | 成人鲁丝片一二三区免费| 国产探花在线观看一区二区| 亚洲经典国产精华液单| 亚洲自拍偷在线| 波多野结衣高清作品| 久久亚洲真实| 免费看av在线观看网站| 中文字幕av在线有码专区| 免费在线观看影片大全网站| 亚洲av第一区精品v没综合| 精品久久久久久久久久久久久| 永久网站在线| 亚洲无线在线观看| 免费看日本二区| 两性午夜刺激爽爽歪歪视频在线观看| 精品午夜福利在线看| 可以在线观看的亚洲视频| 国产午夜精品论理片| 男女下面进入的视频免费午夜| 亚洲欧美清纯卡通| 国产午夜精品论理片| 五月伊人婷婷丁香| 简卡轻食公司| 亚洲色图av天堂| 88av欧美| 欧美日韩亚洲国产一区二区在线观看| 亚洲第一区二区三区不卡| 国产精品爽爽va在线观看网站| 欧美极品一区二区三区四区| 嫩草影视91久久| 亚洲av熟女| 国产高清三级在线| 精品久久久久久久久亚洲 | 日日啪夜夜撸| 午夜福利视频1000在线观看| 亚洲,欧美,日韩| 香蕉av资源在线| 18禁黄网站禁片午夜丰满| 成人高潮视频无遮挡免费网站| 久久久久久伊人网av| 亚洲四区av| 国产成人a区在线观看| 小说图片视频综合网站| 少妇丰满av| 少妇猛男粗大的猛烈进出视频 | 午夜福利18| 观看美女的网站| 亚洲久久久久久中文字幕| 一区二区三区激情视频| 十八禁网站免费在线| 99在线视频只有这里精品首页| 成人精品一区二区免费| 大型黄色视频在线免费观看| АⅤ资源中文在线天堂| 国产欧美日韩一区二区精品| 欧美丝袜亚洲另类 | 69人妻影院| 97热精品久久久久久| 国产aⅴ精品一区二区三区波| 永久网站在线| 国产精品,欧美在线| 午夜福利在线观看吧| 高清在线国产一区| 亚洲电影在线观看av| 久久亚洲精品不卡| 欧美性猛交╳xxx乱大交人| 午夜激情福利司机影院| 免费在线观看日本一区| 欧美精品啪啪一区二区三区| 精品国产三级普通话版| 国产高清有码在线观看视频| 欧美成人a在线观看| 久久久久国内视频| 色哟哟·www| 久久九九热精品免费| 99热这里只有是精品50| 悠悠久久av| 亚洲av免费在线观看| 春色校园在线视频观看| 婷婷丁香在线五月| 韩国av一区二区三区四区| 久久香蕉精品热| 久久精品国产清高在天天线| 性插视频无遮挡在线免费观看| 人妻久久中文字幕网| 少妇熟女aⅴ在线视频| 国产精品av视频在线免费观看| 欧美日本视频| 久久中文看片网| 狂野欧美激情性xxxx在线观看| 国产成人av教育| 99精品在免费线老司机午夜| 国产精品无大码| 免费人成视频x8x8入口观看| 美女高潮的动态| a级一级毛片免费在线观看| 国产老妇女一区| 国产精品国产三级国产av玫瑰| 亚洲av第一区精品v没综合| 在线免费十八禁| 如何舔出高潮| 国产黄色小视频在线观看| 亚洲人成伊人成综合网2020| 午夜日韩欧美国产| 国产白丝娇喘喷水9色精品| 色5月婷婷丁香| 丰满的人妻完整版| 别揉我奶头~嗯~啊~动态视频| 91在线观看av| 五月伊人婷婷丁香| 最后的刺客免费高清国语| 中文字幕人妻熟人妻熟丝袜美| 欧美不卡视频在线免费观看| 精品人妻偷拍中文字幕| 天堂动漫精品| 最近在线观看免费完整版| 精品国内亚洲2022精品成人| 国产免费一级a男人的天堂| 床上黄色一级片| 99热6这里只有精品| 亚洲性久久影院| 午夜影院日韩av| 亚洲无线在线观看| 在线看三级毛片| 18+在线观看网站| 欧美又色又爽又黄视频| 乱人视频在线观看| 久久久国产成人精品二区| 亚洲最大成人中文| 99久久精品热视频| 国产精品久久视频播放| 日韩,欧美,国产一区二区三区 | 桃色一区二区三区在线观看| 成人国产一区最新在线观看| 在线免费十八禁| 国产高清不卡午夜福利| 69人妻影院| 国产伦精品一区二区三区四那| 丰满的人妻完整版| 亚洲国产精品久久男人天堂| 搡老岳熟女国产| 很黄的视频免费| 12—13女人毛片做爰片一| 欧美激情在线99| 尾随美女入室| 久久久久久国产a免费观看| 真实男女啪啪啪动态图| 久久久成人免费电影| 国产单亲对白刺激| 亚洲真实伦在线观看| 亚洲国产色片| 三级国产精品欧美在线观看| videossex国产| 成人高潮视频无遮挡免费网站| 色哟哟·www| 国产在线精品亚洲第一网站| 国产高清激情床上av| 国产亚洲欧美98| 国产女主播在线喷水免费视频网站 | 久久香蕉精品热| av视频在线观看入口| 国产欧美日韩精品一区二区| 天堂动漫精品| 欧美一级a爱片免费观看看| 成人国产麻豆网| 男人狂女人下面高潮的视频| 国产三级在线视频| 成年免费大片在线观看| 亚洲精品一区av在线观看| 欧美激情国产日韩精品一区| 亚洲狠狠婷婷综合久久图片| 别揉我奶头~嗯~啊~动态视频| 成人美女网站在线观看视频| 亚洲经典国产精华液单| 国产精品乱码一区二三区的特点| 午夜a级毛片| 国产精品久久久久久av不卡| 国产在线精品亚洲第一网站| 人人妻人人澡欧美一区二区| 免费搜索国产男女视频| 级片在线观看| 日韩人妻高清精品专区| 黄色视频,在线免费观看| 中文字幕免费在线视频6| 国产亚洲精品久久久久久毛片| 久久精品影院6| 欧美色视频一区免费| 老司机福利观看| 一级黄片播放器| 成人欧美大片| 欧美又色又爽又黄视频| 小说图片视频综合网站| 22中文网久久字幕| 99在线人妻在线中文字幕| 两人在一起打扑克的视频| 联通29元200g的流量卡| av黄色大香蕉| 在线观看66精品国产| 久久亚洲精品不卡| 国模一区二区三区四区视频| 99热精品在线国产| 婷婷色综合大香蕉| 亚洲av免费高清在线观看| 韩国av一区二区三区四区| 久久久成人免费电影| 午夜激情欧美在线| 看十八女毛片水多多多| 丰满乱子伦码专区| 亚洲精品乱码久久久v下载方式| 成人av一区二区三区在线看| 在线观看美女被高潮喷水网站| 黄色丝袜av网址大全| 男女啪啪激烈高潮av片| 免费人成视频x8x8入口观看| 成人一区二区视频在线观看| 欧美人与善性xxx| 欧美日韩中文字幕国产精品一区二区三区| 看片在线看免费视频| АⅤ资源中文在线天堂| 国产伦精品一区二区三区四那| 九色成人免费人妻av| 亚洲三级黄色毛片| 免费高清视频大片| 日日摸夜夜添夜夜添小说| 免费高清视频大片| 精品久久久久久久人妻蜜臀av| 久久精品综合一区二区三区| 韩国av一区二区三区四区| 国产精品自产拍在线观看55亚洲| 国产精品不卡视频一区二区| 一个人免费在线观看电影| 老司机深夜福利视频在线观看| 少妇裸体淫交视频免费看高清| 国产伦一二天堂av在线观看| 少妇裸体淫交视频免费看高清| 欧美人与善性xxx| 制服丝袜大香蕉在线| 欧美人与善性xxx| 国产黄色小视频在线观看| 成人综合一区亚洲| 久久精品久久久久久噜噜老黄 | 欧美+日韩+精品| 成人三级黄色视频| 国产精华一区二区三区| 国产午夜精品论理片| 99热只有精品国产| 国产单亲对白刺激| 国产高潮美女av| 一区二区三区免费毛片| 91狼人影院| АⅤ资源中文在线天堂| 国产精品久久电影中文字幕| 22中文网久久字幕| videossex国产| 久久久久久久久久成人| 亚洲熟妇中文字幕五十中出| 内地一区二区视频在线| 日韩欧美国产一区二区入口| 性色avwww在线观看| 免费看光身美女| 亚洲国产欧美人成| 又黄又爽又刺激的免费视频.| 免费看a级黄色片| 99热这里只有是精品在线观看| 深夜a级毛片| 欧美日韩亚洲国产一区二区在线观看| www.色视频.com| 男女那种视频在线观看| 亚洲国产欧美人成| 欧美激情国产日韩精品一区| 欧美成人a在线观看| 在线天堂最新版资源| 在现免费观看毛片| 国产精品久久久久久亚洲av鲁大| 91精品国产九色| 国产伦精品一区二区三区视频9| 中文在线观看免费www的网站| 久久久成人免费电影| 日本一本二区三区精品| 琪琪午夜伦伦电影理论片6080| 人人妻人人看人人澡| 超碰av人人做人人爽久久| 日本熟妇午夜| 午夜福利在线观看吧| 国产极品精品免费视频能看的| 能在线免费观看的黄片| 日韩欧美精品v在线| 精品久久久久久成人av| 美女高潮喷水抽搐中文字幕| 国产av麻豆久久久久久久| 国产精品自产拍在线观看55亚洲| 黄色一级大片看看| 一本久久中文字幕| 日本黄色视频三级网站网址| 久久亚洲真实| 国产成人a区在线观看| 真人做人爱边吃奶动态| 精品人妻视频免费看| 久久精品综合一区二区三区| 女同久久另类99精品国产91| 欧美一区二区亚洲| 国产午夜精品论理片| 亚洲国产欧美人成| 亚洲在线自拍视频| 午夜a级毛片| 国产精品久久电影中文字幕| 日韩中字成人| 51国产日韩欧美| .国产精品久久| 18禁在线播放成人免费| 日本三级黄在线观看| av天堂在线播放| 男人和女人高潮做爰伦理| 欧美不卡视频在线免费观看| 国产黄色小视频在线观看| 人人妻人人看人人澡| 久久精品影院6| 真实男女啪啪啪动态图| 一a级毛片在线观看| x7x7x7水蜜桃| 日日啪夜夜撸| 简卡轻食公司| 国内精品美女久久久久久| 性插视频无遮挡在线免费观看| 日韩一区二区视频免费看| 特大巨黑吊av在线直播| 男女啪啪激烈高潮av片| 最近在线观看免费完整版| 亚洲人成网站在线播放欧美日韩| 偷拍熟女少妇极品色| 欧美一级a爱片免费观看看| 一进一出好大好爽视频| 尤物成人国产欧美一区二区三区| 美女免费视频网站| 日本欧美国产在线视频| 日本熟妇午夜| 69av精品久久久久久| 欧美潮喷喷水| 精品一区二区免费观看| 内地一区二区视频在线| 草草在线视频免费看| 亚洲人成网站在线播| 成人三级黄色视频| 成人鲁丝片一二三区免费| 亚洲精品一区av在线观看| 久久精品影院6| 亚洲 国产 在线| 久久九九热精品免费| 女同久久另类99精品国产91| 国产精品久久久久久av不卡| 亚洲,欧美,日韩| 久久久精品欧美日韩精品| 波多野结衣巨乳人妻| 色哟哟·www| 国产精品野战在线观看| 偷拍熟女少妇极品色| netflix在线观看网站| 成年女人永久免费观看视频| 免费在线观看日本一区| 亚洲18禁久久av| 久久久精品大字幕| 亚洲熟妇中文字幕五十中出| 九色国产91popny在线| 国产一区二区在线av高清观看| 国产在线男女| 哪里可以看免费的av片| 午夜视频国产福利| 久久精品综合一区二区三区| 精品久久久久久久久久免费视频| 亚洲国产欧美人成| 在线播放国产精品三级| 日本 av在线| 久久久久久久久大av| 日韩欧美在线二视频| 少妇被粗大猛烈的视频| 夜夜夜夜夜久久久久| 3wmmmm亚洲av在线观看| 亚洲图色成人| 午夜a级毛片| 国产av一区在线观看免费| 国产一区二区三区av在线 | netflix在线观看网站| 露出奶头的视频| 亚洲国产日韩欧美精品在线观看| 狂野欧美激情性xxxx在线观看| 欧美日本视频| 国产黄色小视频在线观看| 少妇熟女aⅴ在线视频| 欧美在线一区亚洲| 国产白丝娇喘喷水9色精品| 国产精品久久视频播放| 欧美区成人在线视频| 免费观看的影片在线观看| 永久网站在线| bbb黄色大片| 欧美日本亚洲视频在线播放| 91精品国产九色| 国产高清激情床上av| 中文在线观看免费www的网站| 亚洲av免费在线观看| 精品国内亚洲2022精品成人| 成人特级av手机在线观看| 亚洲精华国产精华液的使用体验 | 一个人看的www免费观看视频| 色播亚洲综合网| 级片在线观看| 黄色一级大片看看| 欧美成人性av电影在线观看| 国内精品一区二区在线观看| 午夜亚洲福利在线播放| 伦理电影大哥的女人| 99久久无色码亚洲精品果冻| 国产老妇女一区| 亚洲av免费高清在线观看| 国产爱豆传媒在线观看| 国产视频内射| 婷婷色综合大香蕉| 欧美国产日韩亚洲一区| 欧美黑人欧美精品刺激| a级一级毛片免费在线观看| 99九九线精品视频在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 一区二区三区四区激情视频 | 亚洲欧美日韩卡通动漫| 又紧又爽又黄一区二区| 久9热在线精品视频| 亚洲精品在线观看二区| 欧美中文日本在线观看视频| avwww免费| 国产综合懂色| 国产一区二区激情短视频| 欧美日韩国产亚洲二区| 欧美色视频一区免费| 亚洲美女视频黄频| 色5月婷婷丁香| 精品一区二区三区视频在线| 久久精品国产亚洲av香蕉五月| 久久久久免费精品人妻一区二区| 真人一进一出gif抽搐免费| 日本 av在线|