• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A modified time domain interpolation method for LS channel estimation in OFDM systems

    2022-10-18 08:12:58ZhangYenanXuFeiyunJiaMinping

    Zhang Yenan Xu Feiyun Jia Minping

    (School of Mechanical Engineering, Southeast University, Nanjing 211189, China)

    Abstract:A modified time domain interpolation method is proposed for orthogonal frequency division multiplexing (OFDM) systems to address the problem that time domain interpolation in the least square (LS) channel estimation method based on comb-type pilots cannot choose the pilot spacing flexibly. Firstly, the estimated channel frequency response (CFR) at pilot positions in the frequency domain is obtained by LS channel estimation based on comb-type pilots, and the estimated channel impulse response (CIR) in the time domain is obtained by linear interpolation and inverse fast Fourier transform (IFFT). Secondly, the error of the estimated CIR obtained by linear interpolation is analyzed by theoretical deduction, and a method for correcting it is proposed. Finally, an estimated CFR at all subcarrier positions in the frequency domain is obtained by performing zero padding in the time domain and fast Fourier transform (FFT) on the modified CIR. The simulation results suggest that the proposed method gives similar performance to time domain interpolation, yet it does not need to meet the condition of time domain interpolation that the number of subcarriers must be an integral multiple of pilot spacing to use it. The proposed method allows for flexible pilot spacing, reducing the number of pilots and the consumption of subcarriers used for channel estimation.

    Key words:orthogonal frequency division multiplexing (OFDM); channel estimation; linear interpolation; time domain interpolation

    Orthogonal frequency division multiplexing (OFDM) is a multicarrier modulation technique with high bandwidth efficiency, high transmission rate, and robustness to multipath fading. It has been adopted in wireline applications such as digital audio broadcasting (DAB)[1], underwater acoustic communication (UWA)[2], and digital video broadcasting (DVB)[3], fifth generation (5G)[4], etc.

    Channel estimation is essential for OFDM systems; the influence of the channel needs to be estimated at the receiver. Pilot-based approaches are widely used in channel estimation. Pilot tones can be inserted into the time domain or frequency domain, called block-type and comb-type. The comb-type pilot arrangement has better performance than the block-type for fast-fading channels[5]. The estimated channel frequency response (CFR) at the pilot positions can be obtained by least square (LS) or minimum mean square error (MMSE)[6]. MMSE algorithm provides better performance with high complexity. LS algorithm utilizes the least-squares criterion and has been widely used due to its low complexity.

    The LS estimated CFR is interpolated to obtain CFR at all subcarriers. The interpolation methods can be divided into frequency domain interpolation, transform domain interpolation, and time domain interpolation. The frequency domain interpolation methods include linear interpolation, Gaussian interpolation, and spline cubic interpolation[7]. Transform domain interpolation uses the discrete Fourier transform (DFT) to transform the LS estimated CFR into the transform domain. High-resolution interpolation with low complexity is based on zero-padding in the transform domain and inverse DFT (IDFT)[8].

    Time domain interpolation has a similar process to transform domain interpolation. The LS estimated CFR is transformed into the time domain by IDFT, and the estimated channel impulse response (CIR) is obtained. CFR at all subcarriers is obtained by zero padding and DFT. Time domain interpolation has been proven to have a lower bit error rate (BER) than linear interpolation[7]. Time domain interpolation has a better performance than transform domain interpolation, as shown in Ref.[8]. Furthermore, as demonstrated in Ref.[9], time domain interpolation outperforms linear, cubic, and low pass interpolation. Time domain interpolation has been investigated for OFDM systems with virtual subcarriers in Refs.[10, 11].

    Time domain interpolation is accurate if the channel delays are integral multiples of the sample time of the OFDM symbol and the sample length of CIR is less than the number of pilots[12]. Furthermore, DFT and IDFT are easy to realize using the fast Fourier transform (FFT) algorithm[13]. Thus, time domain interpolation is widely used. Noise has the potential to affect LS, and noise reduction in the time domain is widely used[14-16]. Time domain interpolation is realized by zero-padding in the time domain. Therefore, it can be used with various time domain noise reduction methods.

    However, pilot subcarrier spacing is determined by the channel’s maximum excess delay[11]. The pilot subcarriers used in channel estimation will consume a significant amount of subcarrier resources for the channel with a large delay spread[17]. To use time domain interpolation, the number of subcarriers must be an integral multiple of the pilot subcarrier spacing[18], which may cause a larger consumption of pilots. A reasonable pilot spacing should ensure good channel estimation performance while minimizing the number of subcarriers consumed by the pilots[19]. The subcarriers’ distribution is essential, especially for applications with narrow channel bandwidth[20-21].

    In this paper,the modified time domain interpolation method is proposed to address the disadvantage of time domain interpolation in which the number of subcarriers must be an integral multiple of the pilot subcarrier spacing. Firstly, the OFDM system model is presented and the relationship between the estimated CIR from LS based on linear interpolation and the actual CIR is analyzed. Secondly, the disadvantages of time domain interpolation are examined and a modified time domain interpolation method is proposed. Then, simulation results are presented and analyzed.

    1 Analysis of LS Channel Estimation Based on Linear Interpolation

    1.1 System model

    We consider an OFDM system that hasNsubcarriers. The transmitted signal at each subcarrier is {X[k],k=0, 1, …,N-1}, wherekrepresents the subcarrier index. The transmitted signal is transformed to a discrete-time domain by IDFT, given by

    (1)

    wherenis the sample index of the OFDM signal in the time domain. This is the modulation process of the OFDM system. Considering the effect of multipath effects, discrete-time CIR is given by

    (2)

    wherelis the index of the different paths;αlis the path complex gain of thel-th path;τlis the delay of thel-th path; andLis the total number of channel paths. If reasonable CP guard samples are used after passing through a multipath channel and removing CP, the received OFDM signal is represented by

    r[n]=x[n]?h[n]+z[n]

    (3)

    where ? denotes anN-point circular convolution operation, andz[n] denotes time domain samples of independent and identical distributed additive white Gaussian noise (AWGN). Assuming perfect synchronization, thek-th subcarrier symbol in the frequency domain is given by

    R[k]=DFTN{r[n]}=X[k]H[k]+Z[k]

    (4)

    whereZ[k] are AWGN samples in frequency domain.Z[k]=DFTN{z[n]},H[k]=DFTN{h[n]}, and DFTN{} representsN-point DFT.

    By inserting pilot tones at some subcarriers,CFR at pilot positions can be obtained by

    (5)

    This method is called LS estimation.

    1.2 Analysis of linear interpolation

    (6)

    (7)

    (8)

    whereWN=exp(-j2π/N), called the rotation factor. By the properties of the rotation factor[22], we have

    (9)

    when 0≤n≤K-1,

    (10)

    By Eqs.(9) and (10), we have

    (11)

    wherePN,m[n] is defined by

    (12)

    The condition thatN/mis not an integer is then considered, and the other conditions are the same. The number of pilotsK= , where represents the nearest integer with a value greater thanN/m.

    (13)

    (14)

    WhenNis large, the last two parts of Eq.(14) are insignificant. Then we have

    (15)

    2 Proposed Interpolation Method

    2.1 Analysis of time domain interpolation

    (16)

    (17)

    The second one is padding at the middle of the sequence[23], given by

    (18)

    The first one is studied in this paper.

    The estimated CFR at all subcarriers is obtained byN-point FFT:

    (19)

    (20)

    (21)

    As a result, time domain interpolation is a high-resolution method that is easy to realize. However, the number of subcarriersNmust be the integral multiple of the pilot spacingmto use time domain interpolation, i.e.,N/mmust be an integer.mis determined by the maximum delayτm. The maximum pilot spacing that satisfiesτm≤Kdoes not always satisfy the requirement of time domain interpolation. Smaller pilot spacing can be designed to satisfy both requirements, but it increases the number of pilot subcarriers and reduces system efficiency. To overcome the limitation of time domain interpolation, the modified time domain interpolation method is proposed.

    2.2 Modified time domain interpolation

    (22)

    AssumingmK/N≈1 andWN≈WmK, similarly to Eqs.(20) and (21), we have

    (23)

    (24)

    PmK,m[n] is close to 0 whennis close toK, as shown in Fig. 1.

    In Eq.(15),I[n] in Eq.(14) is ignored. The error of Eq.(15) is given by

    (25)

    The smaller the value ofPmK,m[n], the greater the error caused by simplification in Eq.(15), and the error becomes significant whennis close toK. Thus, considering the accuracy of calculation and ease of implementation, the last quarter ofPmK,m[n] with a smaller value is discarded, and the approximate calculation results of

    h[n] are as follows:

    (26)

    (27)

    The calculation process of the proposed method is shown in Fig. 2.

    3 Simulation Results and Discussion

    3.1 Description of simulation

    In this section, we analyze the performance of the proposed method on multipath channels. The OFDM system has 1 024 subcarriers and is modulated with 16-QAM. To

    (a)

    (b)

    Fig.2 Calculation process of the proposed method

    investigate the performance of the proposed method separately, the synchronization is assumed to be perfect.

    The channel is the Advanced Television Technology Center and the Grand Alliance DTV Laboratory’s ensemble E model[16], and CIR for the static case is given by

    h[n]=δ[n]+0.316 2δ[n-2]+0.199 5δ[n-17]+
    0.129 6δ[n-36]+0.1δ[n-75]+0.1δ[n-137]

    (28)

    The unit delay is assumed to be the same as the sample period; there are no power losses caused by the non-spaced sample[24].

    3.2 Comparison with common interpolation methods

    Figs. 3 and 4 show the BER and MSE performance of various interpolation methods against SNR. The legends “l(fā)inear, cubic, spline, and proposed method” denote LS channel estimation based on comb-type pilots with linear interpolation, cubic interpolation, cubic spline interpolation, and modified time domain interpolation.

    (a)

    (b)

    (a)

    (b)

    It is obvious that

    1) When the pilot spacing is small (m=3), the modified time domain interpolation outperforms linear interpolation and cubic interpolation in BER performance and has similar BER performance to cubic spline interpolation. Additionally, time domain interpolation is shown to be much better than other interpolation methods in MSE performance. The performance of linear interpolation is the worst.

    2) When the pilot spacing is increased (m=4), the BER and MSE performance of cubic interpolation and cubic spline interpolation decrease rapidly, approaching linear interpolation, whereas the modified time domain interpolation method retains its good performance.

    3.3 Comparison with time domain interpolation

    Whenm=4, the time domain interpolation method meets the requirements for use. The legends “time domain interpolation, proposed method, and linear” denote LS channel estimation based on comb-type pilots with time domain interpolation, modified time domain interpolation, and linear interpolation in Fig. 5.

    It is obvious that time domain interpolation and the proposed method provide comparable BER and MSE performance, which is significantly better than linear interpolation.

    (a)

    (b)

    Time domain interpolation cannot be directly used whenm=5 andm=6. The following methods are used to compare with the modified time domain interpolation.

    The comparison between modified time domain interpolation, method 1, and method 2 is shown in Figs. 6 and 7. The legends “method 1, method 2, proposed method, linear” denote LS channel estimation based on comb-type pilots with method 1, method 2, the proposed method, and linear interpolation.

    In the case of no noise, the CIR calculated by the modified time domain interpolation method (Eq.(26)) and the CIR calculated by performingK-point IDFT on the LS estimated CFR (Eq.(23)) are shown in Tabs. 1 and 2.

    It can be seen that

    (a)

    (b)

    (a)

    (b)

    1)Methods 1 and 2 useK-point IDFT on the LS estimated CFR to calculate CIR; the amplitude of the estimated CIR is relatively accurate, but the phase error is significant and increases as indexnincreases.

    2)Methods 1 and 2 outperform linear interpolation, but themK-point DFT andK-point IDFT used do not meet the use conditions of the FFT algorithm (the number of FFT points must be a power of 2). Thus, the amount of calculation is very large. Methods 1 and 2 have low practical value and are only used as comparisons with the proposed method.

    3) The modified time domain interpolation method outperforms methods 1 and 2 because it has similar calculation accuracy in the amplitude of the estimated CIR to methods 1 and 2, and the phase error is much smaller, as shown in Tabs. 1 and 2.

    Tab. 1 CIR and the estimated CIR by the proposed method and IDFT (m=5)

    Tab. 2 CIR and the estimated CIR by the proposed method and IDFT (m=6)

    3.4 Computational complexity analysis

    In practice, the reciprocals ofPmK,m[n] can be stored, and division in Eq.(26) can be realized by multiplication. Using the proposed method, the computation amount includes three aspects: (N-K)-point linear interpolation,N-point IFFT, and Eq.(26). The computation amount for each step is shown in Tab. 3. (2N-K+(Nlog2N)/2) complex multiplications and (N-K+Nlog2N) complex additions are required. The proposed method has low computational complexity.

    Tab. 3 Computation amount of the proposed method

    4 Conclusions

    1) LS channel estimation based on linear interpolation is theoretically deduced, and the relationship between the estimated CIR from LS based on linear interpolation and the ideal CIR is analyzed.

    2) The modified time domain interpolation method is proposed, which uses CIR obtained by LS based on linear interpolation to calculate actual CIR, and interpolation is realized by zero-padding in the time domain, such as time domain interpolation.

    3) LS estimations based on comb-type pilots of different pilot spacings with the proposed method, time domain interpolation, and interpolation methods in the frequency domain, such as linear interpolation, cubic interpolation, and cubic spline interpolation, are simulated and compared. The simulation results indicate that the proposed method performs similarly to and outperforms time domain interpolation with low complexity.

    4) The proposed method is exempt from the requirement that the number of subcarriers is an integral multiple of pilot spacing. The consumption of subcarriers used for channel estimation can be reduced.

    丝袜美足系列| 有码 亚洲区| 欧美xxⅹ黑人| 亚洲三级黄色毛片| 日本黄色片子视频| 一本—道久久a久久精品蜜桃钙片| 伊人亚洲综合成人网| 麻豆成人av视频| 飞空精品影院首页| 国产在视频线精品| 男男h啪啪无遮挡| 少妇人妻 视频| 美女大奶头黄色视频| 国产一区二区三区综合在线观看 | 久久精品国产自在天天线| 国产有黄有色有爽视频| 精品人妻在线不人妻| 久久久久网色| 久久午夜综合久久蜜桃| 亚洲美女视频黄频| 中文字幕人妻丝袜制服| 久久亚洲国产成人精品v| 乱人伦中国视频| 国产精品嫩草影院av在线观看| 最近中文字幕高清免费大全6| 在线观看三级黄色| 精品久久久久久久久亚洲| 国产男女超爽视频在线观看| 国产又色又爽无遮挡免| 欧美xxxx性猛交bbbb| 视频区图区小说| 性高湖久久久久久久久免费观看| av线在线观看网站| 亚洲,一卡二卡三卡| 日产精品乱码卡一卡2卡三| 一级毛片aaaaaa免费看小| 亚洲人与动物交配视频| 美女国产视频在线观看| 成人综合一区亚洲| 看非洲黑人一级黄片| 人妻少妇偷人精品九色| 伊人亚洲综合成人网| 国产精品蜜桃在线观看| 国产日韩一区二区三区精品不卡 | 久久久久久伊人网av| 在线观看免费日韩欧美大片 | 性色avwww在线观看| av卡一久久| 高清av免费在线| 亚洲精品日韩av片在线观看| 两个人的视频大全免费| 久久精品人人爽人人爽视色| 九九爱精品视频在线观看| 国产av国产精品国产| 久久青草综合色| 青春草亚洲视频在线观看| 爱豆传媒免费全集在线观看| 日韩精品有码人妻一区| 少妇丰满av| 亚洲美女视频黄频| 国产精品人妻久久久影院| 伦理电影免费视频| 国产av国产精品国产| 久久午夜福利片| 亚洲四区av| 中文乱码字字幕精品一区二区三区| 国产老妇伦熟女老妇高清| 亚洲国产色片| 91久久精品国产一区二区成人| 亚洲情色 制服丝袜| 一边亲一边摸免费视频| 七月丁香在线播放| 日韩中字成人| 男人操女人黄网站| av网站免费在线观看视频| 一级毛片黄色毛片免费观看视频| 国产成人精品在线电影| 黄色一级大片看看| 国产免费现黄频在线看| 80岁老熟妇乱子伦牲交| 免费少妇av软件| av在线老鸭窝| 欧美成人精品欧美一级黄| 亚洲五月色婷婷综合| 国产成人免费无遮挡视频| 国产精品一区二区在线不卡| 中文字幕最新亚洲高清| 精品一区在线观看国产| 一边亲一边摸免费视频| 亚洲一级一片aⅴ在线观看| 精品午夜福利在线看| 多毛熟女@视频| 日韩三级伦理在线观看| 中文精品一卡2卡3卡4更新| 亚洲怡红院男人天堂| 亚洲熟女精品中文字幕| 日韩av不卡免费在线播放| 母亲3免费完整高清在线观看 | 欧美xxⅹ黑人| 人人妻人人澡人人爽人人夜夜| 黄色配什么色好看| 不卡视频在线观看欧美| 精品人妻熟女毛片av久久网站| 蜜桃在线观看..| 日韩在线高清观看一区二区三区| 午夜免费观看性视频| 国产精品不卡视频一区二区| 极品少妇高潮喷水抽搐| 久久久久久人妻| 免费黄网站久久成人精品| 99热这里只有精品一区| 91精品国产九色| 日韩一区二区三区影片| 天堂俺去俺来也www色官网| 天堂俺去俺来也www色官网| 国产无遮挡羞羞视频在线观看| 热re99久久精品国产66热6| 国产视频内射| 最近2019中文字幕mv第一页| 精品一区二区三区视频在线| 日韩亚洲欧美综合| 老司机亚洲免费影院| 大香蕉97超碰在线| 亚洲不卡免费看| 中文字幕久久专区| 亚洲中文av在线| 母亲3免费完整高清在线观看 | 欧美日韩国产mv在线观看视频| 51国产日韩欧美| 久久久久久久久久久丰满| 成人午夜精彩视频在线观看| 国产免费现黄频在线看| 亚洲精品自拍成人| 亚洲国产av影院在线观看| 一本—道久久a久久精品蜜桃钙片| 18禁裸乳无遮挡动漫免费视频| 中国三级夫妇交换| 十分钟在线观看高清视频www| 一级片'在线观看视频| 夫妻午夜视频| videossex国产| 另类精品久久| 午夜影院在线不卡| 亚洲久久久国产精品| 日韩熟女老妇一区二区性免费视频| av网站免费在线观看视频| 久久精品久久久久久噜噜老黄| 中文精品一卡2卡3卡4更新| 久久97久久精品| 日韩 亚洲 欧美在线| 国产乱人偷精品视频| 精品人妻在线不人妻| 日韩欧美一区视频在线观看| 在线观看一区二区三区激情| av黄色大香蕉| 日韩视频在线欧美| 久热这里只有精品99| 亚洲精品一二三| 国产伦理片在线播放av一区| 伦精品一区二区三区| 亚洲久久久国产精品| 久久女婷五月综合色啪小说| 中文字幕久久专区| 国产一区有黄有色的免费视频| 日韩 亚洲 欧美在线| 天堂俺去俺来也www色官网| 丰满饥渴人妻一区二区三| 晚上一个人看的免费电影| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产色片| 高清毛片免费看| 国产伦理片在线播放av一区| 国产免费福利视频在线观看| 国产欧美日韩综合在线一区二区| 国产视频首页在线观看| 一本久久精品| 亚洲欧美中文字幕日韩二区| 人妻系列 视频| 久热久热在线精品观看| 久久久久久久久久久丰满| 国产精品麻豆人妻色哟哟久久| 精品人妻在线不人妻| 97在线人人人人妻| 天天影视国产精品| 午夜免费观看性视频| 高清视频免费观看一区二区| 人妻制服诱惑在线中文字幕| 欧美最新免费一区二区三区| 国产有黄有色有爽视频| 三级国产精品欧美在线观看| 亚洲精品视频女| 男女啪啪激烈高潮av片| 国产精品偷伦视频观看了| 国产一区二区在线观看日韩| 日本wwww免费看| 五月玫瑰六月丁香| 亚洲精品国产色婷婷电影| 人人妻人人添人人爽欧美一区卜| 国产成人a∨麻豆精品| 在现免费观看毛片| 97精品久久久久久久久久精品| 在线观看www视频免费| 中文字幕制服av| 91成人精品电影| 久久婷婷青草| 一个人看视频在线观看www免费| 国产白丝娇喘喷水9色精品| 久久女婷五月综合色啪小说| 寂寞人妻少妇视频99o| freevideosex欧美| 亚洲熟女精品中文字幕| 日韩制服骚丝袜av| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品av麻豆狂野| 久久青草综合色| 亚洲精品第二区| 久久久久久久亚洲中文字幕| 成人亚洲精品一区在线观看| 哪个播放器可以免费观看大片| 制服人妻中文乱码| 男人爽女人下面视频在线观看| 一边摸一边做爽爽视频免费| 一区二区日韩欧美中文字幕 | 青春草亚洲视频在线观看| av卡一久久| 亚洲欧美中文字幕日韩二区| 91精品国产九色| 亚洲欧美成人精品一区二区| 亚洲人成77777在线视频| 久久99精品国语久久久| 在线观看三级黄色| 国语对白做爰xxxⅹ性视频网站| 人妻系列 视频| 精品一品国产午夜福利视频| 成年美女黄网站色视频大全免费 | 婷婷色av中文字幕| 日韩成人伦理影院| 国产黄色免费在线视频| 亚洲欧洲日产国产| 精品少妇内射三级| 99久国产av精品国产电影| 少妇人妻精品综合一区二区| 国产色爽女视频免费观看| 日韩精品免费视频一区二区三区 | 亚洲国产精品专区欧美| 国产精品女同一区二区软件| 一级黄片播放器| 80岁老熟妇乱子伦牲交| 两个人的视频大全免费| 2018国产大陆天天弄谢| 熟女人妻精品中文字幕| 大又大粗又爽又黄少妇毛片口| 91精品三级在线观看| 免费高清在线观看日韩| 亚洲精品自拍成人| 最新中文字幕久久久久| 大片电影免费在线观看免费| 天堂8中文在线网| 日韩亚洲欧美综合| 亚洲精品国产av蜜桃| 精品视频人人做人人爽| 久久久国产精品麻豆| 国产黄频视频在线观看| 丰满乱子伦码专区| 国产色爽女视频免费观看| 黄色欧美视频在线观看| 午夜视频国产福利| 国产白丝娇喘喷水9色精品| 观看av在线不卡| 日本av手机在线免费观看| 国产日韩欧美视频二区| av视频免费观看在线观看| 日韩一本色道免费dvd| 黑人猛操日本美女一级片| 少妇人妻精品综合一区二区| 在线观看免费视频网站a站| 人妻夜夜爽99麻豆av| 精品久久国产蜜桃| 欧美精品亚洲一区二区| 久久这里有精品视频免费| 满18在线观看网站| 国产男人的电影天堂91| 99久久综合免费| 一边摸一边做爽爽视频免费| 久久久精品免费免费高清| 伦理电影大哥的女人| 免费观看在线日韩| 成人国产麻豆网| 青青草视频在线视频观看| a级毛片黄视频| 极品少妇高潮喷水抽搐| 精品人妻熟女毛片av久久网站| 亚洲激情五月婷婷啪啪| 18禁裸乳无遮挡动漫免费视频| av在线播放精品| 99热6这里只有精品| 又黄又爽又刺激的免费视频.| 岛国毛片在线播放| 国产精品成人在线| 啦啦啦在线观看免费高清www| 卡戴珊不雅视频在线播放| 久久精品久久久久久久性| 精品久久久噜噜| av有码第一页| 91国产中文字幕| 国产片内射在线| 亚洲国产色片| 国产色爽女视频免费观看| www.av在线官网国产| 亚洲av国产av综合av卡| 一边亲一边摸免费视频| 最后的刺客免费高清国语| 成年av动漫网址| 国产在线视频一区二区| 亚洲精品,欧美精品| √禁漫天堂资源中文www| 午夜老司机福利剧场| 晚上一个人看的免费电影| 18+在线观看网站| 边亲边吃奶的免费视频| 97超视频在线观看视频| 卡戴珊不雅视频在线播放| 亚洲av综合色区一区| 久久亚洲国产成人精品v| 国产永久视频网站| 又粗又硬又长又爽又黄的视频| 午夜91福利影院| 亚洲精品国产av蜜桃| 人妻一区二区av| 一区二区三区精品91| 多毛熟女@视频| 久久久久精品性色| 青春草视频在线免费观看| 插逼视频在线观看| 精品国产一区二区久久| 天美传媒精品一区二区| 在线观看www视频免费| 免费看不卡的av| 亚洲精品日韩在线中文字幕| 欧美国产精品一级二级三级| 曰老女人黄片| 在线观看一区二区三区激情| 亚洲精品视频女| 91久久精品国产一区二区三区| 大香蕉97超碰在线| 夜夜爽夜夜爽视频| 日本免费在线观看一区| 极品人妻少妇av视频| 国产成人免费无遮挡视频| 美女视频免费永久观看网站| 亚洲精华国产精华液的使用体验| 母亲3免费完整高清在线观看 | 精品国产国语对白av| 亚洲国产成人一精品久久久| 伦理电影大哥的女人| 国产熟女午夜一区二区三区 | 久久久精品免费免费高清| av网站免费在线观看视频| 国产亚洲午夜精品一区二区久久| 国产 精品1| 精品人妻在线不人妻| 日韩一本色道免费dvd| 国产精品免费大片| 熟女人妻精品中文字幕| 80岁老熟妇乱子伦牲交| 一级,二级,三级黄色视频| 精品久久久久久久久av| 国产精品一区www在线观看| 久久婷婷青草| 精品人妻偷拍中文字幕| 国产精品一区二区在线不卡| 午夜激情福利司机影院| 赤兔流量卡办理| 2022亚洲国产成人精品| 久久综合国产亚洲精品| 亚洲av综合色区一区| 国产成人精品福利久久| 久久久久精品久久久久真实原创| 精品卡一卡二卡四卡免费| 97在线人人人人妻| 夜夜看夜夜爽夜夜摸| 一本色道久久久久久精品综合| 亚洲四区av| 日韩电影二区| 久久免费观看电影| a级毛片免费高清观看在线播放| 99热6这里只有精品| 91精品一卡2卡3卡4卡| 国产午夜精品久久久久久一区二区三区| 一级黄片播放器| av黄色大香蕉| 免费观看av网站的网址| 一级毛片 在线播放| 国内精品宾馆在线| 热99久久久久精品小说推荐| 欧美亚洲 丝袜 人妻 在线| 美女xxoo啪啪120秒动态图| 久久99热6这里只有精品| 麻豆成人av视频| 男人操女人黄网站| 一区二区三区四区激情视频| 亚洲av在线观看美女高潮| 男女免费视频国产| 国产片内射在线| 欧美3d第一页| 久久精品人人爽人人爽视色| 中国三级夫妇交换| 国产精品久久久久久精品电影小说| av专区在线播放| 国产午夜精品久久久久久一区二区三区| 男女高潮啪啪啪动态图| 超碰97精品在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲av男天堂| a 毛片基地| 不卡视频在线观看欧美| 亚洲国产精品专区欧美| 99久国产av精品国产电影| 成人午夜精彩视频在线观看| 中文欧美无线码| 久久午夜福利片| 久久国产精品男人的天堂亚洲 | 最近中文字幕2019免费版| 欧美精品国产亚洲| 99热这里只有是精品在线观看| 国产一区二区三区综合在线观看 | 国产午夜精品久久久久久一区二区三区| 日韩强制内射视频| 成年av动漫网址| 欧美日韩一区二区视频在线观看视频在线| 少妇人妻久久综合中文| 男人爽女人下面视频在线观看| 赤兔流量卡办理| 亚洲欧洲国产日韩| 99久国产av精品国产电影| 久久亚洲国产成人精品v| 久久精品久久久久久噜噜老黄| 亚洲精品国产av成人精品| 考比视频在线观看| av免费观看日本| 国语对白做爰xxxⅹ性视频网站| 精品一品国产午夜福利视频| 亚洲美女黄色视频免费看| 亚洲国产最新在线播放| 赤兔流量卡办理| 少妇丰满av| 女性被躁到高潮视频| 亚洲久久久国产精品| 国产成人免费观看mmmm| 97精品久久久久久久久久精品| 国产在线视频一区二区| 国产精品国产三级国产av玫瑰| 麻豆乱淫一区二区| 亚洲人成77777在线视频| 午夜久久久在线观看| 亚洲精品456在线播放app| 国产有黄有色有爽视频| 国产高清国产精品国产三级| 熟妇人妻不卡中文字幕| 母亲3免费完整高清在线观看 | 麻豆乱淫一区二区| 在线免费观看不下载黄p国产| 亚洲,欧美,日韩| 国产成人免费观看mmmm| 少妇熟女欧美另类| 久久女婷五月综合色啪小说| 一边亲一边摸免费视频| 亚洲精品456在线播放app| 九九在线视频观看精品| 91久久精品国产一区二区三区| 狠狠精品人妻久久久久久综合| 在线看a的网站| 精品少妇久久久久久888优播| 国产色爽女视频免费观看| 免费人妻精品一区二区三区视频| 成人无遮挡网站| a级片在线免费高清观看视频| 极品人妻少妇av视频| 亚洲精品成人av观看孕妇| 亚洲av二区三区四区| 丰满乱子伦码专区| av专区在线播放| 夫妻午夜视频| 久久久精品免费免费高清| 一边亲一边摸免费视频| 日韩精品免费视频一区二区三区 | 高清午夜精品一区二区三区| 丰满迷人的少妇在线观看| 91成人精品电影| 一区在线观看完整版| 亚洲国产精品成人久久小说| 亚洲中文av在线| 黑人猛操日本美女一级片| 老熟女久久久| 在线观看免费日韩欧美大片 | 国产精品99久久久久久久久| 97超视频在线观看视频| 亚洲精品中文字幕在线视频| 亚洲欧美精品自产自拍| 一区二区三区四区激情视频| 午夜免费观看性视频| 日韩不卡一区二区三区视频在线| 最近2019中文字幕mv第一页| 国产男女超爽视频在线观看| 成人漫画全彩无遮挡| 亚洲欧美色中文字幕在线| 哪个播放器可以免费观看大片| 亚洲欧美中文字幕日韩二区| 亚洲av二区三区四区| 欧美性感艳星| 久久精品熟女亚洲av麻豆精品| 草草在线视频免费看| 国产视频内射| 国产女主播在线喷水免费视频网站| 在线观看免费高清a一片| 在线播放无遮挡| 日韩大片免费观看网站| 国产熟女午夜一区二区三区 | 国产精品久久久久久久电影| 久久影院123| 成人综合一区亚洲| 国产一区二区在线观看av| 在线观看www视频免费| 中文天堂在线官网| 成人无遮挡网站| 亚洲国产日韩一区二区| 国产亚洲最大av| 亚洲三级黄色毛片| www.色视频.com| 女的被弄到高潮叫床怎么办| 蜜臀久久99精品久久宅男| 曰老女人黄片| 国产av码专区亚洲av| 啦啦啦中文免费视频观看日本| 国产午夜精品一二区理论片| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品国产av成人精品| 国产欧美亚洲国产| 国产视频首页在线观看| 久久国产精品男人的天堂亚洲 | 日本av免费视频播放| 久久精品夜色国产| 亚洲第一区二区三区不卡| 亚洲高清免费不卡视频| 精品人妻熟女毛片av久久网站| 欧美另类一区| 亚洲少妇的诱惑av| 精品国产乱码久久久久久小说| 青春草国产在线视频| 国产精品 国内视频| 久久国内精品自在自线图片| 久久国产精品大桥未久av| 高清不卡的av网站| 国产一区二区三区综合在线观看 | 黑人猛操日本美女一级片| 日韩视频在线欧美| 亚洲精品色激情综合| av黄色大香蕉| 又大又黄又爽视频免费| 香蕉精品网在线| 国产精品国产三级专区第一集| 九色亚洲精品在线播放| 天天操日日干夜夜撸| 免费观看的影片在线观看| 国产av精品麻豆| 91精品伊人久久大香线蕉| 国产成人freesex在线| 久久人人爽av亚洲精品天堂| av视频免费观看在线观看| 多毛熟女@视频| 日韩一区二区视频免费看| 少妇的逼好多水| 青春草视频在线免费观看| 亚洲综合色网址| 国产免费又黄又爽又色| 搡女人真爽免费视频火全软件| 久久精品国产亚洲av天美| 草草在线视频免费看| 精品亚洲乱码少妇综合久久| 国产一区二区在线观看av| 久久精品国产亚洲av天美| 亚洲美女视频黄频| 丝瓜视频免费看黄片| 草草在线视频免费看| 黑人巨大精品欧美一区二区蜜桃 | 欧美亚洲 丝袜 人妻 在线| 亚洲精品第二区| 国产黄色免费在线视频| 一级黄片播放器| 欧美亚洲 丝袜 人妻 在线| 建设人人有责人人尽责人人享有的| 最新的欧美精品一区二区| 久久久久国产精品人妻一区二区| 久久免费观看电影| 午夜激情福利司机影院| 国产精品国产三级专区第一集| 99热全是精品| 久久99精品国语久久久| 国产精品久久久久久精品古装| 国产一区二区三区av在线| 久热久热在线精品观看| 欧美日韩精品成人综合77777| 欧美 日韩 精品 国产| 五月伊人婷婷丁香| 熟妇人妻不卡中文字幕| 少妇人妻久久综合中文| 精品亚洲成国产av| 在线观看三级黄色| 亚洲丝袜综合中文字幕| 国产视频首页在线观看| 色5月婷婷丁香| 高清不卡的av网站| 亚洲成色77777| av电影中文网址| 边亲边吃奶的免费视频|