• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial variability of δ18O and δ2H in North Pacific and Arctic Oceans surface seawater

    2022-10-18 12:57:30LIZhiqiangDINGMinghuWANGYetangDUZhihengDOUTingfeng
    Advances in Polar Science 2022年3期

    LI Zhiqiang, DING Minghu, WANG Yetang, DU Zhiheng & DOU Tingfeng

    Spatial variability of18O and2H in North Pacific and Arctic Oceans surface seawater

    LI Zhiqiang1, DING Minghu2,3, WANG Yetang4*, DU Zhiheng3& DOU Tingfeng5

    1National Marine Environmental Forecasting Center, Beijing 100081, China;2State Key Laboratory of Severe Weather and Institute of Tibetan Plateau & Polar Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China;3State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;4College of Geography and Environment, Shandong Normal University, Jinan 250014, China;5College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

    This study presents new observations of stable isotopic composition (18O,2H and deuterium excess) in surface waters of the North Pacific and Arctic Oceans that were collected during the sixth Chinese National Arctic Research Expedition (CHINARE) from mid-summer to early autumn 2014. Seawater18O and2H decrease with increasing latitudes from 39°N to 75°N, likely a result of spatial variability in evaporation/precipitation processes. This explanation is further confirmed by comparing the18O–2H relationship of seawater with that of precipitation. However, effects of freshwater inputs on seawater stable isotopic composition are also identified at 30°N–39°N. Furthermore, we finda non-significant relationship between the isotopic parameters (2H and18О) and salinity from 73°N northwards in the Arctic Ocean, implying that sea ice melting/formation may have some effect. These results suggest that the isotopic parameters2H and18О are useful for tracing marine hydrological processes.

    stable water isotopes, seawater salinity, surface seawater, North Pacific Ocean, Arctic Ocean

    1 Introduction

    The isotopic ratios of seawater18O and2H, which represent the isotopic abundance ratios of18O/16O and2H/1H, respectively, in a sample with respect to those of Vienna Standard Mean Ocean Water (VSMOW) are associated with fractionation processes that occur during all phase transitions in the hydrological cycle, including evaporation, precipitation, melting, and freezing of freshwater in the ocean. Thus, in modern oceans, seawater isotopes can serve as valuable natural tracers of sea ice melt (Macdonald et al., 1999), the source(s) of freshwater input (Khatiwala et al., 1999; Dubinina et al., 2017), and the formation of deep ocean water (Jacobs et al., 1985). They have also been used to trace the flow pathways of freshwater to the sea and to quantify the exchanges between different water masses (Gordeev et al., 1996; Bauch et al., 2005; Dubinina et al., 2017). Furthermore, the seawater stable isotopes of hydrogen and oxygen are considered important proxies for reconstructing palaeoclimate (Craig and Gordon, 1965; Sowers and Bender, 1995; Koutavas and Joanides, 2012) and palaeosalinity, an important parameter for understanding the ocean hydrological cycle (Rohling and Bigg, 1998; Singh et al., 2014).

    Several previous studies have documented that seawater18O,D, and their relationship can be used to understand oceanic hydrological processes (Conroy et al., 2014; Dubinina et al., 2017; Kumar et al., 2018). To quantify ocean isotopic signatures, many seawater18O measurements have been made across the world’s oceans from 1950 onwards (LeGrande and Schmidt, 2006). However, such observations over the North Pacific Ocean and the Arctic Ocean remain limited, and so oceanic hydrological processes remain inadequately characterized. Thus, additional seawater isotope observations are still required.

    Deuterium excess (), defined as=2H?8×18O (Dansgaard, 1964), quantifies non-equilibrium fractionation effects during phase changes. This second-order parameter depends largely on the conditions, such as relative humidity, sea surface temperature (SST), and wind speed, in the region of moisture origin, i.e., where water evaporates from the ocean surface (Dansgaard, 1964; Pang et al., 2015; Parkes et al., 2017). Thus, ocean surface conditions have a strong impact onvalues in vapor or subsequent precipitation (Uemura et al., 2008). As a result, changes in surface seawatervalues likely affect thevariations measured in vapor and precipitation. Many efforts have been made to investigate the spatial and temporal variability vapor and precipitationvalues, and to infer their main underlying processes (Aemisegger et al., 2014; Benetti et al., 2014; Pfahl and Sodemann, 2014). However, data on the spatial variability of seawatervalues and inferences regarding their underlying mechanisms are still somewhat limited.

    Here, we present new isotope data of surface seawater collected along the route of the sixth Chinese National Arctic Research Expedition (CHINARE), which took place from July to September 2014 (Figure 1). Based on this dataset, we investigate the spatial patterns in seawater stable isotopic compositions, quantify2H–18O relationships, and analyze their possible controlling factors.

    Figure 1 The route of the 6th CHINARE and the locations of the seawater isotopic composition and surface salinity samplings.

    2 Data and methods

    During the 6th CHINARE cruise (July to September of 2014), sea surface water samples were collected every 12 h along the route shown in Figure 1. The route spans the East China Sea, the Japan Sea, the Northwest Pacific Ocean, the Bering Sea, the Chukchi Sea, and the Arctic Ocean. The northern-most sampling location was at 81°N, 155°E. In total, 178 250-mL high-density polyethylene (HDPE) bottles were used to collect surface water. To prevent contamination, a 10-L bucket was used to collect surface water and first wash and then fill the bottles at each site. Then, the tightly capped bottles were placed into separate Ziploc bagsand were refrigerated. Two bottles of seawater were sampled at each location to determine whether sample contamination may have occurred.

    Stable water isotopic compositions were measured at theState Key Laboratory of Cryospheric Sciences, China by wavelength scanned cavity ring-down spectrometry (CRDS) (Picarro L1102), with an overall precision of at least 0.15‰ for18O and 0.5‰ for2H. Using the isotope ratio mass spectrometry (IRMS) method, salinity correction tovalues was considered unnecessary because the molalities of Mg, Ca, and K were lower than the values used for correction (Gonfiantini, 1981). As a modern method, near-infrared laser absorption spectroscopy techniques (including CRDS) have also proven applicable to seawater experiments (Skrzypek and Ford, 2014). The main effect (incomplete evaporation and memory effect) of salinity is related to the vaporizer. Thus, the in-time replacement of the injection pad per 100 injections of seawater samples was applied in our measurements. Isotopic compositions are reported as18O and2H values and represent the differences in the18O/16O and D/H ratios, respectively, between the samples and VSMOW.

    Based on results from four world-class laboratories (Benetti et al., 2017), when applying the CRDS method to sea-water, and additional correction of ~0.09‰ is required for18O compared with freshwater. This is slightly larger than that the IRMS method requires (0.06‰–0.02‰). However, for2H, only ~0.13‰ of extra correction is required, which is much less than that required by IRMS measurements (0.55‰–0.23‰). Regardless, the errors of both methods were minimized by applying rigorous experimental protocols and conducting calibration.

    Surface seawater was collected from an intake on the port side of the ship at approximately 4-m depth, which was designed to capture representative surface biogeochemical signals. To minimize clogging by sea ice and reduce the residence time of the sampling, a sea chest was specifically designed (details can be found in Chen et al. (2015)). We measured the SST and salinity continuously along the cruise route by means of an SBE21 (Sea-Bird Electronics) thermosalinograph installed in the sea chest, which has been widely used for observational marine chemistry studies.

    All instruments were calibrated and tested before deployment. Instrumental uncertainty in the temperature and conductivity sensors was 0.002℃ and ~0.03 ms·cm?1, respectively. Salinities given by the conductivity sensors are in practical salinity units (PSU). This information was also introduced by He et al. (2015), Chen et al. (2015) and Chen et al. (2019).

    3 Results and discussion

    3.1 Spatial patterns if δ18O and δ2H in surface seawater

    Along the voyage route northwards, seawater2H varies from ?50.0‰ to ?0.6‰, and the range of18O values is between ?5.4‰ and ?0.1‰. Both the18O and2H values of surface seawater vary spatially as a function of latitude. As expected, they decrease with increasing latitude, with the heavy isotopes being relatively enriched in the mid-latitudes and depleted in the high-latitude Arctic Ocean(Figures 1 and 2). This finding agrees with the observed changes in meteoric water due to latitudinal temperature and precipitation effects (Craig and Gordon, 1965; Criss, 1999). Latitude is also an important factor affecting spatial changes in, but only for the sampling sites at <40° latitude and >70° latitude (Figure 2). About 25% and 40% of the spatial variance ofcan be explained by the linear regression models, respectively.

    However, from 30°N to 39°N, the seawater18O and2H values show increases of 0.1‰ and 0.6‰, respectively, per degree of latitude. Salinity values follow the18O and2H patterns, but a slight decrease in the SST is observed. In particular, extremely low salinity:18O ratios occur between 36°N and 45°N, and thus the increase in the18O and2H values may be associated with the input of surface runoff (freshwater). Given the extremely high correlation between18O and2H (>0.98,=0), we further investigated regional patterns in the stable isotopic composition in surface seawater using18O. Between 40°N and 62°N, the SST sharply decreases from 20℃ to 5℃, whereas the salinity gradually decreases from 33.9 to 30.7 PSU. The corresponding18O values vary by 1.7‰ (from ?1.8‰ to ?0.1‰). From 62°N to 77°N, the SST fluctuates from ?0.7℃ to 10℃. In this latitudinal range, sharp changes in seawater salinity and18O also occur, with decreases of 11 PSU and 4.5‰, respectively. From 77°N northwards, the seawater salinity is lower, but a slight increase in the seawater18O is observed, which may be an effect of sea ice melt; sea ice usually has higher18O values than the underlying seawater because relatively more18O is incorporated into ice than the water from which it froze. During the freezing or melting of seawater, the18O values do not change much due to the small fractionation factor involved in the transition between ice and water (Beck and Münnich, 1988; Melling and Moore, 1995). In contrast, the influence of sea ice formation or melt on seawater salinity changes is large because of the extremely low salinity of sea ice (the salinity of sea ice is usually as low as 4 PSU; Ekwurzel et al., 2001). Our samples in the Arctic Ocean were collected between late July and early September of 2014, when sea ice extent is at or close to its annual minimum (Figure 3). Extensive sea ice melt led to a slight increase in seawater18O and a decrease in salinity.

    To further determine spatial patterns in the seawater stable isotopic composition, we identify different areas of the North Pacific and Arctic Oceans via a clustering analysis (Clusters 1–5 in Figure 4). Analysis of variance (ANOVA) was used to test the statistical significance of the differences between the clusters. Here, we use the 0.05 significance level. Cluster 1 samples are from the East China Sea and the Sea of Japan (30°N–40°N), where a large range of18O values are observed and the SST decreases sharply with increasing latitude.18O values and salinities in Cluster 2, which are from the region of the North Pacific Ocean, dominated by Kuroshio Current, are higher Clusters 3 and 4 were sampled over the region of the Bering Sea where there are three main currents; the Bering Slope Current, the Kamchatka Current, and the Aleutian North Slope Current (Stabeno et al., 1999). The18O values range from ?3.5‰ to ?1‰, which broadly agree with those obtained in previous surface water samplings from Bering Sea (Cooper et al., 1997). Based on the linear regression of18O with salinity by the least squares fit, the-intercept of zero salinity for18O is ?11.1‰, which is similar to the mean18O value of freshwater between meteoric water values and melted sea ice. Cooper et al. (1991) reported a freshwater18O value of approximately ?22‰ in the Yukon River, which is the largest river entering the Bering Sea. According to Macdonald et al. (1989, 1999),18O values in the sea ice and sea ice melt range from ?3‰ to ?2‰. The mean18O value of all sea ice collected during 2010 and 2011 in the Chukchi Sea were reported to be approximately ?1‰ (Cooper et al., 2016). Cluster 5 (73°N to 81°N) was sampled from the Arctic Ocean and has lower18O and salinities than the other clusters.

    Figure 2 Latitudinal distributions of SST (a), salinity (b), deuterium excess () (c),2H (d), and18O (e) in surface ocean waters.

    Figure 3 Arctic sea ice extent on 26th August 2014 (a) and monthly mean sea ice extent in August 2014 (b). Data are from NSIDC: https://nsidc.org/data/NSIDC-0051.

    Figure 4 Three-dimensional plot showing18O vs. salinity vs. latitude, which helps to identify the regional features of the seawater18O and-salinity relationship.

    3.2 δD and δ18O relationship in sea surface water

    The pioneering work by Craig (1961) reported the quantitative relationship between2H and18O in precipitation, with2H =8×18O+10, which is known as the meteoric water line (MWL). This relationship has been explained physically by an isotopic fractionation Raleigh-type mode. The robust relationship between2H and18O was also observed in Antarctic surface snow by Masson-Delmotte et al. (2008). Given that the combined application of seawater2H and18O measurements can quantitatively improve paleohydrology and palaeosalinity reconstructions (Rohling, 2007; Holloway et al., 2016), increasing attention has been paid to the use of2H for palaeosalinity reconstruction (e.g., Roberts et al., 2016). However, the seawater2H–18O relationship is still not well documented. Our observations show a high and significant correlation between2H and18O in seawater over the North Pacific and Arctic Oceans, with a slope of 7.7‰±0.1‰ per ‰ (>0.99,<0.01), which is close to both the global average seawater2H–18O slope of 7.4 (Rohling, 2007) and the slope of the global MWL derived from Global Network of Isotopes in Precipitation (GNIP) precipitation data (Rozanski et al., 1993). For the distinct regions in the North Pacific and Arctic Oceans identified by clustering (as described above), strong correlations between2H and18O in seawater were found for all clusters, despite the differences in their gradients (Figure 5). Cluster 1 had the shallowest seawater2H-18O slope of 6.9‰ per ‰. This possibly reflects the impact of continental runoff, which generally has a lower2H-18O slope than seawater (e.g., Deshpande et al., 2013). The steepest2H-18O slope (7.8‰ per ‰) was observed in Clusters 3 and 4.

    Figure 5 The relationship between seawater18O and2H for the different regions (clusters) of the North Pacific and Arctic Oceans. The dotted lines indicate the linear regressions on the data from the different clusters.denotes the significance of the relationships according to the linear regression analysis.

    3.3 Spatial variability in the d values of surface seawater

    Along the 6th CHINARE route, seawatervalues varied from ?1.3‰ to 2.5‰. In the Arctic Ocean, a significant positive correlation betweenand latitude was evident (=0.63,<0.05), but a significant negative correlation exists between seawaterand18O (=?0.68,<0.05). Given that the spatial distributions ofand18O are often used for model validation (Xu et al., 2012), the spatial distribution ofas a function of latitude that best fits thespatial distribution (Figure 2) was calculated. However, no significant correlations between the seawatervalues and latitude or18O were found over the North Pacific Ocean (Figure 2).

    Along the 6th CHINARE route from the Bering Strait to the interior of the Arctic Ocean (from 66°N northward),values of surface seawater at all sampling sites (except one) are positive, suggesting the possibly of strong runoff impacts (Xu et al., 2012). The18O-salinity relationship for the sampling sites from 66°N to 70°N shows the-intercept (salinity=0) of18O is ?24‰±6‰ (2=0.74,=8), indicating the large freshwater contribution of river runoff into the Bering Strait. The-intercept (salinity=0)18O value from 71°N to 80°N is estimated to be ?9.3‰±2.2‰ (2=0.23,=27), which reflects a fraction of melted sea ice in the surface seawater. However, this contribution is most likely very limited for seawater along our cruise track because the heavy oxygen isotopes become substantially more depleted along the cruise route into the interior of the Arctic Ocean, with a18O value as low as

    3.4 Processes controlling spatial variability in the stable isotopic composition of surface seawater

    The processes controlling variations in stable isotopes in seawater includeevaporation, precipitation, sea ice freezing and melting, and advection and diffusion of water masses from different source regions. Figure 6 shows the quantitative relationship between18O,2H, and salinity in seawater along the voyage route. A robust positive correlation is observed along the whole route, with slopes of 0.4‰±0.02‰/PSU for18O (=90,<0.01) and 2.8‰± 0.15‰/PSU forD (=90,<0.01).

    Figure 6 The relationships between surface sea salinity and seawater18O (a), and surface sea salinity andseawater2H (b) from the North Pacific and Arctic Oceans.

    To explore the other processes affecting spatial changes in seawater stable isotopes, we analyzed the oxygen isotope-salinity (18O-) relationships for the regional clusters (Figure 7).Cluster 1, which corresponds to the East China Sea and the Sea of Japan, exhibits a shallow slope of 0.2‰/PSU, which is broadly consistent with those previously reported for the Tsushima Strait (0.2‰/PSU) and the Tsushima Current in the Sea of Japan (0.3‰/PSU) (Kodaira et al., 2016). In the East China Sea and the Tsushima Strait, diluted water from Changjiang is the main driver of low salinity and18O values (Zhang et al., 1990; Kodaira et al., 2016). For the Tsushima Current, terrestrial water inputs from the Japanese Archipelago are responsible for the low salinity and18O values (Kodaira et al., 2016). Thus, surface runoff likely plays an important role in the18O changes for Cluster 1. Cluster 2 has the steepest18O-slope of 0.6‰/PSU (Figure 7), which seems to suggest that the seawater composition of this area may be predominantly controlled by evaporation/precipitation. There was no statistically significant difference in the18O-slope between Clusters 3, 4, and 1 (>0.05). The data for Cluster 5 indicate a18O-slope of 0.11‰/PSU (2=0.09), but the relationship is not statistically significant (=0.16). This implies that sea ice melting/freezing has an important impact on the18Oandsalinity values in this region. Sea ice formation/melting has large effects on seawater salinity. However, its impact on the isotopic composition in seawater is minor because of the small fractionation between sea ice and seawater. Thus, a large range of salinities rather than large changes in18O values are observed in the surface ocean where sea ice formation and melting occur. Furthermore, the seasonality of sea ice extent also results in seasonal changes in the-salinity relationship. Over the Arctic Ocean, the maximum sea ice extent generally occurs in March, and the minimum in September (Figure 4), when our sampling took place. The-salinity slopes in September may be larger than those in other seasons due to the reduction in the salinity of surface seawater caused by extensive sea ice melting in this season.

    Figure 7 The relationship between seawater18O and salinity for the different sections of the North Pacific and Arctic Oceans according to the clusters shown in Figure 4.

    4 Conclusions

    In this study, we present new measurements of the stable isotopic composition of surface seawater along the routes of the 6th CHINARE voyage. This campaign has helped to improve the coverage of isotopic measurements in the North Pacific and Arctic Oceans.SST and salinity were also measured. This new dataset allows us to examine the spatial variation in the stable isotopic composition, the18O-2H relationship, and the18O-salinity relationship, and hence helps trace hydrological processes.

    A strong18O-2H relationship was found, which makes it possible to extrapolate seawater2H based on18O. Seawater18O and2H values exhibit latitudinal changes, with decreasing values as latitude increases. The robust correlation between seawater18O and2H and salinity across the North Pacific and Arctic Oceans suggest that spatial pattern may largely result from evaporation/ precipitation effects. However, north of 73°N, sea ice melting plays a key role in the18O,2H, and salinity changes. This finding can be further confirmed because a significant correlation betweenand latitude is present over the Arctic Ocean but not over the North Pacific Ocean. The lack of significant correlation over the North Pacific may be associated with a decline in evaporation causing an increased sea ice extent with increased latitude, driving upvariations.

    Our new dataset still represents only three months and is subject to the temporal biases inherent in most18O and2H data. In the future, seasonal and long-term observations of seawater stable isotopes are required to examine whether the18O-2H relation varies over time. Furthermore, these data are important for studying the stability of the-salinity relationship over time (Delaygue et al., 2001; Kumar et al., 2018) because seawater isotopes are associated with varying origins and pathways of atmospheric vapor, whereas seawater salinity is not.

    This work was funded by the National Natural Science Foundation of China (Grant no. 41771064), the National Key Basic Research Program of China (Grant no. 2019YFC1509100), the Basic Research Fund of Chinese Academy of Meteorological Sciences (Grant no. 2021Z006), the Project for Outstanding Youth Innovation Team in the Universities of Shandong Province (Grant no. 2019KJH011), and the 6th CHINARE. We appreciate two anonymous reviewers, and Associate Editor, Dr. Cinzia Verde for their constructive comments that have further improved the manuscript.

    Aemisegger F, Pfahl S, Sodemann H, et al. 2014. Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmos Chem Phys, 14(8): 4029-4054, doi:10.5194/acp-14-4029-2014.

    Bauch D, Erlenkeuser H, Andersen N. 2005. Water mass processes on Arctic shelves as revealed from18O of H2O. Glob Planet Change, 48(1-3): 165-174, doi:10.1016/j.gloplacha.2004.12.011.

    Beck N, Münnich K O. 1988. Freezing of water: isotopic fractionation. Chem Geol, 70(1-2): 168, doi:10.1016/0009-2541(88)90693-6.

    Benetti M, Sveinbj?rnsdóttir A E, ólafsdóttir R, et al. 2017. Inter- comparison of salt effect correction for18O and2H measurements in seawater by CRDS and IRMS using the gas-H2O equilibration method. Mar Chem, 194: 114-123, doi:10.1016/j.marchem.2017.05.010.

    Benetti M, Reverdin G, Pierre C, et al. 2014. Deuterium excess in marine water vapor: dependency on relative humidity and surface wind speed during evaporation. J Geophys Res Atmos, 119(2): 584-593, doi:10.1002/2013jd020535.

    Chen B, Cai W, Chen L. 2015. The marine carbonate system of the Arctic Ocean: Assessment of internal consistency and sampling considerations, summer 2010. Mar Chem, 176: 174-188, doi: 10.1016/j.marchem.2015.09.007.

    Chen Z K, Wei L X, Li Z Q, et al. 2019. Sea fog characteristics over the Arctic pack ice in summer 2017. Mar Forecasts, 36(2): 77-87, doi:10.11737/j.issn.1003-0239.2019.02.009 (in Chinese with English abstract).

    Conroy J L, Cobb K M, Lynch-Stieglitz J, et al. 2014. Constraints on the salinity-oxygen isotope relationship in the central tropical Pacific Ocean. Mar Chem, 161: 26-33, doi:10.1016/j.marchem.2014.02.001.

    Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702-1703, doi:10.1126/science.133.3465.1702.

    Craig H, Gordon L I. 1965. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere//Tongiorgi E (Eds). Stable isotopes in oceanographic studies and paleotemperatures. Spoleto: Cons Naz di Rech, 9-130.

    Criss R E. 1999. Principles of stable isotope distribution. New York: Oxford University Press.

    Cooper L W, Olsen C R, Solomon D K, et al. 1991. Stable isotopes of oxygen and natural and fallout radionuclides used for tracing runoff during snowmelt in an Arctic watershed. Water Resour Res, 27(9): 2171-2179, doi:10.1029/91wr01243.

    Cooper L W, Whitledge T E, Grebmeier J M, et al. 1997. The nutrient, salinity, and stable oxygen isotope composition of Bering and Chukchi Seas waters in and near the Bering Strait. J Geophys Res Ocean, 102(C6): 12563-12573, doi:10.1029/97jc00015.

    Cooper L W, Frey K E, Logvinova C, et al. 2016. Variations in the proportions of melted sea ice and runoff in surface waters of the Chukchi Sea: a retrospective analysis, 1990–2012, and analysis of the implications of melted sea ice in an under-ice bloom. Deep Sea Res Part II Top Stud Oceanogr, 130: 6-13, doi:10.1016/j.dsr2.2016.04.014.

    Dansgaard W. 1964. Stable isotopes in precipitation. Tellus, 16(4): 436-468, doi:10.3402/tellusa.v16i4.8993.

    Delaygue G, Bard E, Rollion C, et al. 2001. Oxygen isotope/salinity relationship in the northern Indian Ocean. J Geophys Res Oceans, 106(C3): 4565-4574, doi:10.1029/1999jc000061.

    Deshpande R D, Muraleedharan P M, Singh R L, et al. 2013. Spatio-temporal distributions of18O,D and salinity in the Arabian Sea: identifying processes and controls. Mar Chem, 157: 144-161, doi:10.1016/j.marchem.2013.10.001.

    Dubinina E O, Kossova S A, Miroshnikov A Y, et al. 2017. Isotope (D,18О) systematics in waters of the Russian Arctic seas. Geochem Int, 55(11): 1022-1032, doi:10.1134/S0016702917110052.

    Ekwurzel B, Schlosser P, Mortlock R A, et al. 2001. River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean. J Geophys Res, 106(C5): 9075-9092, doi:10.1029/ 1999jc000024.

    Gonfiantini R. 1981. The-notation and the mass-spectrometric measurement techniques//Gat J R, Gonfiantini R (Eds). Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. Tech Rep Ser 210. Vienna: International Atomic Energy Agency, 337.

    Gordeev V V, Martin J M, Sidorov I S, et al. 1996. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. Am J Sci, 296(6): 664-691, doi:10.2475/ajs. 296.6.664.

    He Y, Liu N, Chen H X, et al. 2015. Observed features of temperature, salinity and current in central Chukchi Sea during the summer of 2012. Acta Oceanol Sin, 34(5): 51-59, doi:10.1007/s13131-015-0642-7.

    Holloway M D, Sime L C, Singarayer J S, et al. 2016. Reconstructing paleosalinity from18O: Coupled model simulations of the Last Glacial Maximum, Last Interglacial and Late Holocene. Quat Sci Rev, 131: 350-364, doi:10.1016/j.quascirev.2015.07.007.

    Jacobs S S, Fairbanks R G, Horibe Y. 1985. Origin and evolution of water masses near the Antarctic continental margin: evidence from H218O/H216O ratios in seawater//Jacobs S S. Oceanology of the Antarctic Continental Shelf, Volume 43. Washington D. C.: American Geophysical Union, 59-85, doi:10.1029/ar043p0059.

    Khatiwala S P, Fairbanks R G, Houghton R W. 1999. Freshwater sources to the coastal ocean off northeastern North America: evidence from H218O/H216O. J Geophys Res, 104(C8): 18241-18255, doi:10.1029/1999jc900155.

    Kodaira T, Horikawa K, Zhang J, et al. 2016. Relationship between seawater oxygen isotope ratio and salinity in the Tsushima Current, the Sea of Japan. Geochemistry, 50: 263-277, doi:10.14934/ chikyukagaku.50.263.

    Koutavas A, Joanides S. 2012. El Ni?o–Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography, 27(4): PA4208, doi:10.1029/2012PA002378.

    Kumar P K, Singh A, Ramesh R. 2018. Controls on18O,D and18O-salinity relationship in the northern Indian Ocean. Mar Chem, 207: 55-62, doi:10.1016/j.marchem.2018.10.010.

    LeGrande A N, Schmidt G A. 2006. Global gridded data set of the oxygen isotopic composition in seawater. Geophys Res Lett, 33(12): L12604, doi:10.1029/2006gl026011.

    Macdonald R W, Carmack E C, McLaughlin F A, et al. 1989. Composition and modification of water masses in the Mackenzie shelf estuary. J Geophys Res, 94(C12): 18057-18070, doi:10.1029/jc094ic12p18057.

    Macdonald R W, Carmack E C, McLaughlin F A, et al. 1999. Connections among ice, runoff and atmospheric forcing in the Beaufort Gyre. Geophys Res Lett, 26(15): 2223-2226, doi:10.1029/1999gl900508.

    Masson-Delmotte V, Hou S, Ekaykin A, et al. 2008. A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation, and isotopic modeling. J Clim, 21(13): 3359-3387, doi:10.1175/2007jcli2139.1.

    Melling H, Moore R M. 1995. Modification of halocline source waters during freezing on the Beaufort Sea shelf: evidence from oxygen isotopes and dissolved nutrients. Cont Shelf Res, 15(1): 89-113, doi:10.1016/0278-4343(94)P1814-R.

    Morison J, Kwok R, Peralta-Ferriz C, et al. 2012. Changing Arctic Ocean freshwater pathways. Nature, 481(7379): 66-70, doi:10.1038/nature 10705.

    Pang H, Hou S, Landais A, et al. 2015. Spatial distribution of17O-excess in surface snow along a traverse from Zhongshan Station to Dome A, East Antarctica. Earth Planet Sci Lett, 414: 126-133, doi:10.1016/j. epsl.2015.01.014.

    Parkes S D, McCabe M F, Griffiths A D, et al. 2017. Response of water vapour D-excess to land-atmosphere interactions in a semi-arid environment. Hydrol Earth Syst Sci, 21(1): 533-548, doi:10.5194/ hess-21-533-2017.

    Pfahl S, Sodemann H. 2014. What controls deuterium excess in global precipitation? Clim Past, 10(2): 771-781, doi:10.5194/cp-10-771- 2014.

    Rohling E J, Bigg G R. 1998. Paleosalinity and δ18O: a critical assessment. J Geophys Res: Oceans, 103(C1): 1307-1318, doi:10.1029/97jc01047.

    Rohling E J. 2007. Progress in paleosalinity: overview and presentation of a new approach. Paleoceanography, 22(3): PA3215, doi:10.1029/ 2007pa001437.

    Roberts J, Gottschalk J, Skinner L C, et al. 2016. Evolution of South Atlantic density and chemical stratification across the last deglaciation. Proc Natl Acad Sci, 113(3): 514-519, doi:10.1073/pnas. 1511252113.

    Rozanski K, Araguás-Araguás L, Gonfiantini R. 1993. Isotopic pattern in modern global precipitation//Swart P K, Lohmann K C, Mckenzie J, et al (Eds). Climate change in continental isotopic records, Volume 78.Washington D. C.: American Geophysical Union, 1-36, doi:10.1029/ gm078p0001.

    Singh A, Mohiuddin A, Ramesh R, et al. 2014. Estimating the loss of Himalayan glaciers under global warming using the δ18O-salinity relation in the Bay of Bengal. Environ Sci Technol Lett, 1(5): 249-253, doi:10.1021/ez500076z.

    Skrzypek G, Ford D. 2014. Stable isotope analysis of saline water samples on a cavity ring-down spectroscopy instrument. Environ Sci Technol, 48(5): 2827-2834, doi:10.1021/es4049412.

    Stabeno P J, Schumacher J D, Ohtani K. 1999. The physical oceanography of the Bering Sea//Loughlin T R, Ohtani K (Eds). Dynamics of the Bering Sea. Fairbanks: University of Alaska Sea Grant, AK-SG-99-03, 1-28.

    Sowers T, Bender M. 1995. Climate records covering the last deglaciation. Science, 269(5221): 210-214, doi:10.1126/science.269.5221.210.

    Uemura R, Matsui Y, Yoshimura K, et al. 2008. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J Geophys Res, 113(D19): D19114, doi:10.1029/2008jd010209.

    Xu X, Werner M, Butzin M, et al. 2012. Water isotope variations in the global ocean model MPI-OM. Geosci Model Dev, 5(3): 809-818.

    Zhang J, Letolle R, Martin J M, et al. 1990. Stable oxygen isotope distribution in the Huanghe (Yellow River) and the Changjiang (Yangtze River) estuarine systems. Cont Shelf Res, 10(4): 369-384, doi:10.1016/0278-4343(90)90057-S.

    10.13679/j.advps.2021.0053

    16 November 2021;

    22 August 2022;

    30 September 2022

    : Li Z Q, Ding M H, Wang Y T, et al. Spatial variability of18O and2H in North Pacific and Arctic Oceans surface seawater. Adv Polar Sci, 2022, 33(3): 244-252,doi:10.13679/j.advps.2021.0053

    , ORCID: 0000-0003-2499-1147, E-mail: wangyetang@163.com

    国产精品国产三级国产av玫瑰| 深夜精品福利| 亚洲第一区二区三区不卡| 熟妇人妻久久中文字幕3abv| 日韩在线高清观看一区二区三区 | 久久久久免费精品人妻一区二区| 成人高潮视频无遮挡免费网站| 白带黄色成豆腐渣| av天堂中文字幕网| 国产免费一级a男人的天堂| 婷婷精品国产亚洲av在线| 亚洲成人精品中文字幕电影| 精华霜和精华液先用哪个| 久久99热这里只有精品18| 日韩欧美一区二区三区在线观看| 男人舔女人下体高潮全视频| 91麻豆精品激情在线观看国产| 精品久久国产蜜桃| 亚洲av第一区精品v没综合| 在线观看午夜福利视频| 国产精品一区www在线观看 | av国产免费在线观看| 亚洲av.av天堂| 日本 av在线| 热99在线观看视频| 国产精品人妻久久久影院| 精品久久久久久久久亚洲 | 精品一区二区三区视频在线| 国产精品一区www在线观看 | 国产精品久久久久久亚洲av鲁大| 午夜福利18| 一级a爱片免费观看的视频| 国产一区二区在线观看日韩| 欧美日韩精品成人综合77777| 国产精品av视频在线免费观看| 亚洲av.av天堂| 日本精品一区二区三区蜜桃| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美免费精品| 一本精品99久久精品77| 日韩欧美国产在线观看| 久久久久久久亚洲中文字幕| 亚洲欧美日韩高清在线视频| 亚洲欧美日韩高清在线视频| 国产精品电影一区二区三区| 99久久九九国产精品国产免费| 国产一区二区三区av在线 | 色综合亚洲欧美另类图片| 18禁黄网站禁片免费观看直播| 久久99热6这里只有精品| 91麻豆av在线| 精品日产1卡2卡| 99在线视频只有这里精品首页| 麻豆国产av国片精品| 熟女人妻精品中文字幕| 51国产日韩欧美| 日本撒尿小便嘘嘘汇集6| 成人鲁丝片一二三区免费| 成人亚洲精品av一区二区| 色尼玛亚洲综合影院| 免费一级毛片在线播放高清视频| 永久网站在线| 香蕉av资源在线| 成人无遮挡网站| 直男gayav资源| .国产精品久久| 丰满的人妻完整版| 国模一区二区三区四区视频| 精品一区二区三区av网在线观看| 欧美又色又爽又黄视频| 亚洲av一区综合| 桃色一区二区三区在线观看| 99久久九九国产精品国产免费| 日韩精品有码人妻一区| 久久天躁狠狠躁夜夜2o2o| 国内久久婷婷六月综合欲色啪| 伦理电影大哥的女人| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久久久久av不卡| 尤物成人国产欧美一区二区三区| 国产女主播在线喷水免费视频网站 | 亚洲专区中文字幕在线| 国产精品女同一区二区软件 | 久久久久久久久大av| 日韩欧美精品免费久久| 成人一区二区视频在线观看| 村上凉子中文字幕在线| 久久亚洲真实| 中文字幕久久专区| 欧美日本亚洲视频在线播放| 色综合色国产| 国产一区二区在线观看日韩| 久久久久国内视频| 日韩一区二区视频免费看| 22中文网久久字幕| 日本爱情动作片www.在线观看 | 少妇高潮的动态图| 亚洲av美国av| xxxwww97欧美| 国产黄片美女视频| 亚洲一级一片aⅴ在线观看| 国产亚洲精品久久久com| 乱码一卡2卡4卡精品| 欧美三级亚洲精品| 久久久精品欧美日韩精品| 国产亚洲欧美98| 天天一区二区日本电影三级| 精品一区二区免费观看| 国产淫片久久久久久久久| 看黄色毛片网站| 2021天堂中文幕一二区在线观| 制服丝袜大香蕉在线| 午夜福利成人在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 国产黄a三级三级三级人| bbb黄色大片| netflix在线观看网站| 国产精品福利在线免费观看| 毛片一级片免费看久久久久 | 欧美日韩精品成人综合77777| 毛片一级片免费看久久久久 | 成人国产麻豆网| 69av精品久久久久久| 亚洲第一电影网av| 大型黄色视频在线免费观看| 少妇猛男粗大的猛烈进出视频 | 久久精品国产99精品国产亚洲性色| 欧美日韩瑟瑟在线播放| 五月玫瑰六月丁香| 免费看日本二区| 亚洲色图av天堂| 国产精品,欧美在线| 成人无遮挡网站| 啦啦啦观看免费观看视频高清| 亚洲精品亚洲一区二区| 啪啪无遮挡十八禁网站| 国产精品野战在线观看| 精品久久久久久,| 亚洲黑人精品在线| 可以在线观看毛片的网站| 日本五十路高清| 久久6这里有精品| 国产 一区 欧美 日韩| 两个人的视频大全免费| 两个人视频免费观看高清| 亚洲天堂国产精品一区在线| 亚洲精品在线观看二区| 一边摸一边抽搐一进一小说| netflix在线观看网站| 3wmmmm亚洲av在线观看| 国产真实乱freesex| 国产成人一区二区在线| 国产精品久久久久久久电影| 国产视频一区二区在线看| 精品久久久久久成人av| 精品久久久久久久久久免费视频| 国产精品国产高清国产av| 国内精品美女久久久久久| av国产免费在线观看| 国国产精品蜜臀av免费| 亚洲欧美日韩卡通动漫| 免费在线观看成人毛片| 国产综合懂色| 两性午夜刺激爽爽歪歪视频在线观看| 人妻夜夜爽99麻豆av| 搡女人真爽免费视频火全软件 | 嫩草影视91久久| 亚洲一级一片aⅴ在线观看| 亚洲黑人精品在线| 99热精品在线国产| 男女做爰动态图高潮gif福利片| 麻豆国产av国片精品| 亚洲,欧美,日韩| 久久99热这里只有精品18| av女优亚洲男人天堂| 久久久久免费精品人妻一区二区| 精品午夜福利在线看| 国内精品久久久久久久电影| 在线天堂最新版资源| 亚洲av成人av| 久9热在线精品视频| 精品久久久久久久久久久久久| 天天一区二区日本电影三级| 亚洲成人中文字幕在线播放| 深爱激情五月婷婷| 国产中年淑女户外野战色| 免费人成在线观看视频色| 亚洲一区二区三区色噜噜| 精品乱码久久久久久99久播| 成人无遮挡网站| 又爽又黄a免费视频| 国产黄片美女视频| 国产精品av视频在线免费观看| 91久久精品国产一区二区成人| 女人被狂操c到高潮| 欧美激情国产日韩精品一区| av国产免费在线观看| 我要搜黄色片| 一进一出抽搐动态| 日本一本二区三区精品| 亚洲专区国产一区二区| 日本色播在线视频| 亚洲av第一区精品v没综合| 免费看av在线观看网站| 国产aⅴ精品一区二区三区波| 一级av片app| 老女人水多毛片| 99热这里只有是精品在线观看| 老女人水多毛片| 国产精品98久久久久久宅男小说| 此物有八面人人有两片| 变态另类丝袜制服| 欧美色视频一区免费| 久久人妻av系列| 女同久久另类99精品国产91| 久久精品国产亚洲av香蕉五月| 国产高清有码在线观看视频| 久久草成人影院| 成人一区二区视频在线观看| 在线观看免费视频日本深夜| 国内揄拍国产精品人妻在线| 国产精品久久视频播放| 国产又黄又爽又无遮挡在线| 精品不卡国产一区二区三区| 他把我摸到了高潮在线观看| 一进一出抽搐动态| 国产午夜福利久久久久久| 我要搜黄色片| 在线国产一区二区在线| 亚洲av免费在线观看| 国产v大片淫在线免费观看| 1000部很黄的大片| 一级毛片久久久久久久久女| 老司机午夜福利在线观看视频| 亚洲精华国产精华液的使用体验 | 成人av一区二区三区在线看| 久久99热这里只有精品18| 性插视频无遮挡在线免费观看| 如何舔出高潮| 国产成人一区二区在线| 深夜a级毛片| 在线观看美女被高潮喷水网站| 亚洲一区高清亚洲精品| 中文字幕av成人在线电影| 日本 欧美在线| 色综合婷婷激情| 日日撸夜夜添| 免费黄网站久久成人精品| 人人妻,人人澡人人爽秒播| 久久久久九九精品影院| 婷婷精品国产亚洲av| 狂野欧美激情性xxxx在线观看| 国产 一区 欧美 日韩| 18禁黄网站禁片免费观看直播| 99精品久久久久人妻精品| 国产高清不卡午夜福利| 岛国在线免费视频观看| 国产成人一区二区在线| 舔av片在线| 欧美一级a爱片免费观看看| 黄片wwwwww| 少妇人妻精品综合一区二区 | 国产色爽女视频免费观看| 日本色播在线视频| 欧美3d第一页| 99国产极品粉嫩在线观看| 毛片女人毛片| 在线天堂最新版资源| 亚洲欧美日韩卡通动漫| 一个人看视频在线观看www免费| 女生性感内裤真人,穿戴方法视频| 高清在线国产一区| 午夜a级毛片| 色视频www国产| 麻豆久久精品国产亚洲av| 一个人观看的视频www高清免费观看| 亚洲精华国产精华液的使用体验 | 色综合亚洲欧美另类图片| 欧美3d第一页| 午夜影院日韩av| 精品人妻熟女av久视频| 99久久久亚洲精品蜜臀av| 日本 欧美在线| 老司机深夜福利视频在线观看| 有码 亚洲区| 观看免费一级毛片| 男人舔奶头视频| av视频在线观看入口| 欧美另类亚洲清纯唯美| 一个人看的www免费观看视频| 在线观看一区二区三区| 欧美激情在线99| 色尼玛亚洲综合影院| av天堂中文字幕网| 亚洲一级一片aⅴ在线观看| 99在线视频只有这里精品首页| 中文字幕久久专区| 亚洲av中文av极速乱 | 欧美绝顶高潮抽搐喷水| 少妇丰满av| 亚洲欧美清纯卡通| 亚洲在线观看片| av中文乱码字幕在线| 两个人视频免费观看高清| 精品人妻一区二区三区麻豆 | 成人高潮视频无遮挡免费网站| 色综合站精品国产| 亚洲欧美日韩高清在线视频| 天堂动漫精品| 成人美女网站在线观看视频| 亚洲av免费在线观看| 国产av一区在线观看免费| 亚洲精品成人久久久久久| 亚洲人成伊人成综合网2020| 欧美又色又爽又黄视频| 很黄的视频免费| 国产女主播在线喷水免费视频网站 | 久久久久九九精品影院| 九九在线视频观看精品| 在线观看午夜福利视频| 九九在线视频观看精品| 俺也久久电影网| 波野结衣二区三区在线| 最近最新免费中文字幕在线| 久久精品国产亚洲av涩爱 | 日本黄大片高清| 嫩草影院入口| 变态另类成人亚洲欧美熟女| а√天堂www在线а√下载| 国产av一区在线观看免费| 午夜影院日韩av| 久9热在线精品视频| 亚洲国产日韩欧美精品在线观看| 国产av不卡久久| 国产精品一区二区免费欧美| 欧美黑人欧美精品刺激| 亚洲av成人精品一区久久| 九九久久精品国产亚洲av麻豆| 女的被弄到高潮叫床怎么办 | 国产 一区 欧美 日韩| 男女做爰动态图高潮gif福利片| 精品日产1卡2卡| 亚洲国产精品sss在线观看| 97超级碰碰碰精品色视频在线观看| 日韩人妻高清精品专区| 亚洲欧美日韩高清专用| ponron亚洲| 久9热在线精品视频| 永久网站在线| 别揉我奶头~嗯~啊~动态视频| 三级国产精品欧美在线观看| 国产真实乱freesex| 精品一区二区三区人妻视频| 在线免费十八禁| 两个人的视频大全免费| 能在线免费观看的黄片| 又粗又爽又猛毛片免费看| 乱系列少妇在线播放| 免费观看在线日韩| 麻豆成人午夜福利视频| 成人国产一区最新在线观看| 精品人妻熟女av久视频| 男女做爰动态图高潮gif福利片| 中出人妻视频一区二区| avwww免费| 欧美高清性xxxxhd video| 午夜a级毛片| 亚洲男人的天堂狠狠| 最新中文字幕久久久久| 国内久久婷婷六月综合欲色啪| 久久亚洲精品不卡| 久久久久久久久大av| 亚洲第一电影网av| 国产精品国产三级国产av玫瑰| 国产 一区 欧美 日韩| 免费电影在线观看免费观看| 亚洲在线观看片| 免费高清视频大片| 欧美潮喷喷水| 亚洲狠狠婷婷综合久久图片| 欧美绝顶高潮抽搐喷水| 99久久无色码亚洲精品果冻| 麻豆成人av在线观看| 色精品久久人妻99蜜桃| av.在线天堂| 久久九九热精品免费| 日本黄大片高清| 久9热在线精品视频| 国产女主播在线喷水免费视频网站 | 国产美女午夜福利| 国产av在哪里看| 日本黄色片子视频| 欧美bdsm另类| 久久久久精品国产欧美久久久| 亚洲av.av天堂| 九色国产91popny在线| 亚州av有码| 亚洲在线观看片| 亚洲内射少妇av| 亚洲三级黄色毛片| 久久久久久国产a免费观看| 成人精品一区二区免费| 一级毛片久久久久久久久女| 色综合色国产| 午夜免费激情av| 日本黄色视频三级网站网址| 久久久国产成人免费| 国内少妇人妻偷人精品xxx网站| bbb黄色大片| 亚洲精品在线观看二区| 极品教师在线视频| 搡女人真爽免费视频火全软件 | 美女被艹到高潮喷水动态| 国国产精品蜜臀av免费| 亚洲,欧美,日韩| 99国产精品一区二区蜜桃av| av天堂中文字幕网| 真人一进一出gif抽搐免费| 老熟妇仑乱视频hdxx| 18禁黄网站禁片午夜丰满| 97碰自拍视频| 99久国产av精品| 国产精品av视频在线免费观看| 精品人妻一区二区三区麻豆 | 国产精品自产拍在线观看55亚洲| 特级一级黄色大片| 日韩av在线大香蕉| 久久精品91蜜桃| 成人av在线播放网站| 久久精品人妻少妇| 男人狂女人下面高潮的视频| 九九久久精品国产亚洲av麻豆| 又紧又爽又黄一区二区| 久久九九热精品免费| ponron亚洲| 麻豆精品久久久久久蜜桃| 国产午夜精品久久久久久一区二区三区 | 69av精品久久久久久| 在线观看66精品国产| 桃红色精品国产亚洲av| 成人毛片a级毛片在线播放| 免费在线观看成人毛片| 久久精品国产自在天天线| 久久久久精品国产欧美久久久| 国产成年人精品一区二区| 国产激情偷乱视频一区二区| 搡老妇女老女人老熟妇| 麻豆成人av在线观看| 好男人在线观看高清免费视频| 97碰自拍视频| 女的被弄到高潮叫床怎么办 | 特大巨黑吊av在线直播| 日本免费一区二区三区高清不卡| а√天堂www在线а√下载| 国产伦精品一区二区三区四那| 国产蜜桃级精品一区二区三区| 久久99热6这里只有精品| 日本免费一区二区三区高清不卡| 男插女下体视频免费在线播放| 成人高潮视频无遮挡免费网站| 乱人视频在线观看| 免费一级毛片在线播放高清视频| 亚洲精品色激情综合| 蜜桃久久精品国产亚洲av| 无遮挡黄片免费观看| 国内精品久久久久久久电影| 午夜福利高清视频| 亚洲最大成人手机在线| 欧美日韩综合久久久久久 | 亚洲第一电影网av| 精品国产三级普通话版| 亚洲久久久久久中文字幕| 99热网站在线观看| 成人精品一区二区免费| 99国产精品一区二区蜜桃av| 国产一区二区三区视频了| 国产中年淑女户外野战色| 婷婷色综合大香蕉| 亚洲在线自拍视频| 深爱激情五月婷婷| 欧美区成人在线视频| 久99久视频精品免费| 国产真实伦视频高清在线观看 | 五月玫瑰六月丁香| 国产午夜精品论理片| 色精品久久人妻99蜜桃| 午夜福利高清视频| 午夜福利成人在线免费观看| 亚洲国产欧洲综合997久久,| 在线观看舔阴道视频| 欧美成人a在线观看| 12—13女人毛片做爰片一| 亚洲一区高清亚洲精品| 国产私拍福利视频在线观看| 18+在线观看网站| 亚洲黑人精品在线| 成人毛片a级毛片在线播放| 一级av片app| 久久中文看片网| 国产在线男女| 男女视频在线观看网站免费| 精品一区二区三区人妻视频| 男人狂女人下面高潮的视频| 久久久久久久久久黄片| 在线观看舔阴道视频| 久久天躁狠狠躁夜夜2o2o| 22中文网久久字幕| 亚洲男人的天堂狠狠| 国产国拍精品亚洲av在线观看| 久久久久免费精品人妻一区二区| 久久久久国内视频| 人人妻,人人澡人人爽秒播| 日本三级黄在线观看| 国产一区二区激情短视频| 老司机深夜福利视频在线观看| 男插女下体视频免费在线播放| 人人妻,人人澡人人爽秒播| 欧美高清性xxxxhd video| 变态另类丝袜制服| 黄色一级大片看看| 简卡轻食公司| 在线观看一区二区三区| av专区在线播放| 久久久久久久精品吃奶| 老熟妇仑乱视频hdxx| 成熟少妇高潮喷水视频| 国产成人福利小说| 国产白丝娇喘喷水9色精品| 人妻少妇偷人精品九色| 国产不卡一卡二| 免费观看精品视频网站| av视频在线观看入口| 人妻夜夜爽99麻豆av| 老司机午夜福利在线观看视频| 国产精品人妻久久久影院| 内射极品少妇av片p| 午夜精品在线福利| 婷婷色综合大香蕉| 国产欧美日韩精品一区二区| 亚洲欧美日韩卡通动漫| 国内少妇人妻偷人精品xxx网站| 亚洲人成网站在线播| 国产一区二区激情短视频| 国产白丝娇喘喷水9色精品| 一进一出抽搐动态| 精品一区二区免费观看| 在线播放无遮挡| 高清毛片免费观看视频网站| 无遮挡黄片免费观看| 亚洲av成人精品一区久久| 少妇裸体淫交视频免费看高清| 动漫黄色视频在线观看| 欧美3d第一页| 欧美精品国产亚洲| 老熟妇乱子伦视频在线观看| 狂野欧美白嫩少妇大欣赏| 久久99热这里只有精品18| 亚洲午夜理论影院| 春色校园在线视频观看| 91av网一区二区| 大又大粗又爽又黄少妇毛片口| 欧美激情在线99| 大型黄色视频在线免费观看| 精品久久久久久久久久久久久| 乱人视频在线观看| 国产午夜福利久久久久久| 99久国产av精品| 精品久久久久久久久av| 婷婷精品国产亚洲av| 久久精品国产亚洲网站| 免费不卡的大黄色大毛片视频在线观看 | 成年版毛片免费区| 国产中年淑女户外野战色| 我的女老师完整版在线观看| 搞女人的毛片| 亚洲熟妇熟女久久| 国产精品国产高清国产av| 热99re8久久精品国产| 91麻豆精品激情在线观看国产| 伦精品一区二区三区| 亚洲欧美日韩高清专用| 一区福利在线观看| 在线播放无遮挡| 亚洲最大成人手机在线| 久久精品国产自在天天线| 小蜜桃在线观看免费完整版高清| 99riav亚洲国产免费| 精品久久久久久,| 国产色婷婷99| 嫩草影院入口| 国产精品福利在线免费观看| 中文字幕久久专区| 色精品久久人妻99蜜桃| 亚洲乱码一区二区免费版| 成人美女网站在线观看视频| 色播亚洲综合网| 日韩精品青青久久久久久| 天堂影院成人在线观看| 我要搜黄色片| 91久久精品电影网| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品国产成人久久av| 精品不卡国产一区二区三区| 亚洲精品456在线播放app | 成人国产综合亚洲| x7x7x7水蜜桃| 日本精品一区二区三区蜜桃| 看十八女毛片水多多多| 夜夜夜夜夜久久久久| 亚洲熟妇熟女久久| 麻豆成人av在线观看| 成年女人毛片免费观看观看9| 国产黄a三级三级三级人| 国产视频一区二区在线看| 特大巨黑吊av在线直播|