• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dissolved nutrient distributions in the Antarctic Cosmonaut Sea in austral summer 2021

    2022-10-18 13:01:50HUANGWenhaoYANGXufengZHAOJunLIDongPANJianming
    Advances in Polar Science 2022年3期

    HUANG Wenhao, YANG Xufeng, ZHAO Jun*, LI Dong & PAN Jianming

    Dissolved nutrient distributions in the Antarctic Cosmonaut Sea in austral summer 2021

    HUANG Wenhao1,2, YANG Xufeng1,2, ZHAO Jun1,2*, LI Dong1,2& PAN Jianming1,2

    1Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Hangzhou 310012, China;2Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

    Dissolved nutrients are essential to marine productivity and ecosystem structures in the Southern Ocean. The spatial distributions of dissolved nutrients in the Cosmonaut Sea were studied during the 37th Chinese National Antarctic Research Expedition in 2021. The relative standard deviations of the nitrate (NO3-N), nitrite (NO2-N), ammonium (NH4-N), phosphate (PO4-P), and silicate (SiO3-Si) concentrations found in duplicate samples (=2) were 1.01%, 9.04%, 6.45%, 0.94%, and 0.67%, respectively. The mean NO3-N, NO2-N, NH4-N, PO4-P, and SiO3-Si concentrations in the mixed layer were 26.41±4.13, 0.15±0.09, 0.51±0.22, 1.73±0.23, and 41.48±6.94 μmol·L?1, respectively, and were higher than the relevant limitation concentrations. The concentrations were generally bounded horizontally by the Southern Boundary (SB) of the Antarctic Circumpolar Current, the NO3-N, NO2-N, NH4-N, and PO4-P concentrations being higher northeast than southwest of the SB but the SiO3-Si concentrations being higher southwest than northeast, indicating that the SB dominates nutrient distributions in the mixed layer. The NO3-N, NH4-N, and PO4-P concentrations gradually increased moving vertically down from the mixed layer to 200 m deep and then remained at 33.73±3.51, 0.26±0.13, and 2.28±0.10 μmol·L?1, respectively, to the bottom. The SiO3-Si concentration increased as depth increased and reached a maximum in the bottom layer. The NO2-N concentration decreased rapidly as depth increased and was ~0 μmol·L?1at >150 m deep. Circumpolar Deep Water upwelling may cause high nutrient concentrations in shallower layers up to the 100 m layer between 62.5°S and 64°S.

    dissolved nutrients, water masses, mixed layer, circulation, Antarctic, Cosmonaut Sea

    1 Introduction

    Dissolved nutrients are required for the growth of phytoplankton (i.e., primary productivity) in the ocean, which is critical to marine ecosystems (Millero, 2013). The Southern Ocean generally has high nutrient and low chlorophyll concentrations (Boyd et al., 2000). The Antarctic marine biological pump is markedly different from the other oceans because of the geographical environment characteristics of Antarctic Ocean (Arrigo et al., 2008). Upwelling of Circumpolar Deep Water (CDW) and Antarctic Intermediate Water off Antarctic coasts provide abundant nutrients near Antarctica (Pollard et al., 2006). An ocean circulation model has indicated that nutrients exported from the Southern Ocean leads to ~75% of primary productivity in the oceans north of 30°S (Weber and Deutsch, 2010). Nutrient supplies and cycles in the Southern Ocean are therefore very important to marine primary productivity across the world.

    The Cosmonaut Sea, which is west of Enderby Land in East Antarctica and borders the Cooperation Sea (to the east) and the Lisser–Larsen Sea (to the west), is an important fishery and component of the Southern Ocean ecosystem (Nicol and Foster, 2003; Wright et al., 2010). In recent decades, global warming has quadrupled the rate at which Antarctic glaciers are melting (Shepherd et al., 2018) and increased interannual sea ice changes in the Cosmonaut Sea (Geddes and Moore, 2007). These changes may cause fluctuations in the availability of light, the mixed layer depth (MLD), and the concentration of bioavailable iron, which may affect nutrient cycles and the ecosystem of the Cosmonaut Sea. A systematic multi-disciplinary study called the BROKE-West survey was performed in the austral summer of 2006. In that study, interactions between nutrient cycling and circulation, light, trace elements, and plankton in the Cosmonaut Sea and adjacent seas were investigated (Westwood et al., 2010; Williams et al., 2010; Wright et al., 2010). Since then, however, few spatial and temporal studies of dissolved nutrients and their effects on primary productivity and ecosystem structures in the Cosmonaut Sea have been performed. More research into the distributions of dissolved nutrients in the Cosmonaut Sea is required to improve our understanding of marine ecosystems and changes in these ecosystems.

    In this study, we present the concentrations and distributions of dissolved nutrients detailly in the Cosmonaut Sea in austral summer 2021, collected during the 37th Chinese National Antarctic Research Expedition (CHINARE). The data under high-quality control updated nutrient data set in the Southern Ocean. This study would provide an important reference for further study on nutrient dynamics and the ecosystem in the Cosmonaut Sea.

    2 Materials and methods

    2.1 Oceanography

    Water masses and circulation are key to dissolved nutrient distributions in the Cosmonaut Sea. The CDW and three important surface/subsurface circulations (the Weddell Gyre (WG), the Southern Boundary (SB) of the Antarctic Circumpolar Current, and the Antarctic Slope Current (ASC)) affect the Cosmonaut Sea (Figure 1). CDW and Antarctic surface water above it are the main water masses in the top 250 m of the water column (Orsi et al., 1995). Strong CDW intrusion can cause local increases in dissolved nutrient concentrations (Meijers et al., 2010). The WG (the dominant circulation in the western part of 40°E in the Cousmonaut Sea) causes the seasonal mixed layer to be shallower, warmer, and fresher in the western than eastern research region (Williams et al., 2010). East of the WG, the SB extends southeastwards, reaching 65.5°S and 60°E, and is a key factor leading to high nitrate concentrations in the northeastern part of the Cosmonaut Sea (Westwood et al., 2010). The ASC, which is a robust narrow westward flowing jet, has flow rates as high as 30 cm·s?1and causes high chlorophyllconcentrations along the shore (Meijers et al., 2010).

    Figure 1 Stations at which samples were collected to determine dissolved nutrient concentrations in the austral summer between 5 and 25 January 2021 as a part of the 37th CHINARE. The green triangles indicate areas with strong upwelling. The solid orange line indicates the southern boundary of the Antarctic Circumpolar Current (SB), the solid blue line indicates the Weddell Gyre (WG), and the solid purple line indicates the Antarctic Slope Current (ASC) (Westwood et al., 2010; Williams et al., 2010).

    2.2 Sample collection

    Hydrological parameters (potential temperature, salinity, and potential density) were determined and recorded using a pre-calibrated Sea-Bird SBE-9/11 plus CTD (conductivity- temperature-depth) system (SeaBird, USA). A total of 419 water samples, including 28 parallel samples from 33 stations on six transects (C2’, C4, C5, C5/6, C6, and C7), were collected from the Cosmonaut Sea by the R/Vbetween 5 and 25 January 2021 as part of the 37th CHINARE. The sampling depths were widely accepted standard water layer sampling depths (the surface layer (i.e., 5 m in Table 1 and Table S1), depths of 25, 50, 75, 100, 150, 200, 300, 500, 1000, 2000 and 3000 m, and the bottom layer) (Figure 1 and Table S1). Each water sample was passed through a Whatman cellulose acetate filter membrane with 0.45 μm pores (Whatman, USA). The filtrate was collected in a clean Nalgene polyethylene bottle (HDPE, Nalgene, USA) and stored at ?20℃.

    2.3 Experimental methods

    The ammonium (NH4-N) concentrations in the samples were determined onboard the research vessel using the indophenol blue photometric method using a calibrated 7230G visible light spectrophotometer (INESA, China). The analytical procedure is described in detail in “Specifications for the oceanographic survey – Part 4: Survey of chemical parameters in sea water”(GB/T 12763.4—2007) (General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of China, 2007). The nitrate (NO3-N), nitrite (NO2-N), phosphate (PO4-P), and silicate (SiO3-Si) concentrations were determined onboard the research vessel using the cadmium copper column reduction diazo method, the diazo azo method, the phosphomolybdenum blue method, and the silicon-molybdenum blue method, respectively, using an AA3 automatic nutrient analyzer (SEAL, Germany). The analytical procedures are described in the “Code of practice for marine monitoring technology Part 1: seawater” (HY/T 147.1—2013) (State Oceanic Administration, 2013). Artificial seawater with a similar salinity to the samples was used to prepare the standards and to clean the injector to prevent differences in salinity affecting the results. The concentrations of various dissolved nutrients in the seawater samples were calculated from the linear relationships between the light absorption values and nutrient concentrations for the standards. Natural seawater samples containing NO3-N, NO2-N, NH4-N, PO4-P, and SiO3-Si at concentrations of 2.25, 0.42, 1.30, 2.88, and 18.54 μmol·L?1, respectively, were determined, and the relative standard deviations (RSDs) were 2.4%, 2.6%, 1.2%, 5.2% and 6.4%, respectively. Duplicate samples were collected from one layer at each station and used as quality control samples (Table 1). The standard solutions (GBW 08617-08645) used were produced by the Marine Reference Material Center, Second Institute of Oceanography, Ministry of Natural Resources of China.

    2.4 Calculating the MLD

    The potential seawater density (, in kg·m?3) was calculated from the potential temperature, salinity, and pressure data collected. The MLD for the water column was calculated from the depth of the maximum water column buoyancy frequency (2, in rad2·s?2) (Carvalho et al., 2016) using Eq. (1),

    whereandare gravity and water depth, respectively.

    2.5 Statistical analysis

    Two-tailed tests of significance were performed using SPSS 25 software (IBM, USA) to identify significant relationships between the measured parameters.

    3 Results and discussion

    3.1 Parallel sample analyses

    The RSDs for the NO3-N, NO2-N, NH4-N, PO4-P, and SiO3-Si concentrations found in the samples from the parallel sample stations were 0.08%–3.23%, 0%–47.14%, 0%–17.31%, 0%–4.31%, and 0.01%–5.79%, respectively, and the mean concentrations were 1.01%, 9.04%, 6.45%, 0.94%, and 0.67%, respectively, as shown in Table 1. The RSDs for most of the samples were better than the acceptable thresholds for the analytical methods. Some of the RSDs, particularly for the NO2-N and NH4-N concentrations, were poor because of their low concentrations. The results for the parallel samples generally indicated that the dataset was reliable.

    3.2 Horizontal dissolved nutrient distributions

    The mean NO3-N, PO4-P, and SiO3-Si concentrations in the surface layer samples were 25.84±3.31, 1.66±0.27, and 41.63±6.62 μmol·L?1, respectively, which were higher than the relevant nutrient limits (15, 0.1, and 5 μmol·L?1, respectively) (Justi? et al., 1995; Franck et al., 2000). The mean NO2-N and NH4-N concentrations were 0.15±0.09 and 0.49±0.22 μmol·L?1, respectively. The NO3-N, NO2-N, NH4-N, and PO4-P concentrations in surface water generally decreased from the northeast to the southwest of the SB (Figure 2, see Figure 1 for the location of the SB). The highest NO3-N, NO2-N, NH4-N, and PO4-P concentrations were 30.17 μmol·L?1(C5-06), 0.29 μmol·L?1(C4-02), 1.37 μmol·L?1(C5-03) and 1.96 μmol·L?1(C5-05 and C5-06), respectively, which were all found at northeast of the SB. The lowest NO3-N, NO2-N, NH4-N, and PO4-P concentrations were 17.11 μmol·L?1(C4-09), 0.02 μmol·L?1(C4-07, C4-09 and C4-10), 0.22 μmol·L?1(C5’-08), and 0.96 μmol·L?1(C4-10), respectively, which were located at southwest of the SB. The SiO3-Si concentrations in the surface water samples had the opposite distribution: lower in the northeast side of SB and higher in the southwest side of SB. The highest SiO3-Si concentration (54.03 μmol·L?1) was found at station C2’-13 and the lowest SiO3-Si concentration (24.63 μmol·L?1) was found at station C7-03 (Table S1).

    Table 1 Concentrations, mean concentrations, and relative standard deviations (RSD) of dissolved nutrients in the samples from the 28 parallel sample stations

    The MLDs in the study area ranged from 14 m at station C4-09 to 85 m at station C5’-08, and the mean MLD was 37±17 m, which was similar to the MLD found in the BROKE-West survey (MLD 26±15 m,>0.05) (Figure S1). The low MLD between 30°E and 60°E may have been caused by the WG . The NO3-N, NO2-N, NH4-N, PO4-P, and SiO3-Si concentrations in the mixed layer were 26.41±4.13 (15.74–39.76), 0.15±0.09 (0–0.29), 0.51±0.22 (0.18–1.37), 1.73±0.23 (1.01–1.99), and 41.48±6.94 (22.87–55.11) μmol·L?1, respectively. Similar NO3-N and SiO3-Si concentrations (25.9±2.5 and 48.0±8.8 μmol·L?1, respectively) were found in the BROKE-West survey (Westwood et al., 2010), indicating that little interannual variation in dissolved nutrient concentrations occur in the mixed layer in the Cosmonaut Sea.

    The mean NO3-N, PO4-P, and SiO3-Si concentrations in the 200 m layer (33.23±2.50, 2.30±0.13, and 69.36± 9.80 μmol·L?1, respectively) were higher than the concentrations in the surface layer, but the mean NO2-N and NH4-N concentrations (0 and 0.25±0.14 μmol·L?1, respectively) were lower than the concentrations in the surface layer. The horizontal NO3-N, PO4-P, and SiO3-Si concentration distributions in the 200 m layer and surface layer were similar, indicating that circulation strongly affects the distributions of NO3-N, PO4-P, and SiO3-Si in the euphotic zone. The NO2-N concentrations were below the detection limit, and there was no clear trend in the NH4-N concentration distribution.

    The mean NO3-N, NO2-N, NH4-N, and PO4-P concentrations in the bottom water were 38.46±4.66, 0±0.01, 0.34±0.14, and 2.26±0.09 μmol·L?1, respectively, which were not significantly different from the concentrations in the 200 m layer (>0.05). The SiO3-Si concentration in the bottom water was 99.70± 14.20 μmol·L?1, which was significantly higher than the concentration in the 200 m layer (<0.01). The NO3-N concentrations in the bottom water were generally higher near the shore and lower in the open ocean, unlike the concentrations in the surface layer. Significantly lower PO4-P and SiO3-Si concentrations and higher NO2-N concentrations were found in the ice-edge region between 55°E and 60°E than elsewhere.

    Figure 2 Horizontal distributions of dissolved nutrients (NO3-N, NO2-N, NH4-N, PO4-P, and SiO3-Si) in the surface layer, at the bottom of the euphotic zone (200 m layer), and in the bottom layer of the Cosmonaut Sea (units: μmol·L?1).

    3.3 Vertical dissolved nutrient distributions

    The vertical NO3-N and PO4-P concentration distributions were similar (Figures 3 and 6), the concentrations gradually increasing moving down from the surface layer to the 200 m layer and then remaining stable at >200 m. The NO2-N concentration decreased rapidly as depth increased and was ~0 μmol·L?1at >150 m deep (Figure 4). The maximum NH4-N concentration was generally reached at75–200 m deep, then the concentration decreased slightly as depth increased and then remained stable as the depth increased further (Figure 5). The NO3-N, NO2-N, NH4-N, and PO4-P concentrations at >200 m deep were 33.73±3.51, 0±0.01, 0.26±0.13, and 2.28±0.10 μmol·L?1, respectively. In contrast, the SiO3-Si concentration increased as depth increased and was highest in the bottom layer (Figure 7), the concentrations being 78.46±12.67 μmol·L?1at 200– 1000 m deep and 100.40±10.59 μmol·L?1at >1000 m deep. Along transects C4 and C5, the NO3-N, NH4-N, PO4-P, and SiO3-Si concentrations near the 100 m layer were all higher between 62.5°S and 64°S than further south. This may have been because large inputs of dissolved nutrients caused by CDW upwelling (Meijers et al., 2010) affected the nutrient concentration distributions.

    Figure 3 Vertical nitrate (NO3-N) distribution along transect C2’ (a), transect C4 (b), transect C5 (c), and transect C7 (d) in the Cosmonaut Sea.

    Figure 4 Vertical nitrite (NO2-N) distribution along transect C2’ (a), transect C4 (b), transect C5 (c), and transect C7 (d) in the Cosmonaut Sea.

    Figure 5 Vertical ammonium (NH4-N) distribution along transect C2’ (a), transect C4 (b), transect C5 (c), and transect C7 (d) in the Cosmonaut Sea.

    Figure 6 Vertical phosphate (PO4-P) distribution along transect C2’ (a), transect C4 (b), transect C5 (c), and transect C7 (d) in the Cosmonaut Sea.

    4 Summary

    We investigated the spatial characteristics of dissolved nutrient concentrations in the Cosmonaut Sea during the 37th CHINARE in the austral summer of 2021. The sample analyses gave good quality data, and the RSDs for the NO3-N, NO2-N, NH4-N, PO4-P, and SiO3-Si concentrations found in duplicate samples (=2) were better than required. The horizontal NO3-N, NO2-N, NH4-N, and PO4-P concentration distributions in the mixed layer were similar, increasing gradually from southwest to northeast of the SB. The SiO3-Si concentration distribution followed the opposite trend. This indicated that circulation strongly affected the nutrient distributions in the mixed layer. The NO3-N and PO4-P concentrations gradually increased moving down from the surface to 200 m deep and then remained stable moving further down. The NO2-N concentration decreased rapidly as depth increased and was ~0 μmol·L?1at >150 m deep. The maximum NH4-N concentration was generally at 75–200 m deep. The SiO3-Si concentration increased as depth increased and reached a maximum in the bottom layer. We found that CDW upwelling locally affects the vertical distributions of dissolved nutrients. The dissolved nutrient concentrations were generally higher than the limiting concentrations throughout the study area, indicating that no macronutrient limitation occurred in the Cosmonaut Sea in the austral summer of 2021, similar to results in the BROKE-West survey. The data will be useful for reference in future studiesof nutrient dynamics and ecosystems in the Cosmonaut Sea.

    Figure 7 Vertical silicate (SiO3-Si) distribution along transect C2’ (a), transect C4 (b), transect C5 (c), and transect C7 (d) in the Cosmonaut Sea.

    The authors wish to thank the 37th CHINARE team members and the crew of R/Vfor helping collect samples and Dr. Yubing Feng for helping calculate MLDs. The study was financially supported by National Polar Special Program “Impact and Response of Antarctic Seas to Climate Change” (Grant nos. IRASCC 01-01-02A, IRASCC 02-02) and by the National Natural Science Foundation of China (NSFC) (Grant no. 41976228).

    Arrigo K, van Dijken G, Bushinsky S. 2008. Primary production in the Southern Ocean, 1997-2006. J Geophys Res Oceans, 113(C8): C08004, doi:10.1029/2007JC004551.

    Boyd P W, Watson A J, Law C S, et al. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407(6805): 695-702, doi:10.1038/35037500.

    Carvalho F, Kohut J, Oliver M J, et al. 2016. Mixing and phytoplankton dynamics in a submarine canyon in the West Antarctic Peninsula. J Geophys Res Oceans, 121(7): 5069-5083, doi:10.1002/2016JC01 1650.

    Chen J Y, Han Z B, Hu C Y, et al. 2017. Distribution and seasonal depletion of nutrients in Prydz Bay, Antarctica. Chin J Polar Res, 29(3): 327-337, doi:10.13679/j.jdyj.2017.3.327 (in Chinese with English abstract).

    Franck V M, Brzezinski M A, Coale K H, et al. 2000. Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr, 47(15-16): 3315-3338, doi:10.1016/S0967- 0645(00)00070-9.

    Geddes J A, Moore G W K. 2007. A climatology of sea ice embayments in the Cosmonaut Sea, Antarctica. Geophys Res Lett, 34(2): L02505, doi:10.1029/2006GL027910.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of China. 2007. Specifications for the oceanographic survey – Part 4: Survey of chemical parameters in sea water, GB/T 12763.4—2007 (in Chinese).

    Justi? D, Rabalais N N, Turner R E. 1995. Stoichiometric nutrient balance and origin of coastal eutrophication. Mar Pollut Bull, 30(1): 41-46, doi:10.1016/0025-326X(94)00105-I.

    Meijers A J S, Klocker A, Bindoff N L, et al. 2010. The circulation and water masses of the Antarctic shelf and continental slope between 30 and 80°E. Deep Sea Res Part II Top Stud Oceanogr, 57(9-10): 723-737, doi:10.1016/j.dsr2.2009.04.019.

    Millero F J. 2013. Chemical Oceanography. 4th edition. London: CRC Press.

    Nicol S, Foster J. 2003. Recent trends in the fishery for Antarctic krill. Aquat Living Resour, 16(1): 42-45, doi:10.1016/S0990-7440(03) 00004-4.

    Orsi A H, Whitworth T III, Nowlin W D Jr. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I Oceanogr Res Pap, 42(5): 641-673, doi:10.1016/0967-0637 (95)00021-W.

    Pollard R, Tréguer P, Read J. 2006. Quantifying nutrient supply to the Southern Ocean. J Geophys Res Oceans, 111(C5): C05011, doi:10. 1029/2005JC003076.

    Shepherd A, Fricker H A, Farrell S L. 2018. Trends and connections across the Antarctic cryosphere. Nature, 558(7709): 223-232, doi:10.1038/s 41586-018-0171-6.

    State Oceanic Administration. 2013. Code of practice for marine monitoring technology Part 1: Seawater, HY/T 147.1—2013 (in Chinese).

    Sun W P, Hu C Y, Han Z B, et al. 2012. Distribution of nutrients and chlin Prydz Bay during the austral summer of 2011. Chin J Polar Res, 24(2): 178-186, doi:10.3724/SP.J.1084.2012.00178 (in Chinese with English abstract).

    Tréguer P, Nelson D M, van Bennekom A J, et al. 1995. The silica balance in the world ocean: a reestimate. Science, 268(5209): 375-379, doi:10.1126/science.268.5209.375.

    Weber T S, Deutsch C. 2010. Ocean nutrient ratios governed by plankton biogeography. Nature, 467(7315): 550-554, doi:10.1038/nature09403.

    Westwood K J, Griffiths B F, Meiners K M, et al. 2010. Primary productivity off the Antarctic coast from 30°-80°E; BROKE-West survey, 2006. Deep Sea Res Part II Top Stud Oceanogr, 57(9-10): 794-814, doi:10.1016/j.dsr2.2008.08.020.

    Williams G D, Nicol S, Aoki S, et al. 2010. Surface oceanography of BROKE-West, along the Antarctic margin of the south-west Indian Ocean (30-80°E). Deep Sea Res Part II Top Stud Oceanogr, 57(9-10): 738-757, doi:10.1016/j.dsr2.2009.04.020.

    Wright S W, van den Enden R L, Pearce I, et al. 2010. Phytoplankton community structure and stocks in the Southern Ocean (30-80°E) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Res Part II Top Stud Oceanogr, 57(9-10): 758-778, doi:10.1016/j.dsr2.2009.06.015.

    Text S1 operational quality supervision

    The whole polar field operation and sample analysis follow the operational quality supervision, including human, machine, sample, method, and environment. The “human” means all executors on sampling and analyzing of dissolved nutrients have received professional train for the projects; “machine” means all instruments for sampling and analyzing of dissolved nutrients have been verified and calibrated during the investigation, and all measuring instruments are traceable to their sources using comparison and relevant documents; “sample” means all related processes, including sampling, storage, and transportation of dissolved nutrients, are strictly carried out by relevant provisions; “method” means corresponding rules and regulations are followed during the whole process on sampling and analyzing of dissolved nutrients, including laboratory management regulations, equipment operating procedures, and investigation operation standards and norms; and “environment” means the environment for sampling, analysis and storage of dissolved nutrients are clean and in order.

    Table S1 The concentrations of dissolved nutrients (NO3-N, NO2-N, NH4-N, PO4-P and SiO3-Si) in the Cosmonaut Sea of the whole water depth

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) C7-0659.92°E64.90°S4056528.730.220.451.5128.27 2525.950.200.291.5831.36 5031.440.150.282.1246.02 7533.670.070.432.2155.73 10044.400.020.212.3268.47 15037.26–0.372.1576.31 20035.96–0.232.2377.99 30034.51–0.362.3979.31 50033.59–0.172.2982.21 100033.23–0.212.2390.26 200039.53–0.172.3094.96 C7-0559.95°E64.68°S4179524.860.250.471.5730.37 2527.300.180.531.7036.56 5030.140.150.551.9244.98 7532.360.090.292.1950.78 10035.07–0.402.3963.41 15036.46–0.272.4774.72 20035.55–0.292.4277.48 30035.22–0.242.3579.56 50034.63–0.282.2782.10 100040.15–0.282.2289.77 200034.41–0.352.32102.85 300035.14–0.272.2697.74 415653.980.050.492.2991.96 C7-0460.02°E64.36°S4215527.680.200.711.7839.48 2529.190.160.771.9141.68 5036.420.150.521.9646.59 7532.200.090.402.2154.07 10034.55–0.382.3565.27 15035.87–0.352.4574.95

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 20034.84–0.312.4576.32 30034.80–0.372.3878.96 50032.86–0.402.2579.81 100032.62–0.362.2290.87 200033.97–0.392.33106.88 300034.43–0.402.33105.00 420736.320.010.412.1179.86 C7-0360.08°E64.04°S4359523.290.240.621.4424.63 2525.130.210.721.6326.05 5029.000.170.841.9737.73 7528.630.150.711.9939.65 10030.83–0.632.0948.14 15044.07–0.432.5271.16 20035.59–0.462.5074.38 30034.93–0.362.2077.14 50032.66–0.502.2879.29 100032.29–0.472.2585.85 200033.56–0.532.31103.37 300033.88–0.492.3093.48 434339.60–0.732.3195.36 C7-0259.91°E63.31°S4347524.500.260.551.5526.25 2525.540.240.251.4426.79 5034.610.210.901.9036.58 7527.630.160.351.9740.91 10030.89–0.182.1550.30 15035.56–0.152.4771.82 20035.32–0.172.4775.61 30030.06–0.142.2267.45 50033.07–0.182.2880.34 100032.51–0.152.2588.90 200033.97–0.172.3299.85 300034.31–0.142.34104.19 432640.94–0.172.30110.18 C6-0155.02°E62.67°S4992527.340.230.351.8237.45 2533.170.240.301.7336.64 5027.200.180.261.8436.46 7528.310.170.332.0141.91 10031.520.080.182.2353.93 15035.60–0.142.4971.50 20035.58–0.152.4674.37 30034.72–0.122.4477.67 50032.93–0.122.2780.42 100022.99–0.132.1160.69

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 200033.56–0.152.33106.70 300033.40–0.142.35102.21 400033.79–0.352.33112.40 496238.36–0.162.31124.14 C6-0255.01°E63.35°S4868526.560.220.461.7735.29 2517.890.130.401.4922.87 5027.800.150.451.9640.63 7530.050.170.382.1247.80 10025.960.010.192.0447.18 15032.67–0.222.1964.21 20035.26–0.232.4476.01 30032.40–0.182.3475.47 50033.19–0.142.2781.21 100044.34–0.192.2188.78 200028.99–0.172.1692.70 300034.49–0.252.15102.17 400039.21–0.222.34112.95 485232.61–0.372.2799.04 C6-0354.98°E63.99°S4454526.960.250.591.8640.19 2523.610.190.581.7433.17 5028.170.190.481.8440.00 7531.800.110.342.2155.19 10035.070.020.272.4469.62 15034.41–0.272.3473.50 20035.56–0.282.4078.09 30041.82–0.272.3379.30 50037.58–0.272.2782.93 100032.23–0.312.2293.24 200032.96–0.242.31109.23 300032.09–0.332.19105.11 444435.89–0.312.1888.98 C5/6-0552.60°E64.66°S4079528.630.270.431.9543.82 2529.460.160.251.9446.14 5029.320.160.331.9546.50 7533.070.090.272.2561.54 10033.890.030.182.3270.87 15034.03–0.182.3275.05 20033.57–0.162.2276.25 30027.80–0.152.1067.65 50031.70–0.172.1984.41 100032.53–0.152.2698.61 200030.03–0.592.0487.52 300032.34–0.462.22102.22 404337.320.030.512.0286.93

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) C5/6-0652.50°E65.03°S2999527.590.200.531.8143.66 2529.000.180.401.9144.81 5038.280.150.351.9645.74 7533.070.071.382.1655.15 10026.590.011.532.0044.55 15027.26–1.582.0850.81 20034.00–0.212.2672.98 C5/6-0752.59°E65.36°S2793528.270.180.421.8544.26 2525.640.160.411.6538.96 5029.480.120.461.9446.33 7529.550.080.412.0248.56 10032.660.050.302.1554.72 15032.52–0.192.1655.92 20033.04–0.272.1558.38 30031.25–0.212.1967.50 50033.17–0.262.2382.13 100033.00–0.222.2698.48 200033.27–0.292.25105.55 278339.38–0.362.26105.48 C5/6-0852.48°E65.64°S570528.270.150.551.8544.31 2528.310.140.491.8944.90 5028.680.050.491.9649.08 7532.050.040.402.1354.06 10032.600.020.432.1354.95 15032.55–0.332.1555.77 20030.64–0.292.1054.30 30029.36–0.232.0455.28 51042.02–0.302.2184.90 C5/6-0952.95°E65.60°S456528.180.180.531.8138.84 2524.980.110.601.7839.38 5028.810.050.401.9450.05 7527.390.060.551.9244.42 10032.200.030.872.1353.90 15033.470.021.102.0448.66 20030.81–0.182.1254.45 30030.87–0.182.1464.69 43527.22–0.232.1064.71 C5’-0851.57°E65.65°S1345527.290.090.221.7645.07 2526.880.060.181.7445.11 5028.550.060.721.9348.34 7529.200.060.771.9949.15 10037.400.060.792.0651.44 15030.790.020.632.1453.37

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 20032.08–0.162.1854.83 30028.70–0.122.0852.02 50031.21–0.172.1175.76 100033.49–0.162.2998.95 131435.350.020.232.1482.32 C5-0749.90°E65.34°S2117528.340.130.471.8745.84 2528.740.140.461.8545.52 5029.000.110.501.9446.76 7530.970.060.482.0951.07 10031.680.100.342.2052.64 15031.720.010.212.1653.39 20032.48–0.222.1653.89 30032.45–0.302.1555.66 50027.87–0.222.0965.70 100034.08–0.252.3097.56 209238.41–0.352.2796.53 C5-0649.79°E65.02°S2504530.170.180.361.9646.67 2539.760.220.361.9344.57 5029.280.140.341.9947.46 7532.130.100.262.1552.18 10030.430.080.191.9250.08 15031.08–0.182.0551.24 20032.35–0.172.1854.44 30032.51–0.182.2464.04 50033.06–0.172.2879.76 100033.48–0.182.3093.56 200033.63–0.222.3097.68 250339.77–0.242.2894.82 C5-0550.01°E64.68°S3568529.510.180.591.9647.19 2529.940.180.671.9547.42 5036.270.180.511.9647.49 7531.130.060.552.1050.87 10032.370.080.292.1652.52 15031.94–0.272.1753.18 20033.29–0.252.2159.95 30033.38–0.222.3078.02 50033.64–0.252.2680.77 100033.11–0.182.2990.46 200033.78–0.422.34102.28 300033.99–0.242.3199.62 352041.25–0.422.2993.88 C5-0350.05°E63.99°S4443528.930.201.371.9246.22 2525.780.180.531.8340.92

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 5028.880.191.231.9346.53 7530.800.111.242.0651.68 10032.350.040.462.3356.33 15032.87–0.352.2264.27 20033.26–0.852.2668.80 30033.89–0.532.3176.55 50033.57–0.392.2679.27 100033.08–0.422.2988.46 200033.68–0.452.3397.73 300033.93–0.592.3097.38 400033.220.010.612.1975.28 441739.78–0.702.2693.80 C5-0250.03°E63.33°S4853527.260.210.311.8137.90 2527.540.210.451.8338.28 5029.390.130.481.9943.84 7532.850.130.332.2355.92 10033.62–0.192.3764.80 15035.99–0.142.4674.14 20035.22–0.242.4076.56 30034.99–0.132.3278.62 50034.05–0.132.2381.09 100031.09–0.182.1484.75 200034.96–0.162.34104.35 300034.09–0.142.33109.07 400033.94–0.212.31107.73 483438.84–0.272.21115.29 C5-0150.04°E62.68°S5000527.860.260.591.8337.17 2527.420.250.471.7836.94 5027.630.210.411.8136.37 7535.380.170.441.9039.49 10029.640.180.512.0343.91 15036.530.040.352.4568.93 20035.94–0.142.4074.82 30034.57–0.212.3677.85 50032.95–0.182.2781.64 100032.82–0.152.2689.94 200033.84–0.162.35105.14 300033.79–0.162.36107.81 400034.17–0.162.33109.08 498441.63–0.252.31113.88 C4-0145.07°E62.66°S4749527.160.270.481.8840.90 2527.840.260.461.9141.99 5028.610.180.371.9441.46

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 7536.100.190.372.0745.66 10030.940.170.332.1952.19 15034.66–0.172.4673.58 20034.73–0.182.4578.17 30033.55–0.152.3979.58 50032.43–0.182.3083.98 100032.47–0.162.3296.69 200033.44–0.232.39110.53 300033.32–0.242.39114.32 400033.48–0.242.36114.81 474939.49–0.332.35126.53 C4-0245.04°E63.34°S4595527.530.290.631.9343.54 2527.630.160.541.9243.33 5029.730.150.452.0044.88 7535.750.170.332.0647.89 10035.49–0.372.4675.09 15035.36–0.212.4179.65 20034.32–0.232.3482.01 30030.77–0.182.2883.13 50032.79–0.232.3095.48 100033.31–0.212.37110.31 200033.50–0.212.36114.08 300033.80–0.232.35114.95 C4-0345.02°E64.00°S4425527.440.280.501.8446.21 2527.730.250.581.9245.91 5028.420.130.572.0448.17 7532.920.100.372.3867.15 10034.320.010.392.4776.84 15034.00–0.362.4979.43 20033.77–0.382.4081.59 30033.52–0.362.3282.87 50031.88–0.342.2986.35 100032.10–0.382.3096.12 200032.95–0.382.37111.15 300033.77–0.472.36113.52 441339.16–0.372.33120.09 C4-0545.03°E64.67°S3971525.560.090.231.8046.34 2525.970.090.261.8346.71 5028.950.090.592.1151.65 7521.170.080.331.9735.70 10036.510.070.152.1853.43 15030.89–0.172.2156.87

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 20031.25–0.162.2464.01 30025.89–0.172.0563.11 50032.19–0.122.2782.39 100032.34–0.162.3195.59 200032.86–0.142.33104.87 300033.10–0.142.32111.03 392438.95–0.192.32104.07 C4-0745.03°E65.35°S3501523.170.020.261.2443.83 2522.650.010.691.6447.13 5034.440.100.882.1655.24 7529.950.130.662.2255.96 10030.000.140.392.2155.74 15030.37–0.182.2560.41 20029.96–0.182.1565.13 30031.91–0.142.3381.85 50031.56–0.222.0687.29 100027.290.020.142.1380.53 200032.21–0.222.27100.48 300032.40–0.142.33106.31 348238.87–0.342.31107.15 C4-0945.00°E66.01°S3319517.110.020.891.2144.18 2533.730.050.962.1153.25 5037.110.100.502.2454.74 7530.390.040.282.2055.29 10030.430.010.162.2055.06 15031.75–0.262.2458.66 20037.80–0.402.3470.52 30032.03–0.302.3780.68 50031.13–0.232.2185.47 100031.37–0.212.3398.97 200032.56–0.302.36106.92 324637.64–0.342.34107.30 C4-1044.99°E66.35°S2573519.650.020.240.9645.35 2519.160.010.531.4830.83 5034.650.080.962.2458.10 7529.610.050.421.9133.34 10030.020.060.282.2862.74 15031.07–0.162.3373.84 20031.40–0.182.3478.79 C4-1244.47°E67.14°S1174519.450.030.321.4445.28 2521.530.020.621.6547.01 5026.820.050.691.9539.90 7529.360.050.232.1955.14 10029.380.030.172.1755.04

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 15029.92–0.212.1854.55 20024.56–0.181.9244.45 30029.74–0.132.2356.17 50030.83–0.162.2677.16 C2’-0634.01°E65.17°S1588524.480.020.331.2343.47 2519.68–0.431.4247.57 5029.520.021.172.1856.97 7535.000.070.402.2357.70 10031.830.060.232.3061.13 15032.31–0.152.4267.49 20032.69–0.112.3769.85 30032.81–0.122.2479.59 50032.49–0.122.3583.98 100033.37–0.272.40101.65 157841.830.010.252.40108.27 C2’-0833.98°E65.56°S3276520.350.030.361.4149.43 2522.460.010.751.6250.86 5038.020.031.542.3562.14 7533.120.060.392.3464.74 10041.360.080.652.3264.52 15043.370.020.292.3468.01 20032.08–0.512.3876.39 30031.15–0.352.3482.14 50030.53–0.352.3188.27 100030.06–0.242.1996.52 200030.94–0.292.37107.87 326437.53–0.452.36107.01 C2’-0933.72°E66.01°S1194525.540.040.251.2346.95 2521.490.020.481.4949.37 5041.730.061.472.2560.30 7530.930.050.742.2863.94 10031.520.040.222.3065.11 15031.82–0.212.3465.63 20031.58–0.182.3070.68 30029.44–0.071.9444.85 50032.23–0.122.3287.13 100032.80–0.152.37102.04 119438.22–0.262.2199.68 C2’-1133.71°E66.67°S1256518.150.020.411.3246.97 2515.7400.751.4937.71 5025.250.040.992.1251.00 7529.100.040.372.1651.55 10038.690.070.292.2862.04 15031.46–0.222.3064.34

    Continued

    StationLongitudeLatitudeWater depth/mSample depth/mNO3-N/(μmol·L?1)NO2-N/(μmol·L?1)NH4-N/(μmol·L?1)PO4-P/(μmol·L?1)SiO3-Si/(μmol·L?1) 20031.50–0.212.3469.50 30028.96–0.182.2371.45 50031.77–0.182.3388.60 112038.40–0.242.35105.07 C2’-1333.72°E?67.33°S1308524.730.060.571.8054.03 2526.600.060.581.8855.11 5025.210.050.502.0151.33 7539.300.100.292.1956.47 10023.550.010.232.1149.55 15030.43–0.152.2664.68 20030.65–0.192.2767.92 30030.73–0.142.3378.24 50031.00–0.172.3586.26 100030.64–0.212.3398.55 130028.18–0.252.0884.39

    Note: “–” means below the detection limit. Parallel samples (see Table 1 for detailed information) were presented with mean values.

    Figure S1 The horizontal distribution of the mixed layer depth (MLD)in the Cosmonaut Sea from this study (a) and BROKE-West survey (b, 22 stations between 30°E and 60°E were selected) (Westwood et al., 2010).

    Figure S2 The concentrations of nitrate (NO3-N) in the Cosmonaut Sea of the whole water depth.

    Figure S3 The concentrations of nitrite (NO2-N) in the Cosmonaut Sea above 200 m (the concentrations of NO2-N below 200 m were lower than the detection limits and therefore were not shown here) and the bottom layer.

    Figure S4 The concentrations of ammonium (NH4-N)in the Cosmonaut Sea of the whole water depth.

    Figure S5 The concentrations of phosphate (PO4-P) in the Cosmonaut Sea of the whole water depth.

    Figure S6 The concentrations of silicate (SiO3-Si) in the Cosmonaut Sea of the whole water depth.

    10.13679/j.advps.2022.0099

    11 March 2022;

    13 September 2022;

    30 September 2022

    : Huang W H, Yang X F, Zhao J, et al. Dissolved nutrient distributions in the Antarctic Cosmonaut Sea in austral summer 2021. Adv Polar Sci, 2022(3): 267-290,doi:10.13679/j.advps.2022.0099

    , ORCID: 0000-0001-6592-3365, E-mail: jzhao@sio.org.cn

    欧美3d第一页| 免费在线观看成人毛片| 国产精品国产三级专区第一集| 久久久久久久久久成人| 精品久久久噜噜| 日本一本二区三区精品| 啦啦啦观看免费观看视频高清| 天堂影院成人在线观看| 国产在视频线在精品| 亚洲精品乱码久久久v下载方式| 日韩一区二区三区影片| 一级黄片播放器| 国内精品宾馆在线| 欧美成人a在线观看| 精品久久久久久久末码| 一二三四中文在线观看免费高清| 一级毛片电影观看 | 国产伦精品一区二区三区视频9| 国产精品福利在线免费观看| 国产免费福利视频在线观看| 国产极品精品免费视频能看的| av天堂中文字幕网| 熟女电影av网| 两个人的视频大全免费| 天堂中文最新版在线下载 | 色吧在线观看| 国产精品一及| 大话2 男鬼变身卡| 日产精品乱码卡一卡2卡三| 成人国产麻豆网| 国产成人91sexporn| 纵有疾风起免费观看全集完整版 | 国产69精品久久久久777片| 熟女人妻精品中文字幕| 欧美色视频一区免费| av女优亚洲男人天堂| 成人性生交大片免费视频hd| 久久久国产成人免费| 国产精品一区www在线观看| 精品欧美国产一区二区三| 国产精品熟女久久久久浪| 老司机影院成人| 美女cb高潮喷水在线观看| 国产成人91sexporn| 国产精品久久久久久精品电影| 美女国产视频在线观看| 搡女人真爽免费视频火全软件| 久久久久久伊人网av| 国产欧美另类精品又又久久亚洲欧美| 精品午夜福利在线看| 国国产精品蜜臀av免费| 狂野欧美激情性xxxx在线观看| 国产精品爽爽va在线观看网站| 午夜亚洲福利在线播放| 日日干狠狠操夜夜爽| 亚洲高清免费不卡视频| 大香蕉97超碰在线| 最近的中文字幕免费完整| av女优亚洲男人天堂| 少妇熟女欧美另类| 非洲黑人性xxxx精品又粗又长| 国产69精品久久久久777片| 亚洲精品456在线播放app| 国产91av在线免费观看| 国产亚洲av片在线观看秒播厂 | 好男人视频免费观看在线| 卡戴珊不雅视频在线播放| 亚洲国产最新在线播放| 丰满少妇做爰视频| 性插视频无遮挡在线免费观看| 亚洲五月天丁香| 毛片女人毛片| 国产精品一区www在线观看| 又爽又黄无遮挡网站| 欧美另类亚洲清纯唯美| 国产视频内射| 麻豆av噜噜一区二区三区| 韩国av在线不卡| 青春草国产在线视频| 欧美成人免费av一区二区三区| 直男gayav资源| av在线老鸭窝| 成人一区二区视频在线观看| av专区在线播放| 国产精品电影一区二区三区| a级一级毛片免费在线观看| 91在线精品国自产拍蜜月| 亚洲aⅴ乱码一区二区在线播放| 亚洲婷婷狠狠爱综合网| av卡一久久| 亚洲国产精品成人久久小说| 51国产日韩欧美| 国产一级毛片在线| 一卡2卡三卡四卡精品乱码亚洲| 国产久久久一区二区三区| 久久久a久久爽久久v久久| 国产精品电影一区二区三区| 中文字幕av在线有码专区| 久久久久久久久久成人| av.在线天堂| 日产精品乱码卡一卡2卡三| 精品久久久久久久久亚洲| 亚洲av成人精品一二三区| 亚洲精品乱久久久久久| 麻豆国产97在线/欧美| 中国国产av一级| 嫩草影院入口| 99久久无色码亚洲精品果冻| 一区二区三区免费毛片| 欧美色视频一区免费| 一级av片app| 国产精品麻豆人妻色哟哟久久 | 麻豆一二三区av精品| 麻豆成人av视频| 插逼视频在线观看| 又粗又爽又猛毛片免费看| 精华霜和精华液先用哪个| av免费在线看不卡| 我要看日韩黄色一级片| 日本爱情动作片www.在线观看| 一边摸一边抽搐一进一小说| 日韩一区二区三区影片| 99热这里只有精品一区| 国产在线一区二区三区精 | 中文字幕制服av| 天堂影院成人在线观看| 亚洲精华国产精华液的使用体验| 国产白丝娇喘喷水9色精品| 国产极品精品免费视频能看的| 日韩人妻高清精品专区| 国产午夜精品久久久久久一区二区三区| 久久久久精品久久久久真实原创| 久久久久久久久久黄片| 国产亚洲最大av| 国产成人a∨麻豆精品| 国产成人aa在线观看| 一级av片app| 乱码一卡2卡4卡精品| 99热精品在线国产| 欧美激情国产日韩精品一区| 你懂的网址亚洲精品在线观看 | 国产老妇伦熟女老妇高清| 有码 亚洲区| 少妇丰满av| 亚洲内射少妇av| 卡戴珊不雅视频在线播放| 午夜精品在线福利| 韩国av在线不卡| 高清毛片免费看| 夜夜爽夜夜爽视频| 久久鲁丝午夜福利片| 我的老师免费观看完整版| 日韩精品有码人妻一区| 麻豆国产97在线/欧美| 美女内射精品一级片tv| 韩国av在线不卡| 成人美女网站在线观看视频| 国产伦一二天堂av在线观看| 永久网站在线| 日本与韩国留学比较| 看非洲黑人一级黄片| 精品久久久久久久久av| 69av精品久久久久久| 亚洲欧美日韩高清专用| 极品教师在线视频| 99热精品在线国产| 天天一区二区日本电影三级| 国产乱人视频| 99热网站在线观看| 九九热线精品视视频播放| 日日摸夜夜添夜夜爱| 国产亚洲av嫩草精品影院| 成人鲁丝片一二三区免费| 可以在线观看毛片的网站| 在线观看66精品国产| 国产免费一级a男人的天堂| eeuss影院久久| 淫秽高清视频在线观看| 国模一区二区三区四区视频| 建设人人有责人人尽责人人享有的 | 成人亚洲精品av一区二区| 亚洲av中文字字幕乱码综合| 一级黄色大片毛片| 成人毛片a级毛片在线播放| 亚洲怡红院男人天堂| 免费看美女性在线毛片视频| 精品欧美国产一区二区三| 18禁动态无遮挡网站| 中国美白少妇内射xxxbb| 色网站视频免费| 久久精品国产自在天天线| 国产一区二区亚洲精品在线观看| 免费搜索国产男女视频| 欧美色视频一区免费| 亚洲不卡免费看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲中文字幕日韩| 男人舔女人下体高潮全视频| 激情 狠狠 欧美| 美女内射精品一级片tv| 欧美丝袜亚洲另类| 精品99又大又爽又粗少妇毛片| 高清视频免费观看一区二区 | 寂寞人妻少妇视频99o| 日韩中字成人| 狂野欧美激情性xxxx在线观看| 亚洲欧美日韩高清专用| 久久精品国产鲁丝片午夜精品| 少妇高潮的动态图| 自拍偷自拍亚洲精品老妇| 一边亲一边摸免费视频| 午夜老司机福利剧场| 欧美另类亚洲清纯唯美| 搞女人的毛片| 又粗又爽又猛毛片免费看| 亚洲18禁久久av| 日韩欧美精品免费久久| 日本三级黄在线观看| 中国美白少妇内射xxxbb| 边亲边吃奶的免费视频| 亚洲欧洲国产日韩| 狠狠狠狠99中文字幕| 亚洲一区高清亚洲精品| 可以在线观看毛片的网站| 天堂中文最新版在线下载 | 一区二区三区四区激情视频| 日韩亚洲欧美综合| 国产一区有黄有色的免费视频 | 国产亚洲av片在线观看秒播厂 | a级毛色黄片| 天堂影院成人在线观看| 内射极品少妇av片p| 日韩人妻高清精品专区| 99久久中文字幕三级久久日本| 亚洲国产精品成人综合色| 非洲黑人性xxxx精品又粗又长| 少妇的逼水好多| 身体一侧抽搐| 国内揄拍国产精品人妻在线| 亚洲av一区综合| 桃色一区二区三区在线观看| 亚洲人成网站高清观看| 国语自产精品视频在线第100页| 日韩欧美精品v在线| 久久综合国产亚洲精品| 国产视频内射| 91狼人影院| 日产精品乱码卡一卡2卡三| 久久精品综合一区二区三区| 老司机影院成人| 欧美潮喷喷水| 亚洲电影在线观看av| 日韩三级伦理在线观看| 最后的刺客免费高清国语| 国产91av在线免费观看| 99久久九九国产精品国产免费| av国产免费在线观看| 听说在线观看完整版免费高清| 中文字幕精品亚洲无线码一区| 欧美潮喷喷水| 国产乱人视频| 色哟哟·www| 狂野欧美白嫩少妇大欣赏| 亚洲av中文字字幕乱码综合| 午夜福利网站1000一区二区三区| 亚洲av福利一区| 精品一区二区三区视频在线| 日本一本二区三区精品| 成年女人看的毛片在线观看| 我的女老师完整版在线观看| 午夜福利视频1000在线观看| 观看免费一级毛片| 亚洲电影在线观看av| 久久这里只有精品中国| 91在线精品国自产拍蜜月| 久久久久久久国产电影| 成年版毛片免费区| av播播在线观看一区| 超碰av人人做人人爽久久| 91精品国产九色| 国产伦在线观看视频一区| 精品一区二区三区人妻视频| 国产成人精品婷婷| 久久久国产成人免费| 一级毛片aaaaaa免费看小| 国产免费福利视频在线观看| 97超视频在线观看视频| 麻豆成人午夜福利视频| 国产伦精品一区二区三区四那| 国产av码专区亚洲av| 国产伦精品一区二区三区视频9| 亚洲国产精品成人综合色| 欧美高清性xxxxhd video| 免费av不卡在线播放| 免费不卡的大黄色大毛片视频在线观看 | 五月伊人婷婷丁香| 天天躁日日操中文字幕| 尤物成人国产欧美一区二区三区| av福利片在线观看| 又粗又硬又长又爽又黄的视频| 国产精品一区www在线观看| 国产亚洲精品av在线| 亚洲国产精品sss在线观看| 69av精品久久久久久| 国产在线一区二区三区精 | 九色成人免费人妻av| 热99re8久久精品国产| 色5月婷婷丁香| 国产精品av视频在线免费观看| 亚洲国产精品成人综合色| 乱码一卡2卡4卡精品| 91久久精品电影网| 欧美性猛交╳xxx乱大交人| 久久精品国产99精品国产亚洲性色| 成人高潮视频无遮挡免费网站| 国产精品久久久久久精品电影| 国产精品嫩草影院av在线观看| 亚洲丝袜综合中文字幕| 日韩人妻高清精品专区| 中国国产av一级| 亚洲人成网站在线播| av天堂中文字幕网| 久久人人爽人人爽人人片va| 最近2019中文字幕mv第一页| 精品少妇黑人巨大在线播放 | 亚洲不卡免费看| 日本黄色视频三级网站网址| 国产成年人精品一区二区| 国产成人aa在线观看| 国产探花极品一区二区| 久久99热这里只有精品18| 男人和女人高潮做爰伦理| 级片在线观看| 国产免费一级a男人的天堂| 日韩成人av中文字幕在线观看| 亚洲欧美精品综合久久99| .国产精品久久| 国产精品人妻久久久影院| 欧美xxxx性猛交bbbb| 伊人久久精品亚洲午夜| 亚洲美女视频黄频| 2021少妇久久久久久久久久久| 成人午夜精彩视频在线观看| www日本黄色视频网| 好男人视频免费观看在线| 日韩视频在线欧美| 日本午夜av视频| 国语对白做爰xxxⅹ性视频网站| 精品久久久久久久人妻蜜臀av| 婷婷色综合大香蕉| 亚洲国产最新在线播放| 中文字幕av在线有码专区| www日本黄色视频网| 亚洲综合精品二区| 少妇的逼水好多| 五月伊人婷婷丁香| 一本一本综合久久| 亚洲,欧美,日韩| 美女黄网站色视频| 国产成人aa在线观看| 亚洲国产精品合色在线| 日韩三级伦理在线观看| 国产精品一二三区在线看| 夫妻性生交免费视频一级片| 看非洲黑人一级黄片| 性色avwww在线观看| av在线老鸭窝| 亚洲欧美精品专区久久| 一本久久精品| 亚洲国产日韩欧美精品在线观看| 久久久久精品久久久久真实原创| 成人性生交大片免费视频hd| 少妇熟女aⅴ在线视频| 又粗又硬又长又爽又黄的视频| 干丝袜人妻中文字幕| 亚洲国产高清在线一区二区三| 欧美一区二区亚洲| 最近最新中文字幕大全电影3| 日韩欧美精品v在线| 亚洲四区av| 久久亚洲国产成人精品v| 久久久久久伊人网av| 国产精品一二三区在线看| 99视频精品全部免费 在线| 日韩强制内射视频| 九九爱精品视频在线观看| 又粗又爽又猛毛片免费看| 亚洲欧美日韩卡通动漫| 欧美变态另类bdsm刘玥| 男人舔女人下体高潮全视频| 国产真实乱freesex| 免费看光身美女| 久久精品91蜜桃| 91久久精品国产一区二区三区| 国产黄色视频一区二区在线观看 | 久久久久久伊人网av| 国产成人a∨麻豆精品| 最近最新中文字幕大全电影3| 村上凉子中文字幕在线| 美女cb高潮喷水在线观看| 欧美日韩国产亚洲二区| 国产成人91sexporn| 国产亚洲一区二区精品| 全区人妻精品视频| 日本免费a在线| 午夜精品一区二区三区免费看| 久久国产乱子免费精品| 国产老妇伦熟女老妇高清| 99久久九九国产精品国产免费| 成年女人永久免费观看视频| 国产精品永久免费网站| 日本五十路高清| 男人和女人高潮做爰伦理| 国产精品国产高清国产av| 久久久久久久午夜电影| 蜜桃久久精品国产亚洲av| 神马国产精品三级电影在线观看| 成人无遮挡网站| 亚洲成av人片在线播放无| 国产成年人精品一区二区| 中文字幕亚洲精品专区| 亚洲精品aⅴ在线观看| 国产成人a∨麻豆精品| 日韩欧美在线乱码| 在线免费观看的www视频| 蜜桃亚洲精品一区二区三区| 午夜福利高清视频| 18禁在线无遮挡免费观看视频| 97超碰精品成人国产| 亚洲精品色激情综合| 中文字幕制服av| 国产精品国产三级专区第一集| 午夜精品在线福利| 国产精品.久久久| 成人特级av手机在线观看| 老师上课跳d突然被开到最大视频| 免费看a级黄色片| 久久久国产成人免费| 夫妻性生交免费视频一级片| 寂寞人妻少妇视频99o| 色吧在线观看| 午夜激情福利司机影院| 人体艺术视频欧美日本| 一夜夜www| 97超碰精品成人国产| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久久久免| 九九在线视频观看精品| 亚洲av熟女| 国产精品人妻久久久久久| 国产一区亚洲一区在线观看| 亚洲精品456在线播放app| 国内少妇人妻偷人精品xxx网站| 亚洲国产最新在线播放| 国产在线男女| 国产私拍福利视频在线观看| 国产精品蜜桃在线观看| 亚洲精品自拍成人| 一区二区三区乱码不卡18| 99久久九九国产精品国产免费| 国产一区亚洲一区在线观看| 亚洲图色成人| 精品一区二区三区人妻视频| 久久6这里有精品| 欧美人与善性xxx| 久久人人爽人人爽人人片va| 老师上课跳d突然被开到最大视频| 91aial.com中文字幕在线观看| 热99re8久久精品国产| 大话2 男鬼变身卡| videossex国产| 久久久久国产网址| 久久久精品欧美日韩精品| 久久精品熟女亚洲av麻豆精品 | 人体艺术视频欧美日本| 狠狠狠狠99中文字幕| 中文资源天堂在线| 变态另类丝袜制服| 国产又黄又爽又无遮挡在线| 亚洲欧洲国产日韩| 又爽又黄无遮挡网站| 亚洲精品乱码久久久久久按摩| 99在线视频只有这里精品首页| 一个人看的www免费观看视频| 视频中文字幕在线观看| 成人欧美大片| 中文精品一卡2卡3卡4更新| 国产亚洲av片在线观看秒播厂 | 久久精品91蜜桃| 亚洲五月天丁香| 看免费成人av毛片| 美女xxoo啪啪120秒动态图| 麻豆一二三区av精品| 变态另类丝袜制服| 亚洲在线自拍视频| 日本wwww免费看| 国产久久久一区二区三区| 国产一区二区在线观看日韩| 婷婷色av中文字幕| 国产极品天堂在线| 简卡轻食公司| 亚洲精品aⅴ在线观看| 2021少妇久久久久久久久久久| 亚洲成人av在线免费| 毛片一级片免费看久久久久| 亚洲最大成人中文| 在线观看美女被高潮喷水网站| 亚洲av中文字字幕乱码综合| 亚洲欧美成人综合另类久久久 | 欧美日韩在线观看h| 国产乱来视频区| 婷婷色麻豆天堂久久 | 午夜福利网站1000一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产黄片美女视频| 91在线精品国自产拍蜜月| 久久久久久久久久成人| 校园人妻丝袜中文字幕| 日日摸夜夜添夜夜添av毛片| 久久精品综合一区二区三区| 成人欧美大片| 国产av不卡久久| 国产免费又黄又爽又色| 黑人高潮一二区| 成人美女网站在线观看视频| 爱豆传媒免费全集在线观看| 精品久久久久久久久久久久久| 婷婷六月久久综合丁香| 久久精品国产亚洲av天美| 在线观看一区二区三区| 99热这里只有精品一区| 久久精品国产自在天天线| 亚洲av电影不卡..在线观看| 少妇丰满av| 亚洲图色成人| 99在线视频只有这里精品首页| 免费观看在线日韩| 禁无遮挡网站| 欧美日韩综合久久久久久| 午夜免费激情av| 亚洲欧美精品自产自拍| 日韩亚洲欧美综合| 插逼视频在线观看| 美女cb高潮喷水在线观看| 永久网站在线| 国产片特级美女逼逼视频| 国产女主播在线喷水免费视频网站 | 26uuu在线亚洲综合色| 久热久热在线精品观看| 少妇人妻一区二区三区视频| 婷婷色av中文字幕| av国产免费在线观看| 久久精品国产亚洲av天美| 日日撸夜夜添| 久久久久久久亚洲中文字幕| АⅤ资源中文在线天堂| a级一级毛片免费在线观看| 国产视频首页在线观看| 亚洲,欧美,日韩| 两个人视频免费观看高清| 色综合色国产| av卡一久久| 国产老妇女一区| 国产亚洲av嫩草精品影院| 永久网站在线| 国产片特级美女逼逼视频| 久久精品人妻少妇| 韩国高清视频一区二区三区| 国产精品无大码| 极品教师在线视频| 免费播放大片免费观看视频在线观看 | 久久99热6这里只有精品| 亚洲国产精品sss在线观看| 女的被弄到高潮叫床怎么办| 亚洲欧洲国产日韩| 中文在线观看免费www的网站| 国产成人免费观看mmmm| 日韩视频在线欧美| 久久久精品欧美日韩精品| av在线亚洲专区| 日韩av在线大香蕉| 欧美日韩综合久久久久久| 男人和女人高潮做爰伦理| 中文天堂在线官网| a级毛色黄片| 国产不卡一卡二| 高清毛片免费看| 免费电影在线观看免费观看| 中文字幕久久专区| 成人特级av手机在线观看| 美女被艹到高潮喷水动态| 天堂√8在线中文| 又爽又黄a免费视频| 精品人妻偷拍中文字幕| 久久韩国三级中文字幕| 黄色欧美视频在线观看| 欧美日本亚洲视频在线播放| 18禁在线无遮挡免费观看视频| 赤兔流量卡办理| 97人妻精品一区二区三区麻豆| 一边摸一边抽搐一进一小说| 亚洲av中文字字幕乱码综合| 丰满人妻一区二区三区视频av| 精品久久久久久久人妻蜜臀av| 国产视频首页在线观看| 国产伦一二天堂av在线观看| 天天躁日日操中文字幕| 两个人的视频大全免费| a级毛色黄片| 亚洲精品成人久久久久久| 老女人水多毛片| 91久久精品国产一区二区三区| 麻豆成人av视频| 国模一区二区三区四区视频| 永久免费av网站大全|