• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis on degradation behaviors of sisal fibers at various pH conditions

    2022-10-18 04:26:32ZhaoLiLiShujinSongYangZhangYamei

    Zhao Li Li Shujin Song Yang Zhang Yamei

    (1 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China)(2 School of Civil Engineering and Architecture, Changzhou Institute of Technology, Changzhou 213032, China)

    Abstract:The degradation behaviors (mass loss, tensile strength, crystallinity index, and microstructure) of sisal fibers immersed in sodium hydroxide solution with pH of 13.6, 12.9, and 11.9 were investigated via X-ray diffraction and scanning electron microscopy. A three-stage degradation process of natural fibers in an alkaline environment was proposed. The results showed that the sisal fibers exhibited a sharp mass loss over the first 7 d of degradation under all pH conditions, attributable to the rapid hydrolysis of lignin and hemicellulose at the fiber surface. The sisal fibers degraded at pH 12.9 and 13.6 over 1 month exhibited significantly lower tensile strengths (181 and 195 MPa, respectively) than the original fibers (234 MPa) because of the loosely bound structure of the component microfibrils caused by the hydrolysis of the linking lignin and hemicellulose. After 6-month degradation, stripped microfibrils occurred in the fibers, resulting in substantial degradation in tensile strength. The sisal fibers degraded at pH 11.9 largely maintained their integrity and tensile strength, even after 6 months, indicating that reducing the environment pH can effectively mitigate the degradation.

    Key words:sisal fibers; cement composites; alkaline degradation; microstructure; tensile strength

    Cement composites are the most commonly used construction materials worldwide; however, their brittle nature associated with crack propagation limits their application[1]. Natural fibers such as sisal, coir, jute, and hemp have received great attention as reinforcing agents for cement composites, owing to their biodegradability, environmental sustainability, low cost, and good mechanical properties. The incorporation of natural fibers into cement composites can increase the mechanical strength of the composites and mitigate shrinkage cracks[2-3]. However, the degradability of natural fibers in alkaline cement composites limits their reinforcing capacity[4-8].

    To mitigate the degradation process of natural fibers in cement composites, the alkalinity of the cement matrix is commonly reduced through the partial replacement of ordinary Portland cement (OPC) with pozzolanic supplementary cementitious materials (SCMs)[8-11]. However, the amount of SCM added is substantially greater than the common range in concrete engineering, which may not only increase cost but also deteriorate the workability of fresh concrete. The degradation behaviors of natural fibers at various pH conditions need to be well understood to ensure the effective regulation of the SCM-OPC cementitious material. Moreover, the alkalinity of the cement pore solution can reach a high level within a short period, even in the presence of a large amount of SCM[12], and the pH will not decrease until after a long period because of the limitation in the pozzolanic reaction activity at an early age. However, the damage of natural fibers in the SCM-OPC paste at an early age is largely ignored.

    Understanding the fundamental mechanisms underlying the alkaline degradation process of natural fibers is the key to improving their durability in cement composites. Although numerous studies have investigated the durability of natural fibers in cement composites, most focused on the mechanical performance of the fiber-reinforced composites after aging cycles[5-6, 8-9, 11]. Systematic research on the variation in the performance of natural fibers at various pH values with the aging time is rather limited. Several studies have investigated the effects of alkali treatment at various concentrations on the tensile strength, chemical component, and surface morphology of natural fibers[13-15]; however, the alkali treatment duration in these studies was too short to elucidate the durability of natural fibers.

    To address these existing research gaps, this study systematically investigated the alkaline degradation behavior of sisal fibers, a natural fiber widely used in cement composites, at various pH conditions at an early age and in the long term. The mass loss, tensile strength, crystallinity index, and microstructure of the sisal fibers were characterized. According to the results, the three-stage alkaline degradation process of natural fibers is proposed. The investigation can comprehensively elucidate the alkaline degradation behavior of natural fibers and provide valuable guidance for their application in cement composites.

    1 Experiments

    1.1 Materials

    Sisal fibers supplied by a printing factory were used in this study. The fibers were cut into lengths of 5 and 10 cm (see Fig. 1). Before use, the fibers were repeatedly washed with tap water to remove dust and then dried under sunlight. Analytical-grade sodium hydroxide (NaOH) was used as the alkaline solution.

    (a)

    (b)

    1.2 Mass loss

    NaOH solutions of three concentrations (1.0, 0.1, and 0.01 mol/L) were prepared, corresponding to pH values of 13.6, 12.9, and 11.9, respectively. The sisal fibers with a length of 5 cm were used for the mass loss test. First, they were dried in an air oven at 60 ℃ for 12 h to remove residual moisture. Then, the dried fibers (5.00 g) were immersed in the prepared NaOH solution for up to 6 months. At certain time points, some fibers were taken out and repeatedly washed with tap water until the pH of the wash water was close to 7. The fibers were dried again in an air oven at 60 ℃ for 12 h and then weighed. To maintain the alkalinity condition, the NaOH solution was replaced every 7 d.

    1.3 Tensile strength

    The tensile strength test was performed on an electronic universal testing machine with a capacity of 20 kg. The sisal fibers with a length of 10 cm were used. The gauge length was set at 45 mm. The load was applied at a constant rate (20 mm/min). The tensile strengthσof a single fiber was calculated using the following equation:

    (1)

    whereFis the load at failure, andAis the cross-sectional area of the tested fiber.

    At least 20 fibers were tested to reduce error. The measurements that exceeded ±50% of the mean value were eliminated, and the average of the remaining was taken. Nondestructive testing using an optical microscope is proposed to improve the measurement accuracy of the cross-sectional area. The experimental details are available in our earlier publication[16].

    1.4 Crystallinity index

    X-ray diffraction (XRD) analysis was performed on sisal fibers at a scanning rate of 0.02°/s and a 2θrange of 5° to 40°. The fibers were cut and passed through a 60-mesh sieve to obtain the analysis samples.

    Fig. 2 shows the XRD pattern of the sisal fibers. The relatively intense peak centered at 22° to 23° corresponds to the (002) lattice plane of cellulose[4]. The broad peak between 13° and 18° is related to the amorphous phase. The crystallinity index of the fiber can be calculated using the following equation[17]:

    (2)

    whereIcris the crystallinity index;I002is the maximum intensity of diffraction of the (002) lattice peak; andIamis the diffraction intensity of the amorphous phase, which is taken as the 2θangle between 18° and 19°, where the intensity is minimum. The crystallinity index of sisal fibers was calculated as 46.1%.

    Fig.2 The XRD pattern of sisal fibers

    1.5 Microstructure

    The microstructure of sisal fibers was characterized using a field-emission scanning electron microscope. The sisal fibers were fixed on an aluminum stub using an electrically conductive adhesive and coated with a thin layer of gold to improve their electrical conductivity.

    2 Results and Discussion

    2.1 Mass loss

    The mass loss of sisal fibers immersed in the alkaline solution at various pH conditions over time is shown in Fig. 3.

    Fig.3 The mass loss of sisal fibers degraded at various pH values over time

    The fiber mass remarkably decreased in the first 7 d and then steadily decreased. After day 7, the sisal fibers degraded at pH 13.6, 12.9, and 11.9 exhibited mass losses of 26.6%, 14.0%, and 11.2%, respectively. The rapid mass loss was due to the hydrolysis of amorphous phases, such as lignin and hemicellulose, at the fiber surface[4, 6]. The sisal fibers degraded at pH 13.6 retained only 51.4% of the original mass after 6 months, indicating severe degradation, while the sisal fibers degraded at pH 11.9 exhibited only a small mass loss after 6 months.

    2.2 Tensile strength

    The tensile strength of the original sisal fibers was 234 MPa. The tensile strengths of the fibers after alkaline degradation are illustrated in Fig. 4.

    Fig.4 Tensile strengths of sisal fibers after degradation at various pH conditions over time

    The sisal fibers exhibited negligible changes in tensile strength after degradation over 7 d, regardless of the pH conditions. However, the tensile strength significantly decreased to 181 and 195 MPa after 1-month degradation at pH 13.6 and 12.9, respectively, and decreased by about 50% after 6-month degradation at pH 13.6. The tensile strength increased after 6-month degradation at pH 11.9, attributable to the reduction in the cross-sectional area due to hydrolysis of the amorphous phase. Therefore, multiscale characterization is needed to better evaluate the degradation degree of natural fibers.

    2.3 Crystallinity index

    The crystallinity index calculated according to the XRD patterns of the degraded sisal fibers is presented in Fig. 5. The crystallinity index gradually increased with the pH and time. The crystallinity index remarkably increased to 96.95% after 6-month degradation at pH 13.6, suggesting that a majority of the amorphous phase had been hydrolyzed by the highly alkaline solution, consistent with the large mass loss.

    Fig.5 Crystallinity index of sisal fibers after degradation at various pH conditions over time

    2.4 Microstructure

    As shown by the scanning electron microscopy (SEM) images, sisal fibers degraded at different pH conditions exhibited marked differences in the microstructure.

    The sisal fibers exhibited a rough surface, characterized by a sequence of ridges and valleys (see Fig. 6(a)). The cross-sectional SEM image (see Fig. 6(b)) showed that the fibers consisted of numerous elongated fiber cells and lumen space. A previous study reported that the fiber cells were united by lamellae consisting of lignin and hemicellulose[18]; the fiber cells were assembled by numerous cellulose microfibrils, which were also linked by lignin and hemicellulose[18].

    (a)

    (b)

    After degradation over 7 d, the surface roughness of sisal fibers substantially increased (see Fig. 7), attributable to the rapid hydrolysis of the amorphous phase at the fiber surface, consistent with the sharp mass loss. Particularly, the sisal fibers degraded at pH 13.6 exhibited distinct surface microfibrils (see Fig. 7(a)).

    (a)

    (b)

    (c)

    The sisal fibers degraded at pH 13.6 and 12.6 over 1 month exhibited loosely bound microfibrils (see Figs. 8(a) and (b)), attributable to the gradual hydrolysis of the linking materials such as lignin and hemicellulose.

    (a)

    (b)

    (c)

    After 6-month degradation at pH 13.6, the fiber integrity was completely damaged, and the majority of microfibrils were stripped (see Fig. 9(a)), which is the main reason for the remarkable reduction in tensile strength. Stripped microfibrils also occurred in some areas of the sisal fibers degraded at pH 12.9 over 6 months (see Fig. 9(b)). The fibers degraded at pH 11.9 exhibited bundled microfibrils with no signs of stripping (see Fig. 9(c)).

    (a)

    (b)

    (c)

    3 Alkaline Degradation Behavior of Natural Fibers

    Natural fibers have a hierarchical structure[4, 18-19]and are mainly composed of cellulose, hemicellulose, and lignin. Cellulose, serving as the load-bearing component, exists as a crystalline phase consisting of numerous microfibrils. Lignin and hemicellulose, which are responsible for the fiber integrity, are amorphous phases existing at the surface and lamellae between fiber cells and microfibrils. Lignin and hemicellulose can be hydrolyzed in an alkaline environment[4, 6]. According to the hierarchical structure of natural fibers and the experimental results of this study, a three-stage alkaline degradation process of natural fibers is proposed, as depicted in Fig. 10.

    Fig.10 Alkaline degradation process of natural fibers

    Stage Ⅰ: Upon the exposure of natural fibers to an alkaline environment, lignin and hemicellulose on the fiber surface are rapidly hydrolyzed, leading to a sharp decrease in fiber mass and a great increase in surface roughness. In this stage, the fiber integrity is not damaged; thus, the change in tensile strength is only marginal.

    Stage Ⅱ: With the hydrolysis of lignin and hemicellulose on the fiber surface, the alkaline solution penetrates into the fiber and dissolves the lignin and hemicellulose between the fiber-cells and microfibrils. Over time, the fiber mass steadily decreases, and the crystallinity index gradually increases. However, the tensile strength remarkably decreases owing to the loosely bound microfibrils.

    Stage Ⅲ: With the continuous hydrolysis of the amorphous phase, the microfibrils become stripped. The damaged fiber integrity deteriorates the fiber mechanical strength and reinforcing capacity.

    Reducing the pH of the alkaline environment can effectively mitigate the degradation process of natural fibers. The SCM-OPC system should be better designed so that the pH of the cement pore solution is less than 11.9. The results also highlight the importance of the surface modification of natural fibers to inhibit the rapid damage of the fiber surface caused by the highly alkaline cement pore solution.

    4 Conclusion

    1) The sisal fibers exhibited a sharp mass loss over the first 7 d of degradation regardless of the pH, owing to the rapid hydrolysis of lignin and hemicellulose at the fiber surface. After day 7, the mass loss rate slowed down.

    2) The change in tensile strength was only marginal after day 7 of degradation; however, the sisal fibers exhibited a significant reduction in tensile strength after 1-month degradation at pH 13.6 and 12.9, owing to the loosely bound microfibrils. After 6-month degradation at pH 13.6, the fibers exhibited an about 50% decrease in tensile strength, owing to fiber integrity damage.

    3) With continuous hydrolysis of the amorphous phase, the crystallinity index of the sisal fibers gradually increased with the pH and time, except for the fibers degraded at pH 13.6 over 6 months, which exhibited a 96.96% increase in crystallinity index.

    4) SEM images revealed that the surface roughness substantially increased after 7-day degradation owing to the removal of lignin and hemicellulose at the fiber surface. With extended degradation, the microfibrils became loosely bound and stripped owing to the continuous hydrolysis of the linking lignin and hemicellulose.

    5) The sisal fibers degraded at pH 11.9 largely maintained their integrity and tensile strength, even after 6 months; thus, reducing the environment pH can effectively mitigate fiber degradation.

    男女做爰动态图高潮gif福利片| 亚洲av日韩精品久久久久久密| 男女做爰动态图高潮gif福利片| 亚洲精品中文字幕一二三四区| 午夜激情福利司机影院| netflix在线观看网站| 美国免费a级毛片| 熟女电影av网| 18禁观看日本| 国产一区二区三区在线臀色熟女| 亚洲黑人精品在线| 成人18禁在线播放| 国产亚洲精品一区二区www| 日韩免费av在线播放| 国产精品一区二区三区四区久久 | 无人区码免费观看不卡| 亚洲av成人一区二区三| 侵犯人妻中文字幕一二三四区| 午夜福利欧美成人| 老鸭窝网址在线观看| 婷婷丁香在线五月| 亚洲精品一卡2卡三卡4卡5卡| 国产一级毛片七仙女欲春2 | 久久精品亚洲精品国产色婷小说| 韩国精品一区二区三区| 久久中文字幕一级| 校园春色视频在线观看| 在线观看66精品国产| 国内揄拍国产精品人妻在线 | 人人妻人人看人人澡| 国产精品1区2区在线观看.| 日韩 欧美 亚洲 中文字幕| videosex国产| 在线看三级毛片| 精品卡一卡二卡四卡免费| 少妇粗大呻吟视频| 免费高清在线观看日韩| 国产单亲对白刺激| 免费无遮挡裸体视频| 国产真人三级小视频在线观看| 少妇裸体淫交视频免费看高清 | 国产精品 欧美亚洲| 成人国产综合亚洲| 一进一出好大好爽视频| 又大又爽又粗| 黄色a级毛片大全视频| 亚洲三区欧美一区| 黄色视频不卡| 两人在一起打扑克的视频| 男男h啪啪无遮挡| 好男人电影高清在线观看| 在线天堂中文资源库| 男人操女人黄网站| 国产亚洲精品综合一区在线观看 | 日韩视频一区二区在线观看| 成年女人毛片免费观看观看9| 国产精品亚洲美女久久久| 无遮挡黄片免费观看| 久久久水蜜桃国产精品网| 欧美色视频一区免费| 精品国内亚洲2022精品成人| 久久精品人妻少妇| 午夜亚洲福利在线播放| 国产av一区在线观看免费| 午夜激情av网站| 欧美黑人精品巨大| 午夜精品在线福利| 精品高清国产在线一区| 国产在线观看jvid| 俺也久久电影网| 国产人伦9x9x在线观看| 日韩欧美 国产精品| 久久香蕉国产精品| 高清毛片免费观看视频网站| 午夜激情福利司机影院| 法律面前人人平等表现在哪些方面| 亚洲avbb在线观看| 男女那种视频在线观看| 国产99久久九九免费精品| 亚洲 欧美一区二区三区| 中文资源天堂在线| 激情在线观看视频在线高清| 国产午夜福利久久久久久| 男人舔奶头视频| 国内揄拍国产精品人妻在线 | 欧美色欧美亚洲另类二区| 高清在线国产一区| 啦啦啦韩国在线观看视频| 国产精品免费视频内射| 午夜福利高清视频| 国产亚洲精品久久久久5区| 在线av久久热| 黄色成人免费大全| 亚洲激情在线av| 欧美成狂野欧美在线观看| 亚洲天堂国产精品一区在线| 日本免费一区二区三区高清不卡| 免费女性裸体啪啪无遮挡网站| 精品欧美一区二区三区在线| 色婷婷久久久亚洲欧美| 久久中文看片网| 91国产中文字幕| 一级毛片女人18水好多| 国产野战对白在线观看| a级毛片在线看网站| 午夜久久久久精精品| 久久久久久免费高清国产稀缺| 波多野结衣高清作品| 18禁黄网站禁片午夜丰满| 搡老熟女国产l中国老女人| 久久国产乱子伦精品免费另类| 亚洲一码二码三码区别大吗| 黄片播放在线免费| 人人妻人人澡欧美一区二区| 亚洲五月天丁香| 正在播放国产对白刺激| 韩国精品一区二区三区| 亚洲精华国产精华精| 观看免费一级毛片| 日韩欧美 国产精品| 天天添夜夜摸| 亚洲国产精品久久男人天堂| 每晚都被弄得嗷嗷叫到高潮| 制服丝袜大香蕉在线| 欧美另类亚洲清纯唯美| 999精品在线视频| 欧美性猛交黑人性爽| 国产成人av教育| 久久精品亚洲精品国产色婷小说| 免费av毛片视频| 久久九九热精品免费| 国产精品野战在线观看| 在线观看一区二区三区| 国产熟女午夜一区二区三区| 日本熟妇午夜| 色综合亚洲欧美另类图片| tocl精华| 欧美国产精品va在线观看不卡| 国产av一区二区精品久久| 桃红色精品国产亚洲av| 一本综合久久免费| 国产成年人精品一区二区| 久99久视频精品免费| 91九色精品人成在线观看| 欧美在线黄色| 国产av又大| 99久久99久久久精品蜜桃| 国产又爽黄色视频| 久9热在线精品视频| 久久久久久久久中文| 啦啦啦免费观看视频1| a在线观看视频网站| 日日夜夜操网爽| 女人高潮潮喷娇喘18禁视频| a在线观看视频网站| 久久国产亚洲av麻豆专区| 波多野结衣av一区二区av| 免费搜索国产男女视频| 午夜免费鲁丝| 久久狼人影院| 美女 人体艺术 gogo| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕人成人乱码亚洲影| 后天国语完整版免费观看| 亚洲国产日韩欧美精品在线观看 | 国内精品久久久久精免费| 男女午夜视频在线观看| 久久九九热精品免费| 91在线观看av| 亚洲av美国av| 免费在线观看亚洲国产| 国产视频一区二区在线看| 国产av不卡久久| 亚洲免费av在线视频| 精品少妇一区二区三区视频日本电影| 视频区欧美日本亚洲| 久久久久国产一级毛片高清牌| 亚洲人成网站在线播放欧美日韩| 日韩欧美免费精品| 黄片播放在线免费| 日韩精品免费视频一区二区三区| 麻豆成人午夜福利视频| 午夜激情av网站| 19禁男女啪啪无遮挡网站| 狂野欧美激情性xxxx| 国产视频一区二区在线看| 亚洲av日韩精品久久久久久密| 成人亚洲精品av一区二区| 国产99白浆流出| 黄色视频,在线免费观看| 国内久久婷婷六月综合欲色啪| 老汉色∧v一级毛片| 香蕉丝袜av| 国产又黄又爽又无遮挡在线| 亚洲欧美日韩无卡精品| 亚洲人成电影免费在线| 久热爱精品视频在线9| 久久久久久国产a免费观看| 人妻久久中文字幕网| 亚洲精品中文字幕在线视频| 亚洲aⅴ乱码一区二区在线播放 | 男女午夜视频在线观看| 中文字幕人妻熟女乱码| 日本成人三级电影网站| 精品免费久久久久久久清纯| 免费一级毛片在线播放高清视频| 18禁国产床啪视频网站| 亚洲精品国产一区二区精华液| 少妇粗大呻吟视频| 俺也久久电影网| 香蕉久久夜色| 在线天堂中文资源库| 色综合欧美亚洲国产小说| 亚洲精品国产区一区二| 国产精品av久久久久免费| 最新在线观看一区二区三区| 精品高清国产在线一区| 天天躁夜夜躁狠狠躁躁| 久久精品国产清高在天天线| 国产精品久久久久久人妻精品电影| 久99久视频精品免费| 脱女人内裤的视频| 免费在线观看影片大全网站| 久久精品影院6| 欧美色视频一区免费| 亚洲精品av麻豆狂野| 国产高清视频在线播放一区| 国产一区二区激情短视频| 一进一出抽搐动态| 成人精品一区二区免费| 在线观看一区二区三区| 国产精品自产拍在线观看55亚洲| 欧美丝袜亚洲另类 | 亚洲一区二区三区不卡视频| 天堂√8在线中文| 美女扒开内裤让男人捅视频| 色在线成人网| 国内精品久久久久久久电影| 不卡一级毛片| 99久久无色码亚洲精品果冻| 午夜日韩欧美国产| 长腿黑丝高跟| 午夜久久久久精精品| 亚洲欧美日韩无卡精品| 国产国语露脸激情在线看| 久热爱精品视频在线9| 久久中文字幕人妻熟女| 人妻丰满熟妇av一区二区三区| 亚洲第一av免费看| 桃色一区二区三区在线观看| 久久婷婷成人综合色麻豆| 免费人成视频x8x8入口观看| 又黄又粗又硬又大视频| a级毛片a级免费在线| 国产高清videossex| 国产三级在线视频| 久99久视频精品免费| 精品少妇一区二区三区视频日本电影| 日韩av在线大香蕉| 在线十欧美十亚洲十日本专区| 国产三级黄色录像| 黄色a级毛片大全视频| avwww免费| 中文字幕精品亚洲无线码一区 | cao死你这个sao货| 老司机深夜福利视频在线观看| 黄色视频不卡| 观看免费一级毛片| 精品国产美女av久久久久小说| 欧美丝袜亚洲另类 | 国产亚洲精品久久久久久毛片| 久久人妻福利社区极品人妻图片| 色综合婷婷激情| 亚洲成av片中文字幕在线观看| 色av中文字幕| 97碰自拍视频| 可以在线观看的亚洲视频| 侵犯人妻中文字幕一二三四区| 日本免费a在线| 成人一区二区视频在线观看| 免费在线观看完整版高清| 久久久久国产一级毛片高清牌| 自线自在国产av| 亚洲精品久久国产高清桃花| 亚洲av五月六月丁香网| 精品免费久久久久久久清纯| 亚洲专区字幕在线| 叶爱在线成人免费视频播放| 成人一区二区视频在线观看| АⅤ资源中文在线天堂| 亚洲人成网站高清观看| 午夜福利一区二区在线看| 欧美丝袜亚洲另类 | 99精品在免费线老司机午夜| 老司机深夜福利视频在线观看| 久久婷婷人人爽人人干人人爱| 制服诱惑二区| 色综合婷婷激情| 免费看a级黄色片| av超薄肉色丝袜交足视频| 怎么达到女性高潮| 国产精品久久久久久亚洲av鲁大| 嫩草影院精品99| 国产精品 欧美亚洲| 午夜福利高清视频| 亚洲中文av在线| 欧美一级毛片孕妇| ponron亚洲| 国产精品av久久久久免费| 首页视频小说图片口味搜索| 亚洲一区中文字幕在线| 午夜免费观看网址| 色精品久久人妻99蜜桃| 人妻丰满熟妇av一区二区三区| 精品久久久久久,| bbb黄色大片| 老汉色∧v一级毛片| 国产成人影院久久av| 岛国在线观看网站| 欧美在线一区亚洲| 欧美日韩精品网址| 国产精品久久久久久人妻精品电影| 中文字幕精品免费在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 男男h啪啪无遮挡| 哪里可以看免费的av片| 国内精品久久久久精免费| 宅男免费午夜| 久久久久久久久免费视频了| 国产成年人精品一区二区| 亚洲天堂国产精品一区在线| 18禁国产床啪视频网站| 国产片内射在线| 亚洲片人在线观看| 国产久久久一区二区三区| 午夜福利欧美成人| 国产激情久久老熟女| 国产精品久久久av美女十八| 欧美一级毛片孕妇| av在线播放免费不卡| 特大巨黑吊av在线直播 | 欧美另类亚洲清纯唯美| 午夜福利欧美成人| svipshipincom国产片| 精品国产一区二区三区四区第35| 色综合欧美亚洲国产小说| 亚洲国产精品sss在线观看| 老司机午夜十八禁免费视频| 最好的美女福利视频网| 首页视频小说图片口味搜索| 丁香欧美五月| 熟女少妇亚洲综合色aaa.| 一级a爱片免费观看的视频| 夜夜夜夜夜久久久久| 亚洲av成人不卡在线观看播放网| x7x7x7水蜜桃| 女人高潮潮喷娇喘18禁视频| 狂野欧美激情性xxxx| 在线视频色国产色| 色av中文字幕| 黄色女人牲交| 老司机午夜福利在线观看视频| 午夜视频精品福利| 亚洲无线在线观看| 久久精品影院6| 在线看三级毛片| 亚洲va日本ⅴa欧美va伊人久久| 1024香蕉在线观看| 国产精品亚洲av一区麻豆| 熟女电影av网| 搡老妇女老女人老熟妇| 久久久久精品国产欧美久久久| 嫩草影视91久久| 亚洲国产精品成人综合色| 免费在线观看日本一区| 亚洲国产毛片av蜜桃av| 麻豆国产av国片精品| 女性被躁到高潮视频| 波多野结衣高清作品| 欧美日韩亚洲国产一区二区在线观看| 亚洲人成网站在线播放欧美日韩| 免费看美女性在线毛片视频| 中文字幕久久专区| 两个人免费观看高清视频| e午夜精品久久久久久久| 欧美三级亚洲精品| 国产高清有码在线观看视频 | 日韩精品青青久久久久久| 亚洲一码二码三码区别大吗| 国产成人av激情在线播放| 亚洲精品国产区一区二| 制服丝袜大香蕉在线| 观看免费一级毛片| 美女午夜性视频免费| 无人区码免费观看不卡| 精品不卡国产一区二区三区| 黄色视频,在线免费观看| 国产成人av激情在线播放| 一a级毛片在线观看| 99久久国产精品久久久| 老熟妇乱子伦视频在线观看| 免费高清在线观看日韩| 淫妇啪啪啪对白视频| av欧美777| 欧美色欧美亚洲另类二区| 精品国产超薄肉色丝袜足j| 成人午夜高清在线视频 | 欧美黑人欧美精品刺激| 免费在线观看日本一区| 黑丝袜美女国产一区| 一本大道久久a久久精品| 久久精品国产亚洲av高清一级| 亚洲色图av天堂| 最近最新免费中文字幕在线| 国产一级毛片七仙女欲春2 | 97人妻精品一区二区三区麻豆 | av中文乱码字幕在线| 国产区一区二久久| 日韩精品免费视频一区二区三区| 成人18禁高潮啪啪吃奶动态图| 免费在线观看完整版高清| 脱女人内裤的视频| 国产精品av久久久久免费| 亚洲最大成人中文| 日韩高清综合在线| 亚洲国产欧美日韩在线播放| 日韩一卡2卡3卡4卡2021年| 午夜福利18| 色av中文字幕| 日韩欧美三级三区| 日日摸夜夜添夜夜添小说| 美女高潮到喷水免费观看| 9191精品国产免费久久| 国产成人精品无人区| 一级a爱视频在线免费观看| 亚洲五月婷婷丁香| 大型黄色视频在线免费观看| 亚洲第一欧美日韩一区二区三区| 在线永久观看黄色视频| 国产99久久九九免费精品| 日韩视频一区二区在线观看| 手机成人av网站| 十八禁人妻一区二区| 不卡一级毛片| 国产视频内射| 男女做爰动态图高潮gif福利片| 日本一本二区三区精品| 90打野战视频偷拍视频| 国产精品国产高清国产av| 18美女黄网站色大片免费观看| 亚洲一区二区三区色噜噜| 国产麻豆成人av免费视频| 欧美av亚洲av综合av国产av| 精品久久久久久久久久久久久 | www.熟女人妻精品国产| 窝窝影院91人妻| 欧美激情极品国产一区二区三区| 国产精品野战在线观看| 亚洲av第一区精品v没综合| 777久久人妻少妇嫩草av网站| 91国产中文字幕| 嫩草影视91久久| 欧美一级毛片孕妇| 免费在线观看完整版高清| 国产激情偷乱视频一区二区| а√天堂www在线а√下载| 亚洲五月色婷婷综合| 久久久国产成人免费| 91成人精品电影| 欧洲精品卡2卡3卡4卡5卡区| 99在线人妻在线中文字幕| 美国免费a级毛片| 日本 欧美在线| 身体一侧抽搐| 国产亚洲欧美98| 国产av一区二区精品久久| 脱女人内裤的视频| 搡老妇女老女人老熟妇| 久久精品91蜜桃| 99热6这里只有精品| 久久狼人影院| 久久青草综合色| 听说在线观看完整版免费高清| 老司机在亚洲福利影院| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久久久久,| 天堂影院成人在线观看| av有码第一页| 手机成人av网站| 1024手机看黄色片| 丁香欧美五月| 午夜免费鲁丝| 性色av乱码一区二区三区2| 国产精品亚洲一级av第二区| 国产精品美女特级片免费视频播放器 | 99国产精品99久久久久| 亚洲黑人精品在线| 欧美一区二区精品小视频在线| 可以免费在线观看a视频的电影网站| 91麻豆精品激情在线观看国产| 男男h啪啪无遮挡| 亚洲国产精品成人综合色| 老汉色∧v一级毛片| 亚洲成国产人片在线观看| 免费电影在线观看免费观看| 亚洲国产欧美网| 免费人成视频x8x8入口观看| 日韩欧美 国产精品| 91麻豆av在线| АⅤ资源中文在线天堂| 岛国在线观看网站| 国产真实乱freesex| 国产一区在线观看成人免费| 看免费av毛片| 51午夜福利影视在线观看| 精品国产超薄肉色丝袜足j| 国产区一区二久久| 亚洲男人天堂网一区| 国产精品亚洲美女久久久| a在线观看视频网站| 国产av在哪里看| 国内久久婷婷六月综合欲色啪| 国产三级黄色录像| 国产乱人伦免费视频| 国产极品粉嫩免费观看在线| 一区二区日韩欧美中文字幕| 免费一级毛片在线播放高清视频| 免费搜索国产男女视频| 久久精品人妻少妇| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩中文字幕国产精品一区二区三区| 日韩精品中文字幕看吧| 国产熟女午夜一区二区三区| av在线播放免费不卡| 亚洲精品av麻豆狂野| 免费人成视频x8x8入口观看| 好男人电影高清在线观看| √禁漫天堂资源中文www| 女性生殖器流出的白浆| 国产精品98久久久久久宅男小说| 中文字幕精品亚洲无线码一区 | 91麻豆av在线| 啦啦啦 在线观看视频| 欧美激情久久久久久爽电影| 操出白浆在线播放| 国产蜜桃级精品一区二区三区| 国产成人精品久久二区二区免费| 午夜福利在线观看吧| 婷婷精品国产亚洲av在线| 久久午夜综合久久蜜桃| 香蕉丝袜av| 亚洲精品国产区一区二| 一卡2卡三卡四卡精品乱码亚洲| 女生性感内裤真人,穿戴方法视频| 亚洲色图av天堂| 黄色片一级片一级黄色片| 在线永久观看黄色视频| 好看av亚洲va欧美ⅴa在| 高清毛片免费观看视频网站| 日韩成人在线观看一区二区三区| 久久久久久久久免费视频了| а√天堂www在线а√下载| 一区二区三区高清视频在线| 国产激情久久老熟女| 成人亚洲精品一区在线观看| 一边摸一边做爽爽视频免费| 欧美中文日本在线观看视频| 中文字幕人妻丝袜一区二区| 美女国产高潮福利片在线看| 中文字幕精品亚洲无线码一区 | 亚洲avbb在线观看| 久久久国产精品麻豆| 亚洲人成网站在线播放欧美日韩| 久久久国产成人精品二区| 国产精品二区激情视频| 曰老女人黄片| aaaaa片日本免费| 88av欧美| 99国产精品一区二区三区| 麻豆国产av国片精品| 国产高清激情床上av| 精品国产国语对白av| 久久性视频一级片| 美女午夜性视频免费| 热re99久久国产66热| 亚洲五月婷婷丁香| 国产又色又爽无遮挡免费看| 人人妻人人看人人澡| 青草久久国产| 午夜a级毛片| 9191精品国产免费久久| tocl精华| 午夜福利一区二区在线看| 亚洲一区二区三区不卡视频| 麻豆成人午夜福利视频| 在线永久观看黄色视频| 亚洲自偷自拍图片 自拍| 可以在线观看的亚洲视频| 国产一卡二卡三卡精品| 欧美精品啪啪一区二区三区| 热99re8久久精品国产| 欧美黄色片欧美黄色片| 手机成人av网站| 两人在一起打扑克的视频| 亚洲精品美女久久av网站| 麻豆成人av在线观看| 久久久久国产一级毛片高清牌| 一进一出抽搐gif免费好疼| 欧美国产日韩亚洲一区| 日韩欧美免费精品| 精品电影一区二区在线| 九色国产91popny在线| 69av精品久久久久久| 最好的美女福利视频网| 国产精品电影一区二区三区|