• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature prediction model for a high-speed motorized spindle based on back-propagation neural network optimized by adaptive particle swarm optimization

    2022-10-18 04:26:26LeiChunliZhaoMingqiLiuKaiSongRuizheZhangHuqiang

    Lei Chunli Zhao Mingqi Liu Kai Song Ruizhe Zhang Huqiang

    (School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

    Abstract:To predict the temperature of a motorized spindle more accurately, a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization (APSO-BPNN) is proposed. First, on the basis of the PSO-BPNN algorithm, the adaptive inertia weight is introduced to make the weight change with the fitness of the particle, the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm, the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence, and the APSO-BPNN model is constructed. Then, the temperature of different measurement points of the motorized spindle is forecasted by the BPNN, PSO-BPNN, and APSO-BPNN models. The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness. The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools.

    Key words:temperature prediction; high-speed motorized spindle; particle swarm optimization algorithm; back-propagation neural network; robustness

    High-speed computer numerical control(CNC) machine tools are the technical foundation of the equipment manufacturing industry. As the core component of CNC machine tools, the technology and performance of the motorized spindle unit affect machine tool development. As a highly integrated spindle, the power loss of the motor and the friction heat of the bearing of a motorized spindle are the main heat sources. The thermal character directly affects the machining accuracy and service life of motorized spindles and machine tools[1]. According to statistics, the error caused by the thermal deformation of machine tools accounts for 40% to 70% of the total manufacturing error in precision machining[2]. The temperature increase is an important index for evaluating the high-speed operation of motorized spindles[3-5]. Therefore, developing motorized spindles inevitably requires accurate prediction and control of the temperature increase and thermal deformation to realize the automation and intelligence of motorized spindles[6-7]. However, because the thermal structure of spindles has complex boundary conditions and joint surfaces, large errors are obtained in the theoretical modeling and finite element analysis of their thermal design[8]. Temperature prediction is difficult because the temperature of the internal parts of a motorized spindle is not easy to obtain directly, and the temperature distribution of a motorized spindle is nonlinear and complex, resulting in the low accuracy of the predicted temperature. Therefore, the temperature increase characteristics of spindles must be obtained through a thermal balance test, and the model parameters must be checked. Zhang et al.[9]proposed a prediction model of temperature increase in high-speed and precision motorized spindles, which was combined with the calculated results of the finite element model and test data to accurately predict the temperature field of a motorized spindle under different working conditions. A comprehensive prediction model was applied to forecast the thermal-mechanical behavior of a spindle-bearing system considering various bearing surroundings[10]. Liu et al.[11]introduced a BP neural network for the thermal error prediction of a five-axis machining center. Jian et al.[12]predicted spindle thermal deformation using the BPNN. Kumar et al.[13]presented a hybrid model based on particle swarm optimization (PSO) and an emerging extreme learning machine to forecast the temperature. The BP neural network based on the PSO algorithm was applied to predict the high-speed grinding temperature of titanium matrix composites[14]. Li et al.[15]established the spindle thermal error prediction model based on the improved PSO (IPSO)-BP neural network, and IPSO was used to optimize the parameters of the BPNN based on the genetic algorithm (GA). An adaptive neuro-fuzzy inference system was used to design two thermal prediction models for thermal error compensation in machine tools[16]. These models have high accuracy in predicting a temperature increase or thermal error. However, the above mentioned neuro network models still have deficiencies, such as a lack of population diversity and an inadequate design of learning factors, weights, and other parameters.

    In this paper, a BP neural network model based on the adaptive PSO (APSO-BPNN) algorithm is presented to forecast the temperature increase of a motorized spindle. To improve the generalization ability and prediction accuracy of the APSO-BPNN algorithm, the key parameters of the PSO algorithm, the inertia weight and learning factor, are optimized, and the mutation operator is integrated to enhance the diversity of the population and improve the success rate of the optimization. Further, the prediction performance of the BP model, PSO-BPNN model, and APSO-BPNN model are compared, and the results show that the APSO-BPNN model has the best prediction accuracy and generalization ability.

    1 Modeling Methods for Temperature Prediction of a Motorized Spindle

    1.1 Basic BP neural network model

    BPNNs are trained according to the error back-propagation algorithm, and they have been applied in many fields because of their parallel processing ability, fault tolerance ability, and nonlinear mapping. According to Kolmogorov’s theorem[17], a three-layer BPNN can approach any nonlinear function in theory. The main characteristics of a BP network are signal forward transmission and error back-propagation. Therefore, a BPNN can be used to establish the nonlinear mapping relationship between the temperature of motorized spindle parts and time, ambient temperature, and coolant temperature, and the node of the output layer is the temperature of the front bearing outer ring, the temperature of the rear bearing seat, and the temperature of the stator end.

    The node number in hidden layer neurons is determined by

    (1)

    wherem′ andn′ are the numbers of nodes in the input and output layers, respectively, anda′ is a constant within [1, 10].

    According to Eq. (1), the node number in a hidden layer is determined to be 8 by experiments in this paper. The number of iterations is 100, the learning rate is 0.1, and the target error value is 1.0×10-4. The transfer functions of the hidden layer and the output layer neurons are tangent S-type transfer functions (Tansig) and linear transfer functions (purelin), respectively. Trainlm is used for network training. Therefore, the structure of the BP network is determined as 3-8-1.

    1.2 BP model based on the particle swarm optimization algorithm

    Although the steepest descent method is adopted in the BP network algorithm, it has problems such as a slow convergence speed and low calculation accuracy, and it easily falls into a local minimum value. However, the PSO algorithm is a swarm intelligence algorithm based on population. It can realize the optimization search through the cooperation and competition between particles to avoid falling into a local optimum. PSO has a higher convergence speed and global optimization ability. Therefore, the PSO algorithm is adopted in this paper to optimize the weights and thresholds of the BP network.

    In the PSO algorithm, the particles search in the solution space by following the current optimal particle. The PSO data are initialized as a group of random particles, and then the optimal solution is found through an iteration method. In each iteration, the particle velocity is adjusted based on individual and global extrema, which are composed of an inertial part, cognitive part, and social part. When each particle finds an optimal value, it updates its own speed and position using the following equations[18]:

    (2)

    (3)

    wherevidandpidare the velocity and position of thei-th particle in thed-th generation, respectively;tis the number of iterations;ωis the inertia weight;c1is called the cognitive learning factor;c2is the social learning factor;r1andr2are two uniformly distributed random numbers independently generated within [0,1][19], andpbest_idandgbest_idare the individual and the swarm historical best solutions at thed-th generation.

    1.3 BP model based on the adaptive particle swarm optimization algorithm

    The BP algorithm optimized by PSO still has disadvantages, such as low search accuracy and easy premature convergence, which reduces the predictive accuracy. This result is mainly due to the phenomenon of particle convergence and the decrease in population diversity. Therefore, a BP neural network based on the adaptive particle swarm optimization (APSO-BPNN) algorithm is proposed, which improves the inertia weight and learning factor of the PSO-BP algorithm and integrates the mutation operator of the GA to improve the prediction precision.

    1.3.1 Adaptive inertia weight

    The inertia weight of a particle describes its ability to maintain the previous motion state. In the early experiments, it was set to a fixed value within [0.2, 1.2]. In fact, the inertia weight decreases not only with increasing iteration times but also with decreasing distance from the global optimum. When the inertia weight is reduced, the local optimization ability of the algorithm can be enhanced. When the inertia weight is increased, the global search ability of the algorithm can be increased. Therefore, the adaptive nonlinear dynamic inertia weight can avoid the algorithm falling into a local optimum and improve the search efficiency. When the fitness value of a particle is dispersed, the inertia weight decreases. When the fitness value is near the local optimal solution, the inertia weight increases. The calculation formula is shown as follows:

    (4)

    whereωmaxandωminare the maximum and minimum values of the inertia weight, respectively;fis the fitness value of the particle;favgis the average fitness value;fminis the minimum fitness value.

    1.3.2 Adaptive learning factor

    Generally, the learning factorsc1andc2are set as fixed values in the PSO algorithm, and the self-learning ability and social learning ability of particles are considered equal. However, the search ability of particles in the early and later stages is easily affected byc1andc2. Therefore, to search in global space, an adaptive learning factor formula is proposed in this paper.

    In the initial search stage of the PSO algorithm,c1is set to a larger value andc2is set to a smaller value, which makes the particles learn toward the optimal value, promotes the particles to obtain the best position in their history, and improves the local search ability of particles. In the later stage of the PSO algorithm,c1takes a smaller value andc2takes a larger value so that the particles tend to the global optimum to enhance the global search ability and the convergence speed. The improved formulas ofc1andc2are presented as follows:

    (5)

    (6)

    wherecmaxandcminare the maximum and minimum learning factors, respectively;gis the current iteration number;Gmaxis the maximum number of evolutions.

    1.3.3 Adaptive mutation operator

    The GA is a computational model used to simulate the biological evolutionary mechanism of nature proposed by Holland[20]. The mutation operator can increase local random search ability and accelerate the convergence speed of the algorithm to the optimal solution. In addition, it can effectively increase the diversity of the population and prevent premature convergence. Therefore, the mutation operator is introduced into the PSO-BPNN algorithm. When the mutation operator is used, particles are reinitialized with a certain probability after each update to increase the disturbance of the algorithm and prevent it from falling into a local minimum. At the same time, the mutation operator is embedded in the PSO-BPNN algorithm to expand the population space reduced in the iterative process and search in a larger space to realize the adaptive adjustment of the operator and improve the accuracy of prediction.

    Thej-th gene of thei-th individual is mutated as[21]

    (7)

    whereamaxandaminare the maximum and minimum bounds of geneaij;ris a random number within [0,1].

    (8)

    wherer2is a random number.

    1.3.4 Calculation process of the back-propagation neural network optimized by adaptive particle swarm optimization model

    On the basis of the PSO-BPNN algorithm, the adaptive inertia weight, adaptive learning factor, and adaptive mutation operator are introduced in the APSO-BPNN algorithm. The detailed procedure of the APSO-BPNN model is summarized as follows:

    Step1Initialize the parameters of the particle swarm, including the number of iterations, population size, maximum and minimum velocities, and maximum and minimum positions. In this paper,tis initialized to 100, the population size is 30,vis within [-5,5],pis within [-10,10],c1is within [0.8,2.4],c2is within [2.4,0.8], andωis within [0.4,0.9].

    Step2Substitute the initial weights and thresholds of the BP neural network into the PSO algorithm to initialize the particle velocities and positions and calculate the fitness value of the particle using

    (9)

    wherek′ is a coefficient;nis the training sample number of the BP neural network;yiis the actual output of thei-th node;oiis the predicted output of thei-th node.

    Step3Compare the individual extremumpidand global extremumgidwith the fitness value. Iff>pid,pidwill be replaced byf; iff>gid,gidwill be replaced byf.

    Step4Solve the adaptive inertia weight according to Eq. (4).

    Step5Solve the adaptive learning factors according to Eqs. (5) and (6).

    Step6Substitute the results of Steps 4 and 5 into Eqs. (2) and (3) and update the velocities and positions of the particles according to Eqs. (2) and (3), then update the fitness value of the particle.

    Step7Carry out the mutation operation on the particles according to Eqs. (7) and (8) and update the individual and global extremum of the particle.

    Step8Judge whether the termination condition is reached. If so, the optimized weight and threshold are substituted into BP neural network training. Otherwise, return to Step 4 to continue iterating.

    Step9Judge whether the error between the predicted value and the actual value after training meets the termination condition. If so, the iteration will be suspended, and the prediction result will be outputted. Otherwise, return to Step 8 to retrain until the result outputs.

    2 Temperature Experiments

    On the basis of the test rig of a motorized spindle built by the research team, the thermocouple was embedded in the motorized spindle, and the temperatures of the front bearing outer ring, the rear bearing seat, and the stator end were measured. The temperature measuring points of the motorized spindle are shown in Fig. 1.

    Fig.1 Temperature measurement points of a motorized spindle

    The temperature values at three test points,the ambient temperature, and the coolant temperature of the motorized spindle at 12 000 r/min were measured. A set of data was collected every 15 s to ensure that the temperature of the motorized spindle could be recorded in detail until its running reached a steady state at this speed. A total of 340 groups of data samples were obtained after the preliminary processing of the experimental data. The temperature curves at this speed are drawn, as shown in Fig. 2. Fig. 2 shows that the motorized spindle reaches thermal balance at approximately 5 100 s. A nonlinear relationship between temperature and time is also apparent at the three

    Fig.2 Temperature values of measuring points at 12 000 r/min

    measuring points. Therefore, using BPNN to establish the relationship between spindle temperature and time, coolant temperature, and ambient temperature is reasonable.

    3 Temperature Prediction of a Motorized Spindle

    When the motorized spindle rotates at high speed, the change in its internal temperature has strong nonlinear characteristics, and an excessive temperature increase will affect the machining accuracy of the spindle and the machine tool. The temperature prediction of the spindle is of great significance for exploring the trend of temperature increase and providing effective control decisions. Therefore, the BPNN, PSO-BPNN, and APSO-BPNN algorithms are applied to the temperature prediction of the motorized spindle in this paper. All the experiments are carried out on the same machine with a 2.10 GHz Core 2 Duo CPU, 64 GB memory, and Windows 10 operating system.

    3.1 Data processing

    The 340 groups of experimental data are divided into two parts. First, the data are numbered; then, according to the method of sequential extraction, 1 group is taken out from every 5 groups, and 68 groups are obtained and considered testing samples. Second, the remaining data are arranged in order to form 272 groups for training samples. To eliminate the difference in the order of magnitude among all dimensional data, the data are processed using the data normalization method and transformed into a number within [0,1]. The maximum/minimum method is adopted in this paper. The formula is[22]

    (10)

    whereTminandTmaxare the minimum and maximum values in the data sequence, respectively; andTkis the temperature value at timek.

    3.2 Temperature prediction and discussion

    On the basis of the BPNN, PSO-BPNN, and APSO-BPNN models, the temperature increase in the three measurement points of the motorized spindle is predicted. The temperature increase of the front bearing is analyzed in detail, and the result is shown in Fig. 3.

    Figs. 3 (a), (c) and (e) show that the predicted values of the APSO-BPNN model for the front bearing outer ring are in the best agreement with the actual values, and the temperature fluctuation is also finely predicted. From Figs. 3 (b), (d) and (f), the temperature prediction errors based on the BPNN model, the PSO-BPNN model, and the APSO-BPNN model are distributed from -0.43 to 0.49 ℃, -0.15 to 0.32 ℃, and -0.18 to 0.15 ℃,respectively. The APSO-BPNN model has the smallest errors and the highest prediction accuracy among the three models.

    (a)

    (b)

    (c)

    (d)

    (e)

    (f)

    With the same approach, the prediction temperature and prediction error of the rear bearing seat are calculated using the three models. The temperature prediction errors based on the BP model, PSO-BP model, and APSO-BP model are distributed from -0.3 to 0.5 ℃, -0.2 to 0.25 ℃, and -0.1 to 0.2 ℃, respectively. Additionally, the prediction temperature and prediction error of the stator end by the three models are also calculated. The temperature prediction errors based on the three models are distributed from -0.4 to 0.6 ℃, -0.3 to 0.4 ℃, and -0.25 to 0.2 ℃, respectively. Therefore, it can be concluded that the prediction errors of the three temperature points forecasted by APSO-BPNN are the smallest, which proves that the APSO-BPNN model has a stronger generalization ability and higher predictive precision than the comparison algorithms.

    To evaluate the prediction results more intuitively, the mean square error (MSE) function, mean absolute error (MAE) function, andR-squared are introduced. The MSE between the experimental data and prediction data is used to evaluate the change degree of data. The smaller the MSE value is, the higher the prediction accuracy of the model is. The MAE is used to reflect the actual situation of the prediction error.R2is used to reflect the fitting effect of the model. The larger the value ofR2, the better the fitting effect of the model. The calculation formulas are shown as[23]

    (11)

    (12)

    (13)

    The values of MSE, MAE, andR2by using the BP- NN, PSO-BPNN, and APSO-BPNN algorithms are calculated. The calculation results are shown in Tab. 1.

    Tab. 1 shows that the MSE and MAE values of the APSO-BPNN model are the smallest among the three models, while theR2value of the APSO-BPNN model is the highest, which indicates that the APSO-BPNN model has the highest prediction accuracy and the best fitting effect.

    Tab.1 Evaluation of prediction models

    4 Conclusions

    1) The proposed temperature prediction model for a motorized spindle based on APSO-BPNN has a better prediction precision and generalization ability than those of the BPNN and PSO-BPNN models.

    2) The adaptive inertia weight, the adaptive learning factor, and the mutation operator are integrated into the presented method, which improves the predictive accuracy of the method.

    3) The proposed model has high prediction accuracy. However, how to feed back the prediction value to the existing control system for adjusting the parameters of the cooling and lubrication systems or early warning is future research work.

    国产午夜精品一二区理论片| 老熟女久久久| 国产成人免费观看mmmm| 91午夜精品亚洲一区二区三区| a级片在线免费高清观看视频| 超碰97精品在线观看| 久久99热这里只频精品6学生| 成人国产av品久久久| 最后的刺客免费高清国语| 日韩av免费高清视频| 91aial.com中文字幕在线观看| 人体艺术视频欧美日本| 亚洲国产日韩一区二区| 久久久久久久亚洲中文字幕| 国产精品一区www在线观看| 亚洲综合精品二区| 青春草亚洲视频在线观看| 久久精品久久久久久噜噜老黄| 国产精品一区二区性色av| 女人久久www免费人成看片| 久久狼人影院| 伊人久久国产一区二区| 国产精品国产三级国产专区5o| 午夜福利视频精品| 日韩三级伦理在线观看| 国产一区二区三区av在线| 婷婷色麻豆天堂久久| 日本色播在线视频| 欧美日韩综合久久久久久| 亚洲国产毛片av蜜桃av| 亚洲人与动物交配视频| 日本爱情动作片www.在线观看| 日韩精品有码人妻一区| 久久免费观看电影| 成人亚洲欧美一区二区av| 欧美人与善性xxx| 日日摸夜夜添夜夜添av毛片| 日日啪夜夜爽| 一级黄片播放器| 日韩强制内射视频| 女性生殖器流出的白浆| av线在线观看网站| av不卡在线播放| 中国国产av一级| 大码成人一级视频| 欧美日韩一区二区视频在线观看视频在线| 欧美日本中文国产一区发布| 国产成人午夜福利电影在线观看| 亚洲国产毛片av蜜桃av| 99久久人妻综合| 丝袜在线中文字幕| 日韩 亚洲 欧美在线| 热re99久久国产66热| 免费大片18禁| 9色porny在线观看| 高清av免费在线| 欧美三级亚洲精品| 午夜视频国产福利| 丝袜喷水一区| 亚洲图色成人| 在线亚洲精品国产二区图片欧美 | 久久人人爽av亚洲精品天堂| 有码 亚洲区| 精品久久国产蜜桃| 国产伦精品一区二区三区视频9| 日韩精品有码人妻一区| 黄片无遮挡物在线观看| 国产精品一区二区性色av| 国产熟女欧美一区二区| 成人免费观看视频高清| 国产欧美日韩精品一区二区| 精品久久久噜噜| av黄色大香蕉| 一级av片app| 亚洲av综合色区一区| 亚洲人与动物交配视频| 女性被躁到高潮视频| 最近手机中文字幕大全| 国产精品久久久久久av不卡| 免费观看性生交大片5| 国产高清有码在线观看视频| 久久韩国三级中文字幕| 毛片一级片免费看久久久久| 黄色怎么调成土黄色| 亚洲成人手机| 狂野欧美激情性bbbbbb| 欧美成人精品欧美一级黄| 内地一区二区视频在线| 日韩一区二区三区影片| 搡老乐熟女国产| 国产精品三级大全| 各种免费的搞黄视频| av.在线天堂| 欧美+日韩+精品| 国产深夜福利视频在线观看| 美女视频免费永久观看网站| 久久精品夜色国产| 精品久久久精品久久久| 一区二区三区四区激情视频| 免费观看性生交大片5| 人人澡人人妻人| 国产成人精品婷婷| 欧美bdsm另类| 边亲边吃奶的免费视频| 欧美变态另类bdsm刘玥| 国产在线男女| 久久久精品免费免费高清| 自线自在国产av| 久久精品国产鲁丝片午夜精品| 国产乱来视频区| 久久久久国产精品人妻一区二区| 人人澡人人妻人| 精品国产一区二区久久| 亚洲天堂av无毛| 久久精品久久久久久噜噜老黄| 国产一区二区在线观看日韩| 精品人妻偷拍中文字幕| 亚洲精品视频女| 日本vs欧美在线观看视频 | 交换朋友夫妻互换小说| 在线亚洲精品国产二区图片欧美 | 日韩欧美精品免费久久| 久久韩国三级中文字幕| 国模一区二区三区四区视频| 一本久久精品| 乱系列少妇在线播放| 国产视频内射| 熟妇人妻不卡中文字幕| 亚洲精品国产av蜜桃| 精品99又大又爽又粗少妇毛片| 十八禁高潮呻吟视频 | 亚洲伊人久久精品综合| 十分钟在线观看高清视频www | 在线观看国产h片| 久久综合国产亚洲精品| 国产黄片视频在线免费观看| 我要看黄色一级片免费的| 精品久久久精品久久久| 2021少妇久久久久久久久久久| 精品人妻熟女av久视频| 青春草国产在线视频| 美女视频免费永久观看网站| 日日啪夜夜爽| 久久国产精品男人的天堂亚洲 | 少妇精品久久久久久久| 欧美成人午夜免费资源| 老熟女久久久| 亚洲图色成人| 日韩电影二区| av专区在线播放| 十八禁网站网址无遮挡 | 激情五月婷婷亚洲| 成人漫画全彩无遮挡| 久久久久人妻精品一区果冻| 亚洲国产精品一区三区| 插阴视频在线观看视频| 在线 av 中文字幕| 最近2019中文字幕mv第一页| 欧美xxxx性猛交bbbb| 久久久久国产精品人妻一区二区| 国产精品一二三区在线看| 亚洲国产欧美日韩在线播放 | 最新的欧美精品一区二区| 26uuu在线亚洲综合色| 七月丁香在线播放| 亚州av有码| 夫妻午夜视频| 最近中文字幕高清免费大全6| 国产免费一区二区三区四区乱码| 国产精品久久久久成人av| 欧美xxxx性猛交bbbb| 婷婷色av中文字幕| 国产深夜福利视频在线观看| 少妇的逼水好多| 久久av网站| 免费看光身美女| 亚洲成人av在线免费| 日本黄大片高清| 亚洲精品亚洲一区二区| 99久久精品热视频| 亚洲自偷自拍三级| 亚洲精品国产色婷婷电影| 久久韩国三级中文字幕| 在线 av 中文字幕| 狂野欧美激情性bbbbbb| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品日韩在线中文字幕| 美女大奶头黄色视频| 最新的欧美精品一区二区| 日本wwww免费看| 精品久久久久久久久av| 91久久精品国产一区二区成人| 春色校园在线视频观看| 一级黄片播放器| 久久久久久久国产电影| 欧美一级a爱片免费观看看| 国产av一区二区精品久久| 女人久久www免费人成看片| 久久久久久久久久人人人人人人| 国产免费一级a男人的天堂| 久久99精品国语久久久| 丰满人妻一区二区三区视频av| 有码 亚洲区| 一区二区三区四区激情视频| 国产淫片久久久久久久久| 国产69精品久久久久777片| 建设人人有责人人尽责人人享有的| 高清毛片免费看| 成人综合一区亚洲| 久久久久国产网址| 天天操日日干夜夜撸| 欧美精品一区二区免费开放| 一边亲一边摸免费视频| av不卡在线播放| 久热久热在线精品观看| 国产亚洲av片在线观看秒播厂| 国产精品国产av在线观看| 你懂的网址亚洲精品在线观看| 亚洲av中文av极速乱| 日日撸夜夜添| 青青草视频在线视频观看| 亚洲综合精品二区| 如何舔出高潮| 久久婷婷青草| 国产精品一区二区在线观看99| 精品人妻偷拍中文字幕| 国内揄拍国产精品人妻在线| 国产亚洲最大av| 亚洲av免费高清在线观看| 18禁动态无遮挡网站| 日韩一区二区视频免费看| 国产男女超爽视频在线观看| 两个人的视频大全免费| 视频区图区小说| 中国国产av一级| 中文乱码字字幕精品一区二区三区| 少妇熟女欧美另类| 老女人水多毛片| 麻豆精品久久久久久蜜桃| 纯流量卡能插随身wifi吗| 日本欧美视频一区| 日韩熟女老妇一区二区性免费视频| 精品熟女少妇av免费看| 少妇人妻 视频| 免费av中文字幕在线| 黄色毛片三级朝国网站 | 久久久精品免费免费高清| 国产伦在线观看视频一区| 亚洲精品亚洲一区二区| 亚洲怡红院男人天堂| 亚洲欧洲日产国产| 在线观看免费视频网站a站| videos熟女内射| 秋霞伦理黄片| 亚洲av二区三区四区| 伊人亚洲综合成人网| 欧美日韩精品成人综合77777| 亚洲内射少妇av| 最近中文字幕高清免费大全6| a 毛片基地| 在线亚洲精品国产二区图片欧美 | 十八禁高潮呻吟视频 | 自拍欧美九色日韩亚洲蝌蚪91 | 九草在线视频观看| 成人毛片a级毛片在线播放| 日日撸夜夜添| 亚洲欧洲精品一区二区精品久久久 | 日本色播在线视频| 亚洲国产欧美在线一区| 日日爽夜夜爽网站| 熟女人妻精品中文字幕| 高清毛片免费看| 伦精品一区二区三区| 午夜日本视频在线| 精品久久久久久久久av| 欧美 亚洲 国产 日韩一| 国产爽快片一区二区三区| 日韩在线高清观看一区二区三区| 国产免费福利视频在线观看| 午夜av观看不卡| 一级a做视频免费观看| 欧美性感艳星| 中国国产av一级| 老司机影院成人| 中文乱码字字幕精品一区二区三区| 日韩伦理黄色片| 国产无遮挡羞羞视频在线观看| 欧美精品亚洲一区二区| 97在线人人人人妻| 大香蕉久久网| 成人黄色视频免费在线看| 色吧在线观看| 国产精品女同一区二区软件| 国产黄色视频一区二区在线观看| 午夜影院在线不卡| 国产成人freesex在线| 日韩欧美 国产精品| 人人妻人人澡人人看| 中文字幕av电影在线播放| 99热6这里只有精品| 久热这里只有精品99| 国产永久视频网站| 欧美精品国产亚洲| 亚洲精品国产av成人精品| 精品99又大又爽又粗少妇毛片| 久久鲁丝午夜福利片| 精品久久久久久久久亚洲| 偷拍熟女少妇极品色| 麻豆精品久久久久久蜜桃| 日韩,欧美,国产一区二区三区| 黄片无遮挡物在线观看| 欧美日韩视频高清一区二区三区二| 久久久久国产精品人妻一区二区| 久久久a久久爽久久v久久| 久久精品国产亚洲av涩爱| 精品国产露脸久久av麻豆| 亚洲一级一片aⅴ在线观看| 一区二区三区免费毛片| 亚洲国产毛片av蜜桃av| 精品视频人人做人人爽| 欧美+日韩+精品| 亚洲av日韩在线播放| 啦啦啦在线观看免费高清www| 能在线免费看毛片的网站| 纯流量卡能插随身wifi吗| 九草在线视频观看| 久久国产乱子免费精品| 日本爱情动作片www.在线观看| 久久精品久久久久久久性| 国产精品人妻久久久久久| 男的添女的下面高潮视频| 中国三级夫妇交换| 亚洲国产最新在线播放| 亚洲国产成人一精品久久久| 男人添女人高潮全过程视频| 国产精品.久久久| 69精品国产乱码久久久| 亚洲国产精品一区三区| 韩国高清视频一区二区三区| 赤兔流量卡办理| 国内少妇人妻偷人精品xxx网站| 精品久久久久久久久av| 王馨瑶露胸无遮挡在线观看| 精品99又大又爽又粗少妇毛片| 久久久久久久久久成人| 国产精品无大码| 黄色怎么调成土黄色| 少妇人妻精品综合一区二区| 在线观看免费视频网站a站| 美女大奶头黄色视频| 成人特级av手机在线观看| 少妇人妻精品综合一区二区| 高清视频免费观看一区二区| 亚洲精品aⅴ在线观看| 国国产精品蜜臀av免费| 狂野欧美白嫩少妇大欣赏| 少妇被粗大的猛进出69影院 | 亚洲真实伦在线观看| 激情五月婷婷亚洲| 啦啦啦在线观看免费高清www| 亚洲色图综合在线观看| 亚洲人成网站在线播| 黑丝袜美女国产一区| 亚洲美女视频黄频| 一二三四中文在线观看免费高清| 自线自在国产av| 99精国产麻豆久久婷婷| 最新中文字幕久久久久| 国精品久久久久久国模美| 午夜精品国产一区二区电影| 一个人看视频在线观看www免费| 少妇人妻一区二区三区视频| 久久97久久精品| 久久久久久人妻| av天堂中文字幕网| 日韩中文字幕视频在线看片| 大香蕉97超碰在线| 精品视频人人做人人爽| 国产精品国产三级专区第一集| 亚洲精品久久午夜乱码| 精品亚洲乱码少妇综合久久| 高清午夜精品一区二区三区| 亚洲欧洲日产国产| 色视频www国产| 亚洲,欧美,日韩| 亚洲天堂av无毛| 国产免费一区二区三区四区乱码| 欧美97在线视频| av在线观看视频网站免费| 久久 成人 亚洲| 国产日韩欧美在线精品| 久久久亚洲精品成人影院| 免费观看性生交大片5| av在线app专区| 91久久精品电影网| 青青草视频在线视频观看| 久久久久久久国产电影| 国产熟女欧美一区二区| 国产视频首页在线观看| 国产91av在线免费观看| 永久网站在线| 国产国拍精品亚洲av在线观看| 欧美丝袜亚洲另类| 久久国产精品大桥未久av | 国产高清三级在线| 日本免费在线观看一区| 久久久久人妻精品一区果冻| 中文字幕免费在线视频6| 国产成人精品无人区| 视频中文字幕在线观看| 新久久久久国产一级毛片| 亚洲真实伦在线观看| 91精品伊人久久大香线蕉| tube8黄色片| 午夜日本视频在线| 国产免费一区二区三区四区乱码| 免费少妇av软件| 国产精品无大码| 性色avwww在线观看| 午夜视频国产福利| 国产极品粉嫩免费观看在线 | 少妇人妻 视频| 夜夜骑夜夜射夜夜干| 在线播放无遮挡| 日本wwww免费看| 国产淫片久久久久久久久| 日本黄色日本黄色录像| 一级片'在线观看视频| 国产精品蜜桃在线观看| 亚洲国产精品一区二区三区在线| 久久久久久久精品精品| 日本91视频免费播放| 午夜av观看不卡| 大香蕉97超碰在线| 人人妻人人爽人人添夜夜欢视频 | 天堂8中文在线网| 中文在线观看免费www的网站| 国产成人精品无人区| 18禁在线播放成人免费| 99久久人妻综合| 亚洲精品自拍成人| 久久午夜福利片| 欧美一级a爱片免费观看看| 国产午夜精品久久久久久一区二区三区| 大片免费播放器 马上看| 欧美变态另类bdsm刘玥| 日韩精品有码人妻一区| 狂野欧美激情性bbbbbb| 国产av精品麻豆| 久久人人爽av亚洲精品天堂| 精品亚洲成a人片在线观看| 久久热精品热| 高清不卡的av网站| 内射极品少妇av片p| 久久人人爽人人爽人人片va| 亚洲人成网站在线播| 成人毛片a级毛片在线播放| 91精品国产国语对白视频| 另类亚洲欧美激情| 亚洲综合色惰| 欧美丝袜亚洲另类| 亚洲欧美一区二区三区黑人 | 亚洲国产av新网站| 男人爽女人下面视频在线观看| 一个人看视频在线观看www免费| 国产一区亚洲一区在线观看| 丝袜在线中文字幕| 国产成人精品无人区| 在线观看免费高清a一片| 久久久欧美国产精品| www.色视频.com| 韩国高清视频一区二区三区| videossex国产| 女性被躁到高潮视频| 欧美激情极品国产一区二区三区 | 91精品一卡2卡3卡4卡| 成人国产av品久久久| 久久精品国产亚洲av天美| 亚洲精品乱码久久久久久按摩| 欧美日韩国产mv在线观看视频| a级片在线免费高清观看视频| 亚洲国产精品专区欧美| a 毛片基地| 久久女婷五月综合色啪小说| 亚洲精品国产色婷婷电影| 高清在线视频一区二区三区| 亚洲av中文av极速乱| 一本一本综合久久| 国产精品.久久久| 国产精品一区二区在线不卡| 91成人精品电影| 欧美日韩精品成人综合77777| 久久久久网色| 看免费成人av毛片| 欧美另类一区| 十八禁高潮呻吟视频 | 中文乱码字字幕精品一区二区三区| 九草在线视频观看| 91久久精品国产一区二区三区| 久久久久久久亚洲中文字幕| 精品国产乱码久久久久久小说| 亚洲国产精品成人久久小说| 看免费成人av毛片| 亚洲av电影在线观看一区二区三区| 在线观看一区二区三区激情| 亚洲国产av新网站| 亚洲av不卡在线观看| 蜜臀久久99精品久久宅男| 亚洲av免费高清在线观看| 少妇高潮的动态图| av一本久久久久| 国产一区有黄有色的免费视频| 亚洲天堂av无毛| 免费看日本二区| 久久99精品国语久久久| 最近的中文字幕免费完整| 两个人的视频大全免费| 热99国产精品久久久久久7| 老司机影院毛片| 91久久精品国产一区二区成人| 亚洲国产精品999| 亚洲精品国产成人久久av| 久久久精品免费免费高清| 国产国拍精品亚洲av在线观看| 在线观看人妻少妇| 一区二区av电影网| 国产深夜福利视频在线观看| 婷婷色综合大香蕉| 国产视频内射| 亚洲精品久久久久久婷婷小说| 麻豆成人午夜福利视频| 亚洲欧美一区二区三区黑人 | 国产中年淑女户外野战色| 午夜福利网站1000一区二区三区| 高清欧美精品videossex| 最近中文字幕2019免费版| 毛片一级片免费看久久久久| 黄色配什么色好看| 久久 成人 亚洲| 成人免费观看视频高清| 啦啦啦视频在线资源免费观看| 99国产精品免费福利视频| 日韩成人av中文字幕在线观看| 亚洲无线观看免费| 青春草亚洲视频在线观看| 国产午夜精品一二区理论片| 欧美国产精品一级二级三级 | 久久久久久伊人网av| 狠狠精品人妻久久久久久综合| 美女主播在线视频| 精品99又大又爽又粗少妇毛片| 欧美bdsm另类| 欧美日韩亚洲高清精品| 国产精品偷伦视频观看了| 性色av一级| 国产黄频视频在线观看| 免费看日本二区| 亚洲熟女精品中文字幕| 极品教师在线视频| 国产一区二区在线观看日韩| 欧美 日韩 精品 国产| 哪个播放器可以免费观看大片| 男人狂女人下面高潮的视频| 久久99蜜桃精品久久| a级毛色黄片| 如日韩欧美国产精品一区二区三区 | 亚洲av二区三区四区| 日韩成人av中文字幕在线观看| 日韩,欧美,国产一区二区三区| 9色porny在线观看| 伊人久久精品亚洲午夜| 国产av国产精品国产| 国产黄片美女视频| 久久午夜福利片| 全区人妻精品视频| 女性被躁到高潮视频| 中文天堂在线官网| 亚洲国产色片| 日韩av不卡免费在线播放| 久久久久精品性色| 高清午夜精品一区二区三区| 欧美 亚洲 国产 日韩一| 高清黄色对白视频在线免费看 | av天堂中文字幕网| 毛片一级片免费看久久久久| 波野结衣二区三区在线| 精品久久久精品久久久| 日本黄大片高清| 免费黄色在线免费观看| 欧美精品人与动牲交sv欧美| 色视频www国产| 午夜av观看不卡| 中文字幕免费在线视频6| 少妇丰满av| 亚洲精品一区蜜桃| 97超视频在线观看视频| 欧美97在线视频| 免费av中文字幕在线| 色5月婷婷丁香| 一级毛片久久久久久久久女| 一个人看视频在线观看www免费| 最近中文字幕高清免费大全6| 国产黄片美女视频| 午夜老司机福利剧场| 九九在线视频观看精品| 18禁在线无遮挡免费观看视频| 国产在线免费精品| 国产综合精华液| 免费大片黄手机在线观看| 日日摸夜夜添夜夜爱| 波野结衣二区三区在线| 国语对白做爰xxxⅹ性视频网站| 欧美日韩一区二区视频在线观看视频在线| 一级毛片我不卡| 亚洲精品aⅴ在线观看|