• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Centrally clean elements and central Drazin inverses in a ring

    2022-10-18 08:13:42LiWendeChenJianlong

    Li Wende Chen Jianlong

    (School of Mathematics, Southeast University, Nanjing 211189, China)

    Abstract:Element a in ring R is called centrally clean if it is the sum of central idempotent e and unit u. Moreover, a=e+u is called a centrally clean decomposition of a and R is called a centrally clean ring if every element of R is centrally clean. First, some characterizations of centrally clean elements are given. Furthermore, some properties of centrally clean rings, as well as the necessary and sufficient conditions for R to be a centrally clean ring are investigated. Centrally clean rings are closely related to the central Drazin inverses. Then, in terms of centrally clean decomposition, the necessary and sufficient conditions for the existence of central Drazin inverses are presented. Moreover, the central cleanness of special rings, such as corner rings, the ring of formal power series over ring R, and a direct product ∏Rα of ring Rα, is analyzed. Furthermore, the central group invertibility of combinations of two central idempotents in the algebra over a field is investigated. Finally, as an application, an example that lists all invertible, central group invertible, group invertible, central Drazin invertible elements, and centrally clean elements of the group ring Z2S3 is given.

    Key words:centrally clean element; centrally clean ring; central Drazin inverse; central group inverse

    In the research on ring theory, the cleanness of a ring is a basic but important topic. Clean rings originated from the study of exchange rings, which play an important role in the cancellation of modules. The interesting characterizations and properties of clean rings have motivated many scholars to conduct further investigations. The concept of clean rings was first introduced by Nicholson[1]in 1977. Subsequently, Nicholson et al.[2]proved that the linear transformation of a countable vector space over a division ring is clean. In 1999, Nicholson[3]introduced a strongly clean ring and presented some equivalent characterizations of strongly clean elements and rings. In 2001, Han et al.[4]investigated the cleanness of group rings, the ring of formal power series over a ring, and a direct product of rings. In 2011, Hiremath et al.[5]presented some characterizations of strongly clean rings. More details concerning the cleanness of the rings can be found in Refs.[6-12].

    Throughout the paper,Rdenotes an associative ring with unity 1. The center ofRis denoted byC(R)={x∈R:ax=xafor alla∈R}. The elemente∈Ris considered idempotent ife2=e. In contrast, the elemente∈Ris considered central idempotent ife2=eande∈C(R). The symbolsE(R), CE(R),U(R), andJ(R) denote the sets of all idempotents, central idempotents, invertible elements, and Jacobson radicals ofR, respectively. Recall that the elementa∈Ris considered clean ifu∈U(R) ande∈E(R) exist such thata=u+e. The elementa∈Ris considered strongly clean ifu∈U(R) ande∈E(R) exist such thata=u+eandue=eu. In this case,a=e+uis considered a strongly clean decomposition.

    Drazin[13]introduced the concept of pseudo-inverse (usually called Drazin inverse) in rings and semigroups. The elementa∈Ris considered a Drazin invertible ifx∈Rand the nonnegative integerkexist such thatxax=x,ax=xa,xak+1=ak. Suchxis unique if it exists and is considered the Drazin inverse ofa. The smallest nonnegative integerksatisfying the previously presented equations is called the Drazin index ofa. Ifk=1, thenxis considered the group inverse ofa.

    Further research showed that there is a close connection between clean rings and Drazin inverses. For example, Zhu et al.[14]proved thata∈Ris a Drazin invertible if and only ifu∈U(R),e∈E(R) and the positive integernexist such thatan=u+eis a strongly clean decomposition andanR∩eR=0. Moreover, many scholars investigated the Drazin invertibility of combinations of idempotents. For instance, Liu et al.[15]analyzed this topic in complex matrices, i.e., Drazin invertibility ofaP+bQ+cPQ+dQP+ePQP+fQPQ+gQPQPfor idempotent complex matricesPandQunder the conditions (PQ)2=(QP)2. More details concerning Drazin inverses can be found in Refs.[16-26].

    In 2019, to analyze the commutative properties of Drazin inverses (see Example 2.8 in Ref.[27]), Wu et al.[28]introduced the concept of central Drazin inverses.

    Definition1[28]Elementa∈Ris considered a central Drazin invertible ifx∈Rand the nonnegative integerkexist such thatxax=x,xa∈C(R),xak+1=ak. Suchxis unique if it exists and is considered the central Drazin inverse ofa, denoted byac. The smallest nonnegative integerksatisfying the previously presented equations is still the Drazin index ofa, denoted by ind(a). Ifk=1, thenxis called the central group inverse ofa, denoted bya?.

    In Ref.[28], a centrally clean element and a centrally clean ring are also introduced.

    Definition2[28]Leta∈R. Ifu∈U(R) ande∈CE(R) exist such thata=u+e, thenais considered centrally clean. In this case,a=u+eis considered a centrally clean decomposition ofa. Thus, centrally clean is clean. If every element ofRis centrally clean, thenRis considered a centrally clean ring.

    Moreover,a∈Ris a central Drazin invertible if and only ifu∈U(R),e∈CE(R) and the positive integernexist such thata=u+eis a centrally clean decomposition, andanR∩eR=0, or equivalently,u∈U(R),e∈CE(R) and the positive integernexist such thata=u+eis a centrally clean decomposition andaeis nilpotent. Subsequently, Zhao et al.[29]investigated the one-sided central Drazin inverses.

    Motivated by the previous studies, we investigated centrally clean elements and central Drazin inverses inR. We first give an example and characterizations of centrally clean elements. Then, we analyze the properties of centrally clean rings and provide some equivalent characterizations. Moreover, we present the necessary and sufficient conditions for the existence of central Drazin inverses in terms of centrally clean decompositions. In addition, we investigate the central group invertibility of combinations of two central idempotents. Finally, we calculate all invertible, central group invertible, group invertible, central Drazin invertible elements, and centrally clean elements of the group ringZ2S3.

    1 Characterization of Centrally Clean Elements

    First, we provide an example of centrally clean elements.

    Example1

    1) Units are centrally clean.

    2) The elements inJ(R) are centrally clean.

    3) Nilpotent elements are centrally clean.

    4) Central idempotents are centrally clean.

    Proof1) and 3) are obvious.

    2) Letx∈J(R). Notably,J(R)={x∈R: 1-axis left invertible for anya∈R} andJ(R)={x∈R: 1-xais right invertible for anya∈R}.

    Then, we takea=1, and it follows that 1-x∈U(R). Hence,xis centrally clean.

    4) Lete∈CE(R). Given that (2e-1)2=1 and (1-e)2=1-e, it follows that 2e-1∈U(R) and 1-e∈CE(R). Then,e=(2e-1)+(1-e). Hence,eis centrally clean.

    Leta∈R. Then, we useRaandaRto denote the left and right ideals generated bya, respectively. We usel(a) andr(a) to denote the left and right annihilators ofa, respectively. That is,

    Ra={ra:r∈R},aR={ar:r∈R}

    l(a)={x∈R:xa=0},r(a)={x∈R:ax=0}

    Nicholson[3]proved that ife∈E(R) anda∈eReis strongly clean, thena∈Ris also strongly clean. Moreover, he provided some characterizations of strongly clean elements. Then, we investigate the relevant characterizations of centrally clean elements.

    Lemma1[3]Leta∈Rande∈E(R) withea=ae. Then, the following conditions are equivalent:

    1)ae∈U(eRe).

    2)e∈Raandl(a)?l(e).

    3)e∈aRandr(a)?r(e).

    Theorem1Leta∈R. Then, the following conditions are equivalent:

    1)ais centrally clean.

    2)e∈CE(R) exists such thatl(a)?R(1-e)?R(1-a) andl(1-a)?Re?Ra.

    3)e∈CE(R) exists such thatr(a)?(1-e)R?(1-a)Randl(1-a)?eR?aR.

    4)e∈CE(R) exists such thatea∈U(eR) and (1-e)(1-a)∈U((1-e)R).

    5)e∈CE(R) exists such thateais centrally clean ineRand (1-e)(1-a) is centrally clean in (1-e)R.

    6)e∈CE(R) exists such thateais centrally clean ineRand (1-e)ais centrally clean in (1-e)R.

    7) The decomposition 1=e1+e2+…+enexists, wherenis a positive integer,eis a centrally orthogonal idempotent, andeiais centrally clean ineiRfor each positive integeri.

    Proof1)?2). Given thatais centrally clean, we can suppose thata=(1-e)+u, wheree∈CE(R) andu∈U(R). Ifra=0, thenr(1-e)+ru=0, and it follows thatr=ruu-1=[-r(1-e)]u-1∈R(1-e), i.e.,l(a)?R(1-e). Moreover, fromae=[(1-e)+u]e=ue, we derivee=u-1ae=u-1ea∈Ra, i.e.,Re?Ra.

    Rewritea=(1-e)+uas 1-a=e+(-u). Then, by a similar argument, we can obtainl(1-a)?ReandR(1-e)?R(1-a).

    2)?4). Frome∈Re?Raandl(a)?R(1-e)=l(e), we can obtainea∈U(eR) based on Lemma 1. Similarly, we can derive (1-e)(1-a)∈U((1-e)R).

    1)?3)?4) are similar to 1)?2)?4).

    4)?5). This is obvious from 1) of Example 1.

    5)?6). Given that (1-e)(1-a) is centrally clean in (1-e)R, it follows that (1-e)a=(1-e)-(1-e)(1-a) is also centrally clean in (1-e)R.

    6)?7) Writee1=eande2=1-e. Then,e1e2=0 and 1=e1+e2. Moreover,eiais centrally clean ineiRfor eachi.

    7)?1). For each positive integeri,eiais centrally clean ineiR.Then, we suppose thateia=fi+ui, wherefi∈CE(eiR) andui∈U(eiR), and it follows thatvi∈eiRexists such thatviui=uivi=ei. Given thateiis a centrally orthogonal idempotent, we derivef=∑fi∈CE(R),u=∑ui∈U(R), andu-1=∑vi. Hence,a=∑eia=∑(fi+ui)=∑fi+∑ui=f+u. Therefore,ais centrally clean.

    Proposition1Leta∈R. Then, the following conditions are equivalent:

    1)ais centrally clean.

    2)v∈U(R) andf∈CE(R) exist such thatf=fvaand 1-f=-(1-f)v(1-a).

    3)u∈U(R) andf∈CE(R) exist such thatf=fuaand 1-f=(1-f)u(1-a).

    4)f∈CE(R) andx,y∈Rexist such thatf=fxa, 1-f=(1-f)y(1-a), andfx-(1-f)y∈U(R).

    Proof1)?2). Leta=u+e, whereu∈U(R) ande∈CE(R). Writef=1-eandv=u-1. Then,

    f=(1-e)u-1a=fva

    and

    1-f=-eu-1(1-a)=-(1-f)v(1-a)

    2)?1). Writee=1-f. Then,v(a-e)=[fv+(1-f)v](a-1+f)=fva-fv+fv-(1-f)v(1-a)=f+1-f=1. Hence,a-e=v-1, i.e.,ais centrally clean.

    2)?3). Writeu=(2f-1)v. Then,f=fva=fuaand 1-f=-(1-f)v(1-a)=(1-f)u(1-a).

    3)?2) is similar to 2)?3).

    2)?4). Writex=vandy=-v. Then,f=fxaand 1-f=(1-f)y(1-a).

    4)?2). Writev=fx-(1-f)y∈U(R). Then,fx=fvand -(1-f)y=(1-f)v, and it follows thatf=fxa=fvaand 1-f=(1-f)y(1-a)=-(1-f)v(1-a).

    2 Characterizations of Centrally Clean Rings

    Recall that ifR/J(R) is a division ring, thenRis considered a local ring.

    Proposition2Every local ring is a centrally clean ring.

    ProofLeta∈R. Ifa∈J(R), thenais centrally clean based on 2) of Example 1. Ifa?J(R), thena+J(R)∈U(R/J(R)). Hence,x+J(R)∈R/J(R) exists such that

    (a+J(R))(x+J(R))=1+J(R)

    and it follows thatax+J(R)=1+J(R), i.e.,ax-1∈J(R). Therefore,ax=1-(1-ax)∈U(R). Then,ais right invertible inR. Similarly, we can deduce thatais left invertible inR. It follows thata∈U(R), and hence, it is centrally clean.

    In 2004, Nicholson et al.[12]proved that ifR≠0, thenR[x] is not clean. Then, it is obvious thatR[x] is not centrally clean whenR≠0.

    Proposition3The following conditions are equivalent:

    1) 2∈U(R), andRis centrally clean.

    2) For anya∈R,u∈U(R) andx∈C(R) exist, withx2=1, such thata=u+x.

    Then, we provide some characterizations of centrally clean rings.

    Theorem2The following conditions are equivalent:

    1)Ris centrally clean.

    2) Every elementx∈Rcan be written asx=u-e, whereu∈U(R) ande∈CE(R).

    3) Every elementx∈Rcan be written asx=u+e, whereu∈U(R)∪0 ande∈CE(R).

    4) Every elementx∈Rcan be written asx=u-e, whereu∈U(R)∪0 ande∈CE(R).

    Proof1)?2). Letx∈R. Then, -x=e+v, and it follows thatx=-v-e,u=-v∈U(R) ande∈CE(R).

    2)?3) and 3)?4) are similar to 1)?2).

    4)?1). Letx∈R. Then, we derive -x=u-ebased on the assumption, whereu∈U(R)∪0 ande∈CE(R). Hence,x=(-u)+e. The case whenu=0 follows from 4) of Example 1.

    Recall that ife∈E(R) exists such thate∈aRand 1-e∈(1-a)Rfor anya∈R, thenRis an exchange ring. Moreover, if every idempotent ofRis central, thenRis called abelian.

    Theorem3The following conditions are equivalent:

    1)Ris centrally clean.

    2)Ris an exchange and abelian.

    3)Ris clean and abelian.

    4) For anya∈R,e∈CE(R) exists such thate∈aRand 1-e∈(1-a)R.

    Proof1)?3). It suffices to prove that every idempotent ofRis central. Lete∈E(R). Then, we derivee=f+u, wheref∈CE(R) andu∈U(R), and it follows that iff+u=(f+u)2=f+2fu+u2, then 1=u+2f. Hence, we obtaine=f+u=f+1-2f=1-f∈CE(R).

    3)?4). Given that clean rings are exchange rings, it follows that, for anya∈R,e∈E(R) exists such thate∈aRand 1-e∈(1-a)R. Given thatRis abelian, we derivee∈CE(R).

    4)?2). This is enough to show thatRis abelian. Letf∈E(R). Then, according to the assumption,e∈CE(R) exists such thate∈fRand 1-e∈(1-f)R. Hence, we obtainfe=eand (1-f)(1-e)=1-e. Then,f=e∈CE(R). Therefore,Ris abelian.

    2)?1). Letx∈R. Given thatRis an exchange ring,e∈E(R) exists such thate∈xRand 1-e∈(1-x)R. Lete=xa′, wherea′∈R. Then,e=e2=xa′xa′. Writea=a′xa′, and it follows thate=xaandae=a′xa′xa′=a′xa′=a. Then,axa=a. Given thatRis abelian, we deriveax=axax=xa(ax)=xaxa=xa. By a similar argument, we can obtain (1-e)=(1-x)b,b(1-e)=b, and (1-x)b=b(1-x). Furthermore, we can obtain [x-(1-e)](a-b)=xa-xb-(1-e)a+(1-e)b=e+(1-x)b=1 and (a-b)[x-(1-e)]=1. That is, [x-(1-e)]-1=a-b. Then,x=x-(1-e)+(1-e). Hence,Ris centrally clean.

    Proposition4Letp∈CE(R). Then,a∈pRis centrally clean inRif and only ifais centrally clean inpR.

    ProofThe necessity is clearly stated in Theorem 1. Conversely, assumea∈pRis centrally clean inR. Then,e∈CE(R) andu∈U(R) exist such thata=e+u, and it follows thatpa=pe+pu,pe∈CE(pR), andpu∈U(pR). Frompa=a, we derivea=pe+pu. Hence,ais centrally clean inpR.

    Corollary1Letp∈CE(R). IfRis a centrally clean ring, then so ispR.

    Han et al.[4]proved that whene∈E(R), ifeReand (1-e)R(1-e) are clean rings, then so isR. Here, we consider the case ofe∈CE(R).

    Corollary2Lete∈CE(R). IfeRand (1-e)Rare centrally clean, then so isR.

    ProofThis is clearly stated in Theorem 1.

    Han et al.[4]also investigated the cleanness of group rings, the ring of formal power series over a ring, and a direct product of rings. Then, we analyze the relevant results ofR[[x]] and ∏Rα.

    Proposition5The ringR[[x]] is centrally clean if and only ifRis centrally clean.

    ProofLetf=a+bx+cx2+…∈R[[x]]. Given thatRis centrally clean, we can suppose thata=u+e, wheree∈CE(R) andu∈U(R). Then,f=e+(u+bx+cx2+…),e∈CE(R[[x]]), andu+bx+cx2+…∈U(R[[x]]). Therefore,R[[x]] is centrally clean.

    Conversely, we know thatR[[x]]/(x) is centrally clean becauseR[[x]] is centrally clean. Hence,R?R[[x]]/(x) is centrally clean.

    Lemma2LetR,Sbe two rings andφ:R→Sbe a surjective ring homomorphism. IfRis centrally clean, then so isS.

    ProofIt is obvious.

    Proposition6A direct productR=∏Rαis centrally clean if and only ifRαis centrally clean.

    ProofGiven thatπα: ∏Rα→Rαis a surjective ring homomorphism, it follows thatRαis centrally clean based on Lemma 2.

    Conversely, suppose thatRαis centrally clean. Letx=(xα)∈∏Rα. Then, for eachα, we derivexα=uα+eα, whereuα∈U(Rα) andeα∈CE(Rα). Hence, we obtainx=e+u,u=(uα)∈U(∏Rα) ande=(eα)∈CE(∏Rα), and it follows thatR=∏Rαis centrally clean.

    LetLbe a two-sided ideal ofR. We suppose that the idempotents can be lifted moduloLif, given thatx∈E(R/L),e∈E(R) exists such thate-x∈L. Similarly, we can define the concept that the central idempotents can be lifted moduloLife∈CE(R) exists such thate-x∈Lforx∈CE(R/L).

    Proposition7Ris centrally clean if and only ifR/J(R) is centrally clean, and the central idempotent can be lifted moduloJ(R).

    ProofBased on Lemma 2, we confirm that the factor ring of a centrally clean ring is centrally clean. Then,R/J(R) is centrally clean. Given that a centrally clean ring is exchange, it follows that the idempotents can be lifted moduloJ(R). Based on Theorem 3, we determine that the idempotents ofRare central. Then, the sufficiency is proven.

    3 Characterizations of Central Drazin Inverses

    In this section, we mainly provide some characterizations for the existence of central Drazin inverses.

    Theorem4Leta∈R. Then, the following conditions are equivalent:

    1)ais central Drazin invertible.

    2)u∈U(R),e∈CE(R), and the positive integermexist such thatam=euandau=ua.

    3)v∈U(R) andf∈CE(R) exist such thata=f+vandaf∈Rnil.

    4)p∈CE(R) exists such thatap∈U(pR) anda(1-p)∈Rnil.

    Proof1)?2). Writee=aac. Then,e∈CE(R). Given thatais central Drazin invertible, and it follows that the positive integermexists such thatam=amaac=ame. Writeu=am+(1-e). Then, [am+(1-e)][(ac)me+(1-e)]=am(ac)me+am(1-e)+(1-e)(ac)me+(1-e)2=e+1-e=1. Hence, we haveu∈U(R) andu-1=(ac)me+(1-e), and it follows thatam=ame=[u-(1-e)]e=euandau=a[am+(1-e)]=am+1+a(1-e)=am+1+(1-e)a=[am+(1-e)]a=ua.

    2)?3). Writef=1-e. Then,f∈CE(R). Given that (am-f)(u-1e-f)=1, we deriveam-f∈U(R). Then, (a-f)(am-1+am-2f+…+af+f)=am-f∈U(R). Hence, we obtainv=a-f∈U(R) and (af)m=amf=eu(1-e)=0, i.e.,af∈Rnil.

    3)?4). Writep=1-f. Then,p∈CE(R),ap=pa=pv∈U(pR) anda(1-p)=af∈Rnil.

    4)?1). Based on this assumption, it follows thatw∈U(pR) exists such thatapw=pwa=p. Frompw=w, we deriveaw=wa=p∈C(R),waw=pw=w, anda-a2w=a(1-aw)=a(1-p)∈Rnil. Hence,ais central Drazin invertible.

    Zhu et al.[14]showed thatais Drazin invertible if and only ifu∈U(R),e∈E(R), and the positive integermexist such thatam=u+eis strongly clean decomposition andamR∩eR=0. Here, we investigate the relevant results of central Drazin inverses.

    Theorem5Leta∈R. Then, the following conditions are equivalent:

    1)ais central Drazin invertible.

    2)u∈U(R),e∈CE(R), and the positive integernexist such thatan=u+eandanR∩eR=0.

    3)u∈U(R),e∈CE(R), and the positive integernexist such thatan=u-eandanR∩eR=0.

    Proof1)?2). Given thatais central Drazin invertible, we deriveu=an-1+aac∈U(R) for any positive integern>ind(a). Writee=1-aac. Then,an=u+eis the centrally clean decomposition. Letx∈anR∩eR. Then,y,z∈Rexist such thatx=any=ez=eany=0. Hence,anR∩eR=0.

    2)?1). Frome∈CE(R), it follows that the positive integermexists such that:

    (ane)m=(an)me=e(an)m∈anR∩eR=0

    i.e.,ane∈Rnil. Letmbe the nilpotent index ofane. Then, (an)m=um(1-e). In fact,

    (an)m=(u+e)m=

    um(1-e)+(an)me=

    um(1-e)+(ane)m=um(1-e)

    Hence, (an)mis central group invertible derived by Theorem 3.6 in Ref.[28]. Then,ais central Drazin invertible derived by Theorem 3.3 in Ref.[28].

    1)?3). This is similar to the proof of 1)?2).

    From Theorem 5, we derive the following corollary.

    Proposition8Leta∈R. Then, the following conditions are equivalent:

    1)ais central Drazin invertible.

    2)e∈CE(R) and the positive integernexist such thatane=0 andan-e∈U(R).

    3)e∈CE(R) and the positive integernexist such thatane=0 andan+e∈U(R).

    Proof1)?2). Given thatais central Drazin invertible, we deriveu=an-1+aac∈U(R) for any positive integern>ind(a). Writee=1-aac. Then,ane=0 andan-e∈U(R).

    2)?1). Letx∈anR∩eR. Then,y,z∈Rexist such thatx=any=ez=eany=aney=0. Hence,anR∩eR=0. According to Theorem 5, the proof is completed.

    1)?3). This is similar to the proof of 1)?2).

    For the central group inverses, we also obtain the following relevant results.

    Proposition9Leta∈R. Then, the following conditions are equivalent:

    1)ais central group invertible.

    2)u∈U(R) ande∈CE(R) exist such thata=u+eandaR∩eR=0.

    3)v∈U(R) andf∈CE(R) exist such thatf=fva, 1-f=(1-f)v(1-a), andaf=a.

    Proof1)?2). This is given in Corollary 4.6 in Ref.[28].

    2)?3). Writef=1-eandv=u-1(1-2e). Then,v∈U(R) andf∈CE(R), and it follows thatfva=(1-e)u-1(1-2e)(u+e)=(1-e)(1-2e)=1-e=fanda(1-f)=(u+e)e∈aR∩eR=0. Hence,af=aand

    (1-f)v(1-a)=eu-1(1-2e)(1-e-u)=

    eu-1(1-2e)(-u)=e=1-f

    3)?2). Writeu=v-1(2f-1) ande=1-f. Given that 1-f=(1-f)v(1-a)=(1-f)v-(1-f)va=(1-f)v-va+fva=(1-f)v-va+f, it follows thata=v-1(1-f)v+v-1(2f-1)=1-f+v-1(2f-1)=e+u. Letx∈aR∩eR. Then,r,t∈Rexist such thatx=ar=et, and it follows thatfr=fvar=fv(et)=fv(1-f)t=0, i.e.,r=(1-f)r. Then,x=ar=a(1-f)r=(a-af)r=0. Therefore,aR∩eR=0.

    4 Central Group Invertibility of Combinations of Two Central Idempotents

    Motivated by the study conducted by Liu et al.[15], we investigate the central group invertibility of combinations of two central idempotents in this section.

    In this section,Fdenotes a field andAdenotes the algebra overF.

    Theorem6Letp,q∈Abe the central idempotent anda=d1p+d2q+d3pq, wheredi∈F,i=1,2,3. Then,ais central group invertible, and

    where

    Given thatp,q∈CE(R), we derivexa∈C(R). By computation, it follows that

    Then, we obtain

    and

    [d1dd?-d1+d2dd?-d2+d3dd?]pq=

    Letd1=1,d2=1,d3=0. Then, we obtain the following results according to Theorem 6.

    Corollary3Let 2∈U(R) andp,q∈Abe the central idempotents. Then,p+qis central group invertible, and

    Ifpq=p, then we obtain the following results according to Theorem 6. That is, we taked3=0 in Theorem 6.

    Corollary4Letp,q∈Abe the central idempotent andpq=p. Then,d1p+d2qis central group invertible, and

    Ifpq=q, then we obtain the following results according to Theorem 6.

    Corollary5Letp,q∈Abe the central idempotent andpq=q. Then,d1p+d2qis central group invertible, and

    5 An Example

    By computation, we obtain the following results:

    E(Z2S3)={0,g1,g5+g6,g1+g5+g6,g2+g3+g5,g2+

    g3+g6,g2+g4+g5,g2+g4+g6,g3+g4+g5,g3+

    g4+g6,g1+g2+g3+g5,g1+g2+g3+g6,g1+g2+

    g4+g5,g1+g2+g4+g6,g1+g3+g4+g5,g1+g3+

    g4+g6}

    C(Z2S3)={0,g1,g5+g6,g1+g5+g6,g2+g3+g4,

    g1+g2+g3+g4,e+g1,e}

    CE(Z2S3)={0,g1,g5+g6,g1+g5+g6}

    Example2All invertible, central group invertible, group invertible, central Drazin invertible elements, and centrally clean elements ofZ2S3are listed as follows.

    For convenience, we use CG(Z2S3),G(Z2S3), CD(Z2S3), and CC(Z2S3) to denote the sets of all central group invertible, group invertible, central Drazin invertible elements, and centrally clean elements ofZ2S3, respectively.

    U(Z2S3)={g1,g2,g3,g4,g5,g6,e+g1,e+g2,e+g3,

    e+g4,e+g5,e+g6}

    CG(Z2S3)={0,U(Z2S3),g2+g3,g2+g4,g3+g4,

    g5+g6,g1+g5,g1+g6}

    G(Z2S3)={CG(Z2S3),g1+g2+g5,g1+g2+g6,

    g1+g3+g5,g1+g3+g6,g1+g4+g5,g1+g4+g6,

    g2+g3+g5,g2+g3+g6,g2+g4+g5,g2+g4+g6,

    g3+g4+g5,g3+g4+g6,e+g4+g6,e+g4+g5,

    e+g3+g6,e+g3+g5,e+g2+g6,e+g2+g5,e}

    CD(Z2S3)={CG(Z2S3),g1+g2,g1+g3,g1+g4,

    g1+g2+g3,g1+g2+g4,g1+g3+g4,g2+g5+g6,

    g3+g5+g6,g4+g5+g6,e+g3+g4,e+g2+g4,

    e+g2+g3,e+g1+g4,e+g1+g3,e+g1+g2,e}

    CC(Z2S3)={0,U(Z2S3),g1+g2,g1+g3,g1+g4,

    g1+g5,g1+g6,g5+g6,g2+g3,g2+g4,g3+g4,

    g1+g2+g3,g1+g2+g4,g1+g3+g4,g2+g3+g4,

    g1+g5+g6,g2+g5+g6,g3+g5+g6,g4+g5+g6,

    g2+g3+g4,e+g1+g6,e+g1+g5,e+g1+g4,

    e+g1+g3,e+g1+g2,e+g3+g4,e+g2+g4,

    e+g2+g3,e+g6,e+g5,e}

    ProofGiven thatZ2S3is finite, it follows thatZ2S3is strongly π-regular. Hence, the elements inZ2S3are Drazin invertible.

    Then, we calculate the units ofZ2S3.

    Letα=x1g1+x2g2+x3g3+x4g4+x5g5+x6g6andβ=y1g1+y2g2+y3g3+y4g4+y5g5+y6g6. Fromαβ=g1, we can obtain

    which has a unique solution.

    (1+x4+x6)(1+x4+x5)+(1+x1+x3)(1+x1+x2)

    Then, from |A+B|≠0, it follows thatxi=0 for certaini∈{1,2,…,6} and the others are 1, orxi=1 for certaini∈{1,2,…,6} and the others are 0. Hence, we have

    U(Z2S3)={g1,g2,g3,g4,g5,g6,e+g1,e+g2,e+g3,

    e+g4,e+g5,e+g6}

    Therefore,based on Theorem 3.6 in Ref.[28], Proposition 8.24 in Ref.[30], Theorem 4.5 in Ref.[28], and the definition of centrally clean elements, we can present the sets of CG(Z2S3),G(Z2S3), CD(Z2S3), and CC(Z2S3), respectively.

    一进一出抽搐动态| 国产极品精品免费视频能看的| 精品福利观看| 99视频精品全部免费 在线| av福利片在线观看| 在线观看免费视频日本深夜| 久久香蕉精品热| 国产极品精品免费视频能看的| 国产高清视频在线播放一区| 国产日本99.免费观看| 性色av乱码一区二区三区2| а√天堂www在线а√下载| 69人妻影院| 18美女黄网站色大片免费观看| 亚洲av第一区精品v没综合| 性插视频无遮挡在线免费观看| 成人无遮挡网站| 久久九九热精品免费| 热99re8久久精品国产| 又爽又黄无遮挡网站| 天堂影院成人在线观看| 午夜精品一区二区三区免费看| netflix在线观看网站| 757午夜福利合集在线观看| 激情在线观看视频在线高清| 两个人的视频大全免费| 国产精品久久久久久精品电影| 毛片一级片免费看久久久久 | 五月伊人婷婷丁香| 自拍偷自拍亚洲精品老妇| 村上凉子中文字幕在线| 97人妻精品一区二区三区麻豆| 国内揄拍国产精品人妻在线| 亚洲自偷自拍三级| 黄色视频,在线免费观看| 制服丝袜大香蕉在线| 中国美女看黄片| 99在线视频只有这里精品首页| 久久久久性生活片| 亚洲性夜色夜夜综合| 亚洲七黄色美女视频| 嫁个100分男人电影在线观看| 桃红色精品国产亚洲av| 别揉我奶头~嗯~啊~动态视频| 成年女人毛片免费观看观看9| www.熟女人妻精品国产| 脱女人内裤的视频| 一本综合久久免费| 亚洲成人免费电影在线观看| 日韩人妻高清精品专区| 3wmmmm亚洲av在线观看| 国产蜜桃级精品一区二区三区| 床上黄色一级片| 18禁在线播放成人免费| 欧美成人a在线观看| 亚洲欧美日韩高清专用| 国产v大片淫在线免费观看| 内射极品少妇av片p| 久久国产乱子伦精品免费另类| 亚洲性夜色夜夜综合| 99热这里只有是精品在线观看 | 国产三级黄色录像| 99热6这里只有精品| 日韩欧美国产在线观看| 午夜视频国产福利| 99国产精品一区二区三区| 亚洲精品在线美女| av天堂在线播放| 亚洲精品日韩av片在线观看| 婷婷六月久久综合丁香| 久久久久久久午夜电影| 欧美黄色淫秽网站| 黄色日韩在线| 国产精品久久久久久精品电影| 97热精品久久久久久| 一本精品99久久精品77| 亚洲专区中文字幕在线| 在线观看美女被高潮喷水网站 | 每晚都被弄得嗷嗷叫到高潮| av在线天堂中文字幕| 欧美成狂野欧美在线观看| 欧美xxxx黑人xx丫x性爽| av天堂在线播放| 午夜影院日韩av| 搡女人真爽免费视频火全软件 | 中文字幕av成人在线电影| 久久精品综合一区二区三区| 99久久精品国产亚洲精品| 日日摸夜夜添夜夜添小说| 悠悠久久av| 欧美日韩中文字幕国产精品一区二区三区| 欧美中文日本在线观看视频| 亚洲专区国产一区二区| 亚洲精品粉嫩美女一区| 免费看日本二区| 国产精品国产高清国产av| 国内揄拍国产精品人妻在线| 在现免费观看毛片| 国产亚洲精品综合一区在线观看| 国产不卡一卡二| 亚洲精华国产精华精| 精品人妻一区二区三区麻豆 | 国产亚洲av嫩草精品影院| 欧美日韩中文字幕国产精品一区二区三区| 超碰av人人做人人爽久久| 天美传媒精品一区二区| 亚洲五月婷婷丁香| 日韩有码中文字幕| 久9热在线精品视频| 蜜桃亚洲精品一区二区三区| 国内精品久久久久精免费| 欧美激情久久久久久爽电影| 每晚都被弄得嗷嗷叫到高潮| 日本 av在线| 91在线精品国自产拍蜜月| 中文字幕免费在线视频6| 国产精品98久久久久久宅男小说| 99在线人妻在线中文字幕| 18禁黄网站禁片午夜丰满| 国产精品亚洲美女久久久| 男人舔女人下体高潮全视频| 青草久久国产| 国产精品野战在线观看| 男人舔女人下体高潮全视频| 成人性生交大片免费视频hd| 日本熟妇午夜| 日韩中字成人| 97热精品久久久久久| 怎么达到女性高潮| 18禁黄网站禁片免费观看直播| 性插视频无遮挡在线免费观看| 国产在线精品亚洲第一网站| 自拍偷自拍亚洲精品老妇| 岛国在线免费视频观看| 天堂网av新在线| 成人国产一区最新在线观看| 毛片一级片免费看久久久久 | 日日摸夜夜添夜夜添小说| 人人妻人人澡欧美一区二区| 欧美xxxx黑人xx丫x性爽| 午夜精品一区二区三区免费看| 亚洲精品亚洲一区二区| 波多野结衣高清作品| 免费大片18禁| 中亚洲国语对白在线视频| 国产麻豆成人av免费视频| 午夜久久久久精精品| 国产av麻豆久久久久久久| 亚洲经典国产精华液单 | 波多野结衣巨乳人妻| 亚洲美女黄片视频| 亚洲欧美清纯卡通| 国产午夜精品论理片| 久久亚洲精品不卡| 别揉我奶头~嗯~啊~动态视频| 搡老熟女国产l中国老女人| 搡女人真爽免费视频火全软件 | 亚洲熟妇熟女久久| 国产日本99.免费观看| 老熟妇乱子伦视频在线观看| 亚洲精品粉嫩美女一区| 久久伊人香网站| 国内精品美女久久久久久| 露出奶头的视频| 中文字幕免费在线视频6| 国产午夜福利久久久久久| 欧美性猛交黑人性爽| 人妻久久中文字幕网| 午夜两性在线视频| 淫秽高清视频在线观看| 老女人水多毛片| 午夜福利在线在线| 午夜老司机福利剧场| 国产av麻豆久久久久久久| 婷婷色综合大香蕉| 一级作爱视频免费观看| 亚洲经典国产精华液单 | 亚洲最大成人中文| 国产精品一区二区三区四区久久| 婷婷丁香在线五月| 色哟哟哟哟哟哟| 美女xxoo啪啪120秒动态图 | 偷拍熟女少妇极品色| 黄色丝袜av网址大全| 日韩人妻高清精品专区| 欧美zozozo另类| 啦啦啦观看免费观看视频高清| 国产男靠女视频免费网站| 最近最新免费中文字幕在线| 9191精品国产免费久久| 国产成年人精品一区二区| 欧美色欧美亚洲另类二区| 白带黄色成豆腐渣| 国产av不卡久久| 99久久精品国产亚洲精品| 一级黄色大片毛片| 欧美日韩乱码在线| 丁香六月欧美| 搡女人真爽免费视频火全软件 | 成人特级av手机在线观看| 午夜福利成人在线免费观看| 国产一区二区三区视频了| 午夜亚洲福利在线播放| 日日摸夜夜添夜夜添小说| 午夜福利欧美成人| aaaaa片日本免费| 黄色日韩在线| or卡值多少钱| 久久人妻av系列| av在线观看视频网站免费| 免费大片18禁| 国产亚洲精品久久久com| www.999成人在线观看| 欧美一区二区亚洲| 欧美日韩福利视频一区二区| 国产高清三级在线| 亚洲中文字幕一区二区三区有码在线看| 他把我摸到了高潮在线观看| 69av精品久久久久久| 在线播放国产精品三级| 成人特级黄色片久久久久久久| 国产私拍福利视频在线观看| 女人十人毛片免费观看3o分钟| 日本精品一区二区三区蜜桃| 日韩有码中文字幕| 天堂av国产一区二区熟女人妻| 久久久久亚洲av毛片大全| 日韩欧美免费精品| 日本黄色片子视频| 国产精品一区二区三区四区免费观看 | 男女下面进入的视频免费午夜| 日本a在线网址| 亚洲avbb在线观看| 伊人久久精品亚洲午夜| 午夜福利欧美成人| 我要搜黄色片| 中出人妻视频一区二区| 99久久99久久久精品蜜桃| 欧美丝袜亚洲另类 | 精品久久久久久久久久免费视频| 能在线免费观看的黄片| 亚洲美女搞黄在线观看 | 一区二区三区四区激情视频 | 国产在视频线在精品| 久久国产精品影院| 国产精品,欧美在线| 免费观看的影片在线观看| 久久伊人香网站| 免费无遮挡裸体视频| 91av网一区二区| 国产黄色小视频在线观看| 亚洲国产色片| 欧美最黄视频在线播放免费| av在线蜜桃| 综合色av麻豆| 国产大屁股一区二区在线视频| 国产真实伦视频高清在线观看 | 淫妇啪啪啪对白视频| 在线观看一区二区三区| 久久久国产成人精品二区| 久久精品91蜜桃| 欧美在线一区亚洲| 亚洲国产日韩欧美精品在线观看| 国产一区二区在线av高清观看| 国内久久婷婷六月综合欲色啪| 午夜影院日韩av| 午夜精品久久久久久毛片777| 亚洲专区国产一区二区| 男女视频在线观看网站免费| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久午夜电影| 国产高清三级在线| 他把我摸到了高潮在线观看| 99久国产av精品| 嫩草影视91久久| 国产精华一区二区三区| 亚洲专区国产一区二区| 一个人观看的视频www高清免费观看| 午夜免费男女啪啪视频观看 | 黄色女人牲交| 亚洲欧美精品综合久久99| 日韩欧美国产一区二区入口| 国产麻豆成人av免费视频| 亚洲电影在线观看av| 欧美激情在线99| 亚洲无线观看免费| 亚洲av电影在线进入| 国产探花在线观看一区二区| 欧美精品国产亚洲| 男女那种视频在线观看| 亚洲男人的天堂狠狠| 91久久精品电影网| 真人一进一出gif抽搐免费| 小说图片视频综合网站| 欧美黑人巨大hd| 一本综合久久免费| 久久久精品欧美日韩精品| 乱码一卡2卡4卡精品| 黄色一级大片看看| 午夜免费男女啪啪视频观看 | 亚洲成人久久爱视频| 小说图片视频综合网站| 精品久久久久久久末码| av天堂中文字幕网| 一区二区三区免费毛片| 三级男女做爰猛烈吃奶摸视频| 日日干狠狠操夜夜爽| 91九色精品人成在线观看| 少妇的逼好多水| 最近最新中文字幕大全电影3| 色噜噜av男人的天堂激情| 成人鲁丝片一二三区免费| 日韩欧美 国产精品| 久久久久国内视频| 久久久久国产精品人妻aⅴ院| 免费看美女性在线毛片视频| 韩国av一区二区三区四区| 国产成人福利小说| 日日夜夜操网爽| 男女床上黄色一级片免费看| 亚洲天堂国产精品一区在线| 国产精品一及| 尤物成人国产欧美一区二区三区| 久久精品国产清高在天天线| 亚洲天堂国产精品一区在线| 我的女老师完整版在线观看| 国产又黄又爽又无遮挡在线| 99热只有精品国产| 精品人妻一区二区三区麻豆 | 午夜两性在线视频| 午夜福利视频1000在线观看| 成年女人看的毛片在线观看| 真人一进一出gif抽搐免费| 亚洲电影在线观看av| 日韩欧美精品免费久久 | 一级作爱视频免费观看| 久久热精品热| av女优亚洲男人天堂| 亚洲第一区二区三区不卡| 久久久久九九精品影院| 在线观看免费视频日本深夜| 亚洲五月婷婷丁香| av在线蜜桃| 男人和女人高潮做爰伦理| 一区二区三区激情视频| 最近最新免费中文字幕在线| 国产精品野战在线观看| 国产爱豆传媒在线观看| 熟女电影av网| 长腿黑丝高跟| 97超级碰碰碰精品色视频在线观看| 国产精品一区二区三区四区免费观看 | 亚洲五月婷婷丁香| 国产精品99久久久久久久久| www.999成人在线观看| 男女那种视频在线观看| 天堂√8在线中文| 成人美女网站在线观看视频| 九色成人免费人妻av| 夜夜躁狠狠躁天天躁| 深夜精品福利| 脱女人内裤的视频| a级毛片免费高清观看在线播放| 99久久精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 免费观看精品视频网站| 99在线人妻在线中文字幕| 精品国内亚洲2022精品成人| 久久精品综合一区二区三区| 国产亚洲精品av在线| 极品教师在线免费播放| 特级一级黄色大片| 久久久久久久精品吃奶| 精品不卡国产一区二区三区| 男人的好看免费观看在线视频| 小说图片视频综合网站| 男人和女人高潮做爰伦理| 身体一侧抽搐| 能在线免费观看的黄片| 国产av在哪里看| 久久99热6这里只有精品| 国产野战对白在线观看| 色av中文字幕| 久久久成人免费电影| 日韩欧美国产在线观看| 免费高清视频大片| 亚洲三级黄色毛片| 此物有八面人人有两片| 99热这里只有是精品在线观看 | 精品久久久久久久久久久久久| 欧美午夜高清在线| 又黄又爽又刺激的免费视频.| 日韩欧美三级三区| 丁香六月欧美| 黄色视频,在线免费观看| 国产精品亚洲美女久久久| 天美传媒精品一区二区| 婷婷精品国产亚洲av| 一区二区三区免费毛片| 国产一区二区三区视频了| 一级作爱视频免费观看| 亚洲真实伦在线观看| 日本黄色片子视频| 一区福利在线观看| 国产大屁股一区二区在线视频| 亚洲精品色激情综合| 99热精品在线国产| 听说在线观看完整版免费高清| 91九色精品人成在线观看| 国产黄色小视频在线观看| 婷婷亚洲欧美| 午夜免费激情av| 三级国产精品欧美在线观看| 一级黄片播放器| 人人妻人人澡欧美一区二区| 欧美日韩亚洲国产一区二区在线观看| 九九久久精品国产亚洲av麻豆| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品伦人一区二区| 一a级毛片在线观看| 日本三级黄在线观看| 色吧在线观看| a级一级毛片免费在线观看| 欧美性猛交黑人性爽| 91狼人影院| 欧美激情在线99| 麻豆成人av在线观看| 美女cb高潮喷水在线观看| 国产精品一区二区性色av| 国产成人av教育| 亚洲自拍偷在线| 色综合欧美亚洲国产小说| 久久婷婷人人爽人人干人人爱| 国产在视频线在精品| 一二三四社区在线视频社区8| 久久热精品热| 亚洲人成伊人成综合网2020| 婷婷色综合大香蕉| 久久人妻av系列| 精品久久国产蜜桃| 久久精品国产亚洲av涩爱 | 在线观看av片永久免费下载| 性欧美人与动物交配| avwww免费| 老女人水多毛片| 国产三级黄色录像| 天天一区二区日本电影三级| 18禁裸乳无遮挡免费网站照片| 国内精品美女久久久久久| 热99re8久久精品国产| 久久国产乱子免费精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲av成人av| 中文资源天堂在线| 免费人成视频x8x8入口观看| 中文亚洲av片在线观看爽| 久9热在线精品视频| av中文乱码字幕在线| 欧美日韩亚洲国产一区二区在线观看| 久久久久久久久久黄片| 在线播放无遮挡| 亚洲国产精品成人综合色| 亚洲 欧美 日韩 在线 免费| 少妇人妻精品综合一区二区 | 三级毛片av免费| 久久国产乱子免费精品| 久久人妻av系列| 成人特级av手机在线观看| 日本熟妇午夜| 国产亚洲av嫩草精品影院| 日韩精品青青久久久久久| 亚洲第一欧美日韩一区二区三区| 美女黄网站色视频| 免费av观看视频| 免费人成视频x8x8入口观看| 我的老师免费观看完整版| 99久久精品国产亚洲精品| 日本 av在线| 高潮久久久久久久久久久不卡| 国产一区二区三区在线臀色熟女| 网址你懂的国产日韩在线| 亚洲欧美日韩高清专用| 精品人妻视频免费看| 亚洲国产精品久久男人天堂| 麻豆国产97在线/欧美| 欧美绝顶高潮抽搐喷水| 美女cb高潮喷水在线观看| 波多野结衣高清无吗| 婷婷丁香在线五月| 十八禁网站免费在线| 国产伦一二天堂av在线观看| 国产成人影院久久av| 嫩草影视91久久| 亚洲av电影不卡..在线观看| 久久精品影院6| 内射极品少妇av片p| 高清毛片免费观看视频网站| 国产精品影院久久| 亚洲第一电影网av| 欧美一区二区国产精品久久精品| 亚洲av五月六月丁香网| 1024手机看黄色片| 五月伊人婷婷丁香| 日韩大尺度精品在线看网址| 51午夜福利影视在线观看| 国产精品亚洲一级av第二区| 久久久久性生活片| 亚洲激情在线av| 中文字幕av在线有码专区| 久久6这里有精品| 国产一区二区三区视频了| 性欧美人与动物交配| 黄片小视频在线播放| 色综合婷婷激情| 国产精品久久久久久人妻精品电影| 999久久久精品免费观看国产| 桃色一区二区三区在线观看| 国产精品,欧美在线| 国产亚洲精品av在线| 国模一区二区三区四区视频| av天堂在线播放| 精品人妻一区二区三区麻豆 | 亚洲欧美日韩无卡精品| 老女人水多毛片| 欧美性感艳星| 熟女电影av网| 欧美3d第一页| 久久久久久久久久黄片| 国产av麻豆久久久久久久| 琪琪午夜伦伦电影理论片6080| 级片在线观看| 内射极品少妇av片p| 亚洲av一区综合| 成人永久免费在线观看视频| 免费大片18禁| 国产伦在线观看视频一区| 少妇裸体淫交视频免费看高清| 国产伦一二天堂av在线观看| 国内毛片毛片毛片毛片毛片| 欧美绝顶高潮抽搐喷水| av视频在线观看入口| 亚洲精品一卡2卡三卡4卡5卡| 最近最新免费中文字幕在线| 精品国产亚洲在线| 一级作爱视频免费观看| 日韩精品青青久久久久久| 美女高潮的动态| 91av网一区二区| 国产成人啪精品午夜网站| 国产主播在线观看一区二区| 日本在线视频免费播放| 欧美黄色片欧美黄色片| 啦啦啦观看免费观看视频高清| 国产一区二区亚洲精品在线观看| 9191精品国产免费久久| 亚洲七黄色美女视频| 波野结衣二区三区在线| a在线观看视频网站| 国产免费一级a男人的天堂| 国产麻豆成人av免费视频| 日本与韩国留学比较| 亚洲欧美精品综合久久99| 日韩欧美一区二区三区在线观看| 国产又黄又爽又无遮挡在线| 国产欧美日韩精品亚洲av| 中文字幕高清在线视频| 一个人免费在线观看电影| h日本视频在线播放| 午夜免费激情av| 91久久精品电影网| 99热这里只有是精品在线观看 | 亚洲第一欧美日韩一区二区三区| 变态另类丝袜制服| 亚洲精品一卡2卡三卡4卡5卡| 日本撒尿小便嘘嘘汇集6| 亚洲精品色激情综合| 国内精品一区二区在线观看| 国产人妻一区二区三区在| 久久亚洲精品不卡| 国产亚洲精品av在线| 青草久久国产| 最新中文字幕久久久久| 色综合婷婷激情| 国产亚洲av嫩草精品影院| 国产一区二区在线观看日韩| 中文字幕av在线有码专区| 桃红色精品国产亚洲av| www日本黄色视频网| 午夜视频国产福利| 日本一二三区视频观看| 一a级毛片在线观看| 免费av观看视频| 一本一本综合久久| 国产精品av视频在线免费观看| 日韩欧美在线乱码| 久久午夜亚洲精品久久| 免费大片18禁| 国产午夜福利久久久久久| 极品教师在线视频| 国产一区二区激情短视频| 久久香蕉精品热| 色综合欧美亚洲国产小说| 淫秽高清视频在线观看| 国产午夜福利久久久久久| 免费黄网站久久成人精品 | 看免费av毛片| 老司机午夜十八禁免费视频| 女同久久另类99精品国产91| 高清毛片免费观看视频网站| 国内久久婷婷六月综合欲色啪| 日本精品一区二区三区蜜桃| 韩国av一区二区三区四区| 亚洲最大成人av| 久久久久免费精品人妻一区二区| 亚洲黑人精品在线|