• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Predictive current control system of PMSM based on LADRC

    2022-10-18 04:26:26WangXiaopengZhaoJunWangBohuiLiBaomin

    Wang Xiaopeng Zhao Jun Wang Bohui Li Baomin

    (School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

    Abstract:For a permanent magnet synchronous motor (PMSM) model predictive current control (MPCC) system, when the speed loop adopts proportional-integral (PI) control, speed regulation is easily affected by motor parameters, resulting in the inability to balance the system robustness and dynamic performance. A PMSM optimal control strategy combining linear active disturbance rejection control (LADRC) and two-vector MPCC (TV-MPCC) is proposed. Firstly, a mathematical model of a PMSM is presented, and the PMSM TV-MPCC model is developed in the synchronous rotation coordinate system. Secondly, a first-order LADRC controller composed of a linear extended state observer and linear state error feedback is designed to reduce the complexity of parameter tuning while linearly simplifying the traditional active disturbance rejection control (ADRC) structure. Finally, the conventional PI speed regulator in the motor speed control system is replaced by the designed LADRC controller. The simulation results show that the speed control system using LADRC can effectively deal with the changes in motor parameters and has better robustness and dynamic performance than PI control and similar methods. The system has a fast motor speed response, small overshoot, strong anti-interference, and no steady-state error, and the total harmonic distortion is reduced.

    Key words:permanent magnet synchronous motor(PMSM); two-vector model predictive current control; linear active disturbance rejection control; speed control system

    Permanent magnet synchronous motors (PMSMs) are widely used in servo and high-performance speed regulation systems due to their high efficiency, high power, and low loss[1-2]. Vector control and direct torque control are two typical control strategies for a PMSM. However, as vector control, its closed-loop performance is restricted due to the conflict between the linearity of the proportional-integral (PI) controller adopted in its current loop and the rotation speed loop and nonlinearity of the PMSM. For the direct torque control, the hysteresis loop controller adopted in its inner loop results in an increased ripple of the electromagnetic torque and three-phase current. In recent years, with the rapid development of microprocessors, predictive control has become a novel nonlinear control strategy for PMSMs, owing to its fast dynamic response and high control precision. Model predictive control (MPC) has become a high-performance control scheme because of its merits such as fast dynamic response, simplicity, and no requirement for the parameter tuning of the current loop[3-6]. MPC mainly includes model predictive torque control and MPCC. Compared with the former control, MPCC has a value function whose control variable only involves current. Without considering the weight of different control variables, it can achieve the fast tracking of current overshoot, which is highly favorable for actual control. To further improve the static performance of the PMSM control system, domestic and foreign scholars have performed a substantial amount of research on the two-vector model predictive current control (TV-MPCC) strategies of PMSMs[7-9].

    APMSM is a typical nonlinear multi-variable strongly coupled system. Its predictive current control system generally adopts a PI controller as its rotation speed loop controller. However, due to the complexity of the PMSM’s rotation speed control model, a mathematical model is not precise enough. Moreover, PI control is sensitive to the parameter changes of the PMSM model, resulting in the poor dynamic performance and robustness of the speed regulation system. In response to the inherent defects of the conventional PI, Han[10]proposed active disturbance rejection control (ADRC), which is characterized by simple regulation, high accuracy, real-time estimation, and compensation of internal and external disturbances without the need for an accurate and controlled mathematical model system. In recent years, ADRC has been widely applied to the PMSM’s control system. Zhou et al.[11]suggested that a speed control system with ADRC showed better dynamic and static performance than the speed control system with PI control in the vector control of PMSMs. Hezzi et al.[12]investigated the speed tracking capability and elastic control performance of the ADRC technique under different operating conditions based on a five-phase PMSM for electric vehicles. Accordingly, ADRC can ensure higher dynamic performance and robustness of a system than PI control. Zhang et al.[13]proposed an extended state observer (ESO)-based predictive control strategy for a PMSM’s active disturbance rejection model to reduce the ripple of electromagnetic torque, which demonstrates a satisfactory performance of the rotation speed tracking and disturbance rejection. However, ADRC cannot be widely applied due to its complex parameter calibration and nonlinear function. Accordingly, Gao[14]simplified nonlinear ADRC into linear ADRC (LADRC), which has been applied to power systems[15].

    This paper attempts to design a one-order LADRC controller that consists of the following parts: linear extended state observer (LESO) and linear state error feedback (LSEF)[16]. The innovative LADRC controller provides intuitive parameter calibration and significantly reduces computational effort, achieving the same high performance as nonlinear ADRC, making it more suitable for PMSM speed loop control system[17-18]. The proposed control strategy can increase the disturbance rejection capacity and robustness of the PMSM’s predictive current control system.

    1 PMSM Mathematical Model

    Based on the magnetic field orientation theory, ignoring the hysteresis loss of the PMSM, the state equation of the stator current for the table-posted PMSM in the synchronous rotation coordinate system is

    (1)

    whereidandiqare the stator current,udanduqare the stator voltage, respectively;Ld=Lq=Lsdenote the stator’s winding inductance;Rsis the stator resistance;ψfis the permanent magnet flux linkage; andωris the rotor electrical angular velocity.

    The mechanical motion equation of the motor is

    (2)

    whereTLandTeare the load torque and electromagnetic torque, respectively;Jis the rotational inertia; andFis the rotor viscous friction coefficient. Inωr=pωm,ωmrefers to the rotor mechanical angular velocity, andpis the number of pole pairs.

    The electromagnetic torque equation is

    Te=1.5pψfiq

    (3)

    2 PMSM TV-MPCC

    A two-level three-phase voltage source inverter may generate eight basic switch states: Six valid voltage vectorsU1(001),U2(010),U3(011),U4(100),U5(101),U6(110) and two zero vectorsU0(000) andU0(111). They can determine the limited number of output current possibilities for the next sampling interval. A traditional MPCC only selects one optimal voltage vectorVopt1as the output voltage. However, the electromagnetic torque and stator current demonstrate obvious ripples. With TV-MPCC, another voltage vector is selected within one control period to determine the second optimal voltage vectorVopt2. The optimal voltage vectorVopt1and the eight voltage vectors are combined and pre-allocated to the action time of two voltage vectors in each combination. Therefore, the selected voltage vector is accurate. It can effectively improve the current tracking accuracy and obtain good static performance. TV-MPCC aims to minimize the error between the prediction current value and the set current value by calculating the value function. Withd-qaxis currents as the control quantities, the value function can be established as follows:

    (4)

    For state Eq.(1), the Eulerian method is adopted to obtain the discretizedd-qphase current prediction equation:

    (5)

    wheretg1andtg2are the action times ofVopt1andVopt2within a control cycleTS, respectively,tg1=Ts-tg2;i′d1(k),i′d2(k),i′q1(k) andi′q2(k) denote the current slope ofdandqaxis components with the actions ofVopt1andVopt2. The calculation is as follows:

    (6)

    (7)

    wheren=1,2,udnanduqndenote thedandqaxis voltages ofVopt1andVopt2, respectively. Combining the equation above, the action time ofVopt1is obtained:

    (8)

    tg2=TS-tg1

    (9)

    When the motor is started, there may be circumstances where the calculation results oftg1andtg2do not fall within 0 andTs. At this time,tg1andtg2should be reallocated. There are mainly two circumstances: iftg1<0, then,tg1=0; iftg1>Ts, then,tg1=Ts. The structure block diagram of the PMSM TV-MPCC is shown in Fig.1.

    Fig.1 Structure block diagram of the PMSM TV-MPCC

    3 Design of the LADRC Controller

    3.1 LADRC rotation speed loop controller

    For the surface-mount PMSM (id=0) with the givenLd=Lq, the following expression is obtained from Eqs.(2) and (3):

    (10)

    The disturbance is set as

    (11)

    Eq.(10) can be rewritten as

    (12)

    Fig.2 Structure diagram of the designed one-order LADRC

    3.2 LESO

    LESO is the core part of the LADRC controller. It is mainly applied to observe the actual value of the disturbance actions inside and outside the system and compensate for the feedback to eliminate the influence of disturbances and improve the performance of the control system.

    The equation of the controlled object is set as follows:

    (13)

    whereyandudenotes the output and input;tis the system’s time-varying state; andbis the gain of the controlled variable. The true value ofbis hard to estimate in real systems. Therefore, Eq.(13) can be written as

    (14)

    wheref(y,ω,t) is the total internal and external disturbances.

    (15)

    (16)

    Substitute the parameters forA,B,LandCinto Eq.(16), and the LESO equation can be obtained as follows:

    (17)

    3.3 LSEF

    The traditional proportional-integral-derivative (PID) is a simple weighted sum of the error’s proportion, integral, and differential. As the LESO can achieve real-time estimation and compensate for internal and external disturbances, there is no need to employ traditional PID integration to eliminate residual errors under constant disturbances. Similar to a PI controller, the LSEF is mainly used to control the reference input, error feedback, and offset disturbance. It converts a complex mathematical model into an integral series model, thus eliminating the negative influence of the integrator. The control law can be expressed as

    (18)

    wherekpis the gain coefficient. Supposing thatωcis the bandwidth of the LADRC controller, the high-performance tracking of the signal can be achieved whenkp=ωc.

    3.4 Parameter calibration strategy

    In a rotation speed loop’s one-order LADRC controller, only three parameters need to be calibrated: bandwidthωcof the controller, bandwidthωoof the observer, and compensation coefficientb0.ωcdetermines the controller’s response speed. Moreover, the greater theωc, the better the control effect. However, excessiveness may cause system divergence.ωodetermines the tracking speed of the LESO, where the greater theωo, the faster the LESO’s estimation of disturbance. However, the system is still sensitive to noise. Therefore, a balance between the observer’s parameters and the system’s sensitivity to noise must be found.b0represents the characteristics of the controlled object and can be directly exported based on those characteristics.

    But the king was left raging in his empty palace, and he called together his army, and got ready his ships of war, in order that he might go after the vessel and bring back what had been taken away

    Gao[14]proposed a strategy that simplifies the LADRC parameter adjustment to the bandwidth parameter adjustment problem. Therefore, for most engineering projects, the relationship betweenωoandωccan be set asωo≈(3~5)ωc. In simulations, appropriate parameters can be found through multiple comparative analyses using cut-and-try methods.

    4 Simulation Results and Analysis

    To verify the correctness and effectiveness of the proposed control strategy, the performance test of the PMSM system with the TV-MPCC as the current loop and the LADRC controller as the speed loop was performed on the MATLAB/Simulink platform, and the results were compared with those of the TV-MPCC PMSM where the speed loop adopts a PI controller. The general block diagram of the PMSM’s control system is shown in Fig.3. The selected main parameters of the PMSM are shown in Tab.1. The system sampling cycleTsis 50 μs, and the base frequency of both systems is 133.33 Hz. The LADRC parameters are as follows:ωo=1 950,ωc=480, andb0=1 734.5.

    Fig.3 General block diagram of the PMSM’s control system

    Tab.1 Selected main parameters of the PMSM

    The PI parameters were adjusted at the same simulation conditions so that the two TV-MPCC PMSM systems that adopt PI and LADRC achieve the same dynamic performance as much as possible. Accordingly,kp=0.20 andki=0.014 can be obtained. Fig.4 shows the system response of the TV-MPCC PMSM with PI.

    4.1 Simulation results with the PMSM parameter match

    To solidly and comparatively analyze the dynamic performance of the two systems, the PI parameters were

    (a)

    (b)

    (c)

    adjusted so that the two TV-MPCC PMSM systems using PI and LADRC can achieve the same anti-interference performance as much as possible. Accordingly,kp= 0.90 andki= 0.70 can be obtained. The simulation conditions are as follows: When the motor operated at a stable speed of 2 000 r/min without load, 8 N·m load disturbance was abruptly added at 0.1 s. Figs.4 and 5 show the corresponding response curves of the two systems.

    Figs.4 and 5 show that when the rotation speed loop has the same anti-load disturbance capacity, the fluctuation of the rotation speed wave and the overshoot are great with the PI controller during the initial startup period of the motor. It takes a long transition time whenTs= 16 ms. However, as the LADRC controller was adopted, the overshoot was smaller with the transition time (Ts=8 ms), and the response was faster. Figs.4(b) and 5(b) show the waves of the three-phase current (ia,ib, andic) under the control of the PI and LADRC, respectively, in a stable state after 0.16 s. A fast Fourier transform (FFT) analysis was conducted foria, and one cycle after 0.16 s was selected. As shown in Figs.4(c) and 5(c), the THDs controlled by the PI and LADRC are 3.61% and 3.32%, respectively.

    The robustness of the LADRC and PI controllers are compared in Figs.5 and 6. When the speed loop basically has the same dynamic performance, the rotation speed controlled by PI was reduced by 3.35% as an abrupt 8 N·m load was added at 0.1 s, as shown in Fig.6(a). At the same time, when the rated rotation speed was resumed, there was a 2.4% steady-state error. In Fig.5(a), however, the rotation speed is reduced by only 1.62%. Furthermore, when the rated rotation speed is resumed, there is no steady-state error. Figs.5(b) and 6(b) show the wave of three-phase current (ia,ib, andic), respectively, under the control of the LADRC and PI in a stable state after 0.16 s. The FFT analysis was conducted foria, and one cycle after 0.16 s was selected.

    (a)

    (b)

    (c)

    (a)

    (b)

    (c)

    The THDs controlled by the PI and LADRC were 4.17% and 3.32%, respectively.

    To further test the application of the designed LADRC in the high-performance PMSM speed regulation system, the control strategy was simulated in comparison with that presented in Ref.[13], in which the control strategy speed loop employs the conventional active disturbance rejection controller under the same simulation conditions. The PMSM system response of Ref.[13] is shown in Fig.7.

    (a)

    (b)

    (c)

    Comparing Figs.5(a) and 7(a), the proposed control strategy demonstrates better transient response features and disturbance rejection control than that of Ref.[13]. Figs.5(b) and 7(b) show the three-phase currents (ia,ib, andic) of the proposed control strategy and those in Ref. [13] in a steady state after 0.16 s, respectively. The FFT analysis also demonstrates that the THD of the phase current is small. Tab.2 presents the control system performance of the speed loop with different control strategies.

    Tab.2 Control system performances of the rotation speed loop adopting different control strategies

    4.2 Simulation results with the PMSM parameter mismatch

    During the actual running of the motor, due to factors such as temperature rise and magnetic saturation, the PMSM parameters may deviate. To verify the effectiveness of the proposed LADRC controller in the case of mismatched motor parameters, under the same conditions as in Section 4.1, the actual values of the inductance, rotor flux linkage, and stator resistance in the control strategy are set to be 1.5, 1.2, and 0.8 times their nominal values, respectively. Fig.8 shows the response of the PI-based TV-MPCC PMSM system, wherekp=0.90 andki=0.70. Fig.9 presents the corresponding response whenkp=0.20 andki=0.014.

    Fig.10 shows the corresponding system response of the LADRC-based TV-MPCC PMSM system in the case of a motor parameter mismatch. Comparing Figs.8 and 9, the motor speed response time of the proposed control strategy is short, the steady-state error is small, and the simulation is close to the nominal value of the motor parameters. Based on the FFT analysis onia(see Fig.10(c)), the THD of the phase current is small. Hence, the system under the proposed control strategy has good performance, can effectively deal with the changes in motor parameters, and has good robustness when the motor parameters do not match.

    (a)

    (b)

    (c)

    (a)

    (b)

    (c)

    (a)

    (b)

    (c)

    5 Conclusions

    1) A control strategy employing the LADRC controller as the speed loop of the PMSM predictive current control system is proposed, which effectively overcomes the contradiction between PI control robustness and dynamic performance. The proposed LADRC controller is of simple design with intuitive parameters without reliance on precise mathematical models. Moreover, it improves the disturbance rejection capacity and robustness of the PMSM’s predictive current control system.

    2) Based on the simulation and comparative analysis results of two TV-MPCC PMSM systems based on PI and LADRC, the comprehensive performance of the rotation speed loop based on the LADRC is better than that of the PI controller in terms of its fast response speed, low startup overshoot, high disturbance rejection performance, and non-steady-state error. The LADRC achieves more satisfactory results than the PI controller in controlling speed and current.

    3) The proposed control strategy can be applied in the fields of aerospace, wind power systems, new energy vehicles, home appliances, and elevator control. However, due to the addition of the LADRC controller in the proposed control strategy, the computational complexity of the sampling period is increased. Nonetheless, the parameter setting of the LADRC controller is relatively vague, and further research is required.

    激情视频va一区二区三区| 婷婷成人精品国产| 男女高潮啪啪啪动态图| 久久天躁狠狠躁夜夜2o2o| 精品一品国产午夜福利视频| 色老头精品视频在线观看| 欧美中文综合在线视频| 免费高清在线观看视频在线观看| 亚洲男人天堂网一区| 亚洲 国产 在线| 欧美人与性动交α欧美软件| 亚洲第一欧美日韩一区二区三区 | 法律面前人人平等表现在哪些方面 | 亚洲精品国产区一区二| 777米奇影视久久| 中文字幕另类日韩欧美亚洲嫩草| 精品一区二区三卡| 免费看十八禁软件| 日韩大码丰满熟妇| 99香蕉大伊视频| 国产97色在线日韩免费| 欧美成狂野欧美在线观看| 91麻豆av在线| 国产片内射在线| 十分钟在线观看高清视频www| 亚洲欧洲日产国产| 成年女人毛片免费观看观看9 | av电影中文网址| 王馨瑶露胸无遮挡在线观看| 在线十欧美十亚洲十日本专区| 一级黄色大片毛片| 悠悠久久av| 美女中出高潮动态图| 99精品欧美一区二区三区四区| 日韩电影二区| 一区福利在线观看| 午夜福利,免费看| 成在线人永久免费视频| 男女免费视频国产| 国产国语露脸激情在线看| 制服人妻中文乱码| 美女国产高潮福利片在线看| 乱人伦中国视频| 日韩 欧美 亚洲 中文字幕| 国产欧美日韩精品亚洲av| 国产有黄有色有爽视频| 最近最新免费中文字幕在线| 青草久久国产| 午夜久久久在线观看| 黄色毛片三级朝国网站| 欧美久久黑人一区二区| 一边摸一边抽搐一进一出视频| 老汉色∧v一级毛片| 啦啦啦免费观看视频1| 一边摸一边做爽爽视频免费| 91精品伊人久久大香线蕉| av又黄又爽大尺度在线免费看| 啪啪无遮挡十八禁网站| 大香蕉久久网| h视频一区二区三区| 999久久久国产精品视频| 老司机影院成人| 亚洲精品第二区| 2018国产大陆天天弄谢| 操美女的视频在线观看| 夫妻午夜视频| 久久青草综合色| 王馨瑶露胸无遮挡在线观看| 男人爽女人下面视频在线观看| 国产成人欧美| 一区二区日韩欧美中文字幕| 色94色欧美一区二区| 免费看十八禁软件| 中文字幕色久视频| 免费在线观看日本一区| 欧美日韩精品网址| 亚洲精品粉嫩美女一区| 男女免费视频国产| 久久这里只有精品19| 制服人妻中文乱码| 在线十欧美十亚洲十日本专区| 999久久久国产精品视频| 国产不卡av网站在线观看| 久久中文字幕一级| 免费观看a级毛片全部| 免费久久久久久久精品成人欧美视频| 午夜福利视频精品| 国产精品一区二区精品视频观看| 国产在线一区二区三区精| 久久中文看片网| 亚洲av日韩在线播放| 国产国语露脸激情在线看| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美清纯卡通| 少妇粗大呻吟视频| 热99久久久久精品小说推荐| 中文字幕另类日韩欧美亚洲嫩草| 日韩有码中文字幕| 搡老乐熟女国产| 亚洲欧美一区二区三区久久| 999久久久精品免费观看国产| 国产真人三级小视频在线观看| 99国产综合亚洲精品| 久久久国产成人免费| 人人妻人人添人人爽欧美一区卜| 国产精品99久久99久久久不卡| 国产野战对白在线观看| 女性生殖器流出的白浆| tocl精华| 亚洲情色 制服丝袜| av电影中文网址| a 毛片基地| 久久精品熟女亚洲av麻豆精品| 久久国产精品大桥未久av| 精品一区二区三区四区五区乱码| 日日摸夜夜添夜夜添小说| 超碰97精品在线观看| 在线永久观看黄色视频| 中国美女看黄片| 夜夜夜夜夜久久久久| 99久久99久久久精品蜜桃| 秋霞在线观看毛片| 一区二区日韩欧美中文字幕| 欧美日韩中文字幕国产精品一区二区三区 | 久久香蕉激情| 我的亚洲天堂| 侵犯人妻中文字幕一二三四区| 国产精品麻豆人妻色哟哟久久| 久久女婷五月综合色啪小说| 久久久国产精品麻豆| 免费人妻精品一区二区三区视频| 一本色道久久久久久精品综合| 亚洲欧美成人综合另类久久久| 亚洲五月婷婷丁香| 丰满人妻熟妇乱又伦精品不卡| 成人18禁高潮啪啪吃奶动态图| av不卡在线播放| 啦啦啦啦在线视频资源| 日韩制服丝袜自拍偷拍| 国产不卡av网站在线观看| a级片在线免费高清观看视频| 99国产精品一区二区蜜桃av | 纯流量卡能插随身wifi吗| 精品国产一区二区三区四区第35| 视频区欧美日本亚洲| 午夜老司机福利片| 99久久精品国产亚洲精品| 欧美精品av麻豆av| 日本猛色少妇xxxxx猛交久久| 国产免费视频播放在线视频| 欧美国产精品va在线观看不卡| 999久久久国产精品视频| 久久av网站| 69av精品久久久久久 | 法律面前人人平等表现在哪些方面 | 9热在线视频观看99| videos熟女内射| 欧美日韩亚洲综合一区二区三区_| 一进一出抽搐动态| 国产av国产精品国产| 纯流量卡能插随身wifi吗| 90打野战视频偷拍视频| 亚洲欧美成人综合另类久久久| 久久午夜综合久久蜜桃| 男人爽女人下面视频在线观看| 狠狠精品人妻久久久久久综合| 在线观看免费视频网站a站| 少妇裸体淫交视频免费看高清 | 免费在线观看视频国产中文字幕亚洲 | 国产精品影院久久| 一本一本久久a久久精品综合妖精| 1024视频免费在线观看| 婷婷丁香在线五月| 中文字幕高清在线视频| 国产精品久久久久久精品古装| 午夜福利一区二区在线看| 大型av网站在线播放| 国产区一区二久久| 久久 成人 亚洲| 国产一级毛片在线| 人人妻人人爽人人添夜夜欢视频| 交换朋友夫妻互换小说| 各种免费的搞黄视频| 国产精品久久久久成人av| 人妻 亚洲 视频| 国产欧美日韩一区二区精品| netflix在线观看网站| 久久狼人影院| 三级毛片av免费| 丝袜脚勾引网站| 国产一区二区三区综合在线观看| 成人三级做爰电影| 亚洲专区中文字幕在线| 色精品久久人妻99蜜桃| 国产成+人综合+亚洲专区| 国产免费av片在线观看野外av| 中文字幕人妻熟女乱码| 少妇 在线观看| videosex国产| 国产日韩一区二区三区精品不卡| av在线老鸭窝| 久久久国产成人免费| 欧美精品啪啪一区二区三区 | 亚洲成国产人片在线观看| 天堂8中文在线网| 国产成人免费无遮挡视频| 黄片小视频在线播放| 老鸭窝网址在线观看| 菩萨蛮人人尽说江南好唐韦庄| 王馨瑶露胸无遮挡在线观看| 国产一区有黄有色的免费视频| 久久女婷五月综合色啪小说| 色综合欧美亚洲国产小说| 在线观看免费视频日本深夜| 欧美黑人精品巨大| 亚洲精品中文字幕一二三四区| 精品久久蜜臀av无| 亚洲av片天天在线观看| 99热只有精品国产| 99久久综合精品五月天人人| 久久婷婷成人综合色麻豆| 久久精品国产亚洲av高清一级| 免费在线观看日本一区| 久久精品夜夜夜夜夜久久蜜豆 | 国产99久久九九免费精品| 亚洲国产看品久久| 操出白浆在线播放| 中文亚洲av片在线观看爽| 九九热线精品视视频播放| 美女扒开内裤让男人捅视频| 久久欧美精品欧美久久欧美| 精品欧美国产一区二区三| 两性午夜刺激爽爽歪歪视频在线观看 | 99热6这里只有精品| 亚洲欧美精品综合一区二区三区| 一夜夜www| 国产探花在线观看一区二区| 亚洲精品久久成人aⅴ小说| 一级作爱视频免费观看| 国产亚洲av高清不卡| 嫩草影院精品99| 九色国产91popny在线| 一级a爱片免费观看的视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日本成人三级电影网站| 亚洲欧美一区二区三区黑人| 国产熟女xx| 亚洲国产欧洲综合997久久,| 中文字幕最新亚洲高清| 午夜福利欧美成人| 国产区一区二久久| 久久欧美精品欧美久久欧美| 精品熟女少妇八av免费久了| 欧美日韩黄片免| 人成视频在线观看免费观看| 无限看片的www在线观看| 免费电影在线观看免费观看| 又大又爽又粗| 亚洲精品av麻豆狂野| 丁香欧美五月| 母亲3免费完整高清在线观看| 精品久久久久久久久久久久久| 91九色精品人成在线观看| 男人舔奶头视频| 久久亚洲真实| 成人永久免费在线观看视频| videosex国产| 国产1区2区3区精品| 亚洲,欧美精品.| 熟女少妇亚洲综合色aaa.| 人人妻,人人澡人人爽秒播| 男人的好看免费观看在线视频 | 亚洲色图 男人天堂 中文字幕| 777久久人妻少妇嫩草av网站| 亚洲av日韩精品久久久久久密| 成人18禁高潮啪啪吃奶动态图| 日韩 欧美 亚洲 中文字幕| 国内精品久久久久久久电影| 国产精品综合久久久久久久免费| 毛片女人毛片| 国产亚洲av高清不卡| 亚洲一码二码三码区别大吗| 看免费av毛片| av国产免费在线观看| 午夜免费激情av| 久久 成人 亚洲| 亚洲精品在线观看二区| 两个人视频免费观看高清| av片东京热男人的天堂| 免费在线观看视频国产中文字幕亚洲| 久久亚洲精品不卡| 午夜免费激情av| 精品高清国产在线一区| 无遮挡黄片免费观看| 欧美成人一区二区免费高清观看 | 9191精品国产免费久久| 欧美日本亚洲视频在线播放| 亚洲五月天丁香| 欧美久久黑人一区二区| 国产三级中文精品| 欧美成人性av电影在线观看| 男女那种视频在线观看| 91字幕亚洲| 亚洲av第一区精品v没综合| 国产片内射在线| 亚洲精品一区av在线观看| 欧美日韩一级在线毛片| 成人av一区二区三区在线看| tocl精华| 久久久久久亚洲精品国产蜜桃av| 色哟哟哟哟哟哟| a在线观看视频网站| 99国产精品一区二区三区| 成在线人永久免费视频| 国产熟女xx| 久久久久久大精品| 亚洲av成人一区二区三| 亚洲无线在线观看| 亚洲av中文字字幕乱码综合| 亚洲18禁久久av| 国产精品永久免费网站| 一进一出好大好爽视频| 国产av一区在线观看免费| 精华霜和精华液先用哪个| 精品一区二区三区四区五区乱码| 好男人电影高清在线观看| 青草久久国产| 日本黄大片高清| 久久精品成人免费网站| 亚洲成人免费电影在线观看| 成人手机av| 久久香蕉精品热| 大型av网站在线播放| 欧美 亚洲 国产 日韩一| 国产一区二区三区在线臀色熟女| 波多野结衣巨乳人妻| 亚洲精品美女久久久久99蜜臀| 熟女少妇亚洲综合色aaa.| 999久久久国产精品视频| 中国美女看黄片| 无限看片的www在线观看| 亚洲熟妇熟女久久| 精品久久久久久成人av| 我的老师免费观看完整版| 国产精华一区二区三区| 亚洲一区二区三区色噜噜| 男插女下体视频免费在线播放| 亚洲色图av天堂| cao死你这个sao货| av福利片在线观看| 色精品久久人妻99蜜桃| 欧美成人午夜精品| 男人的好看免费观看在线视频 | bbb黄色大片| 悠悠久久av| 麻豆国产av国片精品| 日韩中文字幕欧美一区二区| 制服诱惑二区| 12—13女人毛片做爰片一| 欧美乱妇无乱码| 午夜两性在线视频| 亚洲精品久久国产高清桃花| 日韩中文字幕欧美一区二区| 亚洲欧美日韩高清专用| 成人av一区二区三区在线看| 国产成人一区二区三区免费视频网站| av中文乱码字幕在线| 午夜激情福利司机影院| 2021天堂中文幕一二区在线观| 久久这里只有精品19| 好男人电影高清在线观看| 国产成人av教育| 亚洲av成人不卡在线观看播放网| 亚洲欧美激情综合另类| 亚洲欧美日韩无卡精品| 精品久久久久久成人av| 久久精品国产清高在天天线| 亚洲欧美日韩高清在线视频| 国产黄a三级三级三级人| 日日夜夜操网爽| 国产欧美日韩精品亚洲av| 免费观看精品视频网站| 淫秽高清视频在线观看| 欧美日本视频| 亚洲一码二码三码区别大吗| 一级黄色大片毛片| 制服诱惑二区| 嫩草影视91久久| 99久久精品国产亚洲精品| 村上凉子中文字幕在线| 亚洲avbb在线观看| 在线永久观看黄色视频| 午夜精品一区二区三区免费看| 亚洲男人天堂网一区| 怎么达到女性高潮| 久久久久久大精品| 搞女人的毛片| 色精品久久人妻99蜜桃| 亚洲精品中文字幕在线视频| 美女 人体艺术 gogo| 欧美又色又爽又黄视频| 久久久久国产一级毛片高清牌| 午夜福利欧美成人| 久久午夜综合久久蜜桃| 亚洲精品粉嫩美女一区| 好看av亚洲va欧美ⅴa在| 午夜亚洲福利在线播放| 黄色成人免费大全| 后天国语完整版免费观看| 悠悠久久av| 热99re8久久精品国产| 神马国产精品三级电影在线观看 | 18禁国产床啪视频网站| 黑人欧美特级aaaaaa片| 19禁男女啪啪无遮挡网站| 免费一级毛片在线播放高清视频| 嫩草影院精品99| 老司机深夜福利视频在线观看| 日本a在线网址| 成年版毛片免费区| 毛片女人毛片| 欧美又色又爽又黄视频| 成人三级做爰电影| 久久99热这里只有精品18| 黑人欧美特级aaaaaa片| 久久久国产精品麻豆| 国产精品亚洲美女久久久| 久久久久久久精品吃奶| 亚洲电影在线观看av| 国产av又大| www.自偷自拍.com| 婷婷丁香在线五月| 久久中文看片网| 99精品在免费线老司机午夜| 亚洲九九香蕉| 国产精品98久久久久久宅男小说| tocl精华| 2021天堂中文幕一二区在线观| 精品午夜福利视频在线观看一区| 国产91精品成人一区二区三区| 啦啦啦观看免费观看视频高清| videosex国产| 久久久久国产精品人妻aⅴ院| 久久精品成人免费网站| 国产爱豆传媒在线观看 | 免费av毛片视频| 99热这里只有是精品50| 亚洲狠狠婷婷综合久久图片| 亚洲av五月六月丁香网| 久久九九热精品免费| 九色成人免费人妻av| 国内精品久久久久久久电影| 99久久久亚洲精品蜜臀av| 一本久久中文字幕| 国产精品99久久99久久久不卡| 一个人免费在线观看电影 | 熟妇人妻久久中文字幕3abv| 午夜福利免费观看在线| 精品国内亚洲2022精品成人| 国产av一区二区精品久久| 成熟少妇高潮喷水视频| 亚洲自拍偷在线| 成人亚洲精品av一区二区| 免费电影在线观看免费观看| 99国产精品99久久久久| 成人午夜高清在线视频| 国产亚洲av高清不卡| 欧美色视频一区免费| 久久欧美精品欧美久久欧美| 校园春色视频在线观看| 在线免费观看的www视频| 成人一区二区视频在线观看| 黄色视频,在线免费观看| www日本在线高清视频| 桃红色精品国产亚洲av| 神马国产精品三级电影在线观看 | 国产精品一区二区三区四区久久| 亚洲中文日韩欧美视频| 亚洲国产精品成人综合色| 亚洲精品在线美女| 日本撒尿小便嘘嘘汇集6| www日本黄色视频网| 正在播放国产对白刺激| 国产三级黄色录像| 欧美激情久久久久久爽电影| tocl精华| 少妇人妻一区二区三区视频| 九色国产91popny在线| 一个人免费在线观看的高清视频| 欧美日韩精品网址| 亚洲人成电影免费在线| 亚洲国产看品久久| 两个人免费观看高清视频| 免费在线观看日本一区| 国产伦人伦偷精品视频| 夜夜看夜夜爽夜夜摸| 一进一出抽搐动态| 久久精品夜夜夜夜夜久久蜜豆 | 欧美午夜高清在线| 国产精品野战在线观看| 日韩av在线大香蕉| 一边摸一边做爽爽视频免费| 老司机午夜十八禁免费视频| 少妇被粗大的猛进出69影院| 久久久久久久久中文| av视频在线观看入口| 身体一侧抽搐| 成人国语在线视频| 亚洲,欧美精品.| 韩国av一区二区三区四区| 中国美女看黄片| www.自偷自拍.com| 欧美国产日韩亚洲一区| 色综合站精品国产| 国产精品免费视频内射| 日韩有码中文字幕| 日本 av在线| 黄色毛片三级朝国网站| 免费人成视频x8x8入口观看| 老司机靠b影院| 成人国语在线视频| 日本精品一区二区三区蜜桃| 不卡av一区二区三区| 午夜免费激情av| 国产亚洲精品第一综合不卡| 国产高清videossex| 91成年电影在线观看| 白带黄色成豆腐渣| 国产成人av教育| 婷婷六月久久综合丁香| 人人妻人人看人人澡| 亚洲黑人精品在线| 欧美一区二区精品小视频在线| 成人亚洲精品av一区二区| 哪里可以看免费的av片| 亚洲av五月六月丁香网| 日韩大码丰满熟妇| 妹子高潮喷水视频| 日韩大码丰满熟妇| 国产精品 欧美亚洲| 一进一出好大好爽视频| 亚洲精品美女久久av网站| 欧美高清成人免费视频www| 国产成人精品久久二区二区91| 欧美日韩瑟瑟在线播放| 十八禁人妻一区二区| 少妇粗大呻吟视频| 亚洲一区高清亚洲精品| 国产精品av视频在线免费观看| 欧美一级a爱片免费观看看 | 天堂影院成人在线观看| 在线观看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 深夜精品福利| 一级毛片高清免费大全| 欧美日韩乱码在线| 精品福利观看| 欧美乱妇无乱码| 人人妻,人人澡人人爽秒播| www.精华液| 亚洲男人天堂网一区| 亚洲午夜理论影院| 岛国在线免费视频观看| 亚洲国产高清在线一区二区三| 国产成人aa在线观看| 日韩成人在线观看一区二区三区| 99热这里只有精品一区 | 一区福利在线观看| 久久国产精品人妻蜜桃| 久久久国产精品麻豆| 亚洲一区中文字幕在线| 日韩高清综合在线| 国内少妇人妻偷人精品xxx网站 | xxx96com| 中文字幕熟女人妻在线| 午夜激情av网站| 亚洲色图 男人天堂 中文字幕| 此物有八面人人有两片| 亚洲欧美精品综合久久99| 国产免费av片在线观看野外av| 两个人看的免费小视频| 国产亚洲欧美在线一区二区| 欧美日韩国产亚洲二区| 亚洲精华国产精华精| 一二三四在线观看免费中文在| tocl精华| 午夜影院日韩av| www.熟女人妻精品国产| 国产精品日韩av在线免费观看| 91九色精品人成在线观看| 岛国在线免费视频观看| 国产精品亚洲一级av第二区| 午夜精品在线福利| 老熟妇仑乱视频hdxx| 免费在线观看成人毛片| 中文字幕人成人乱码亚洲影| svipshipincom国产片| 亚洲精品美女久久久久99蜜臀| 午夜日韩欧美国产| 精品免费久久久久久久清纯| 一边摸一边做爽爽视频免费| 久99久视频精品免费| 少妇人妻一区二区三区视频| 国产av一区在线观看免费| 黄色视频不卡| 亚洲专区字幕在线| 午夜福利在线观看吧| 亚洲中文字幕一区二区三区有码在线看 | 久久亚洲精品不卡| 人妻丰满熟妇av一区二区三区| 最近视频中文字幕2019在线8| 在线十欧美十亚洲十日本专区| 黄片大片在线免费观看| 国产爱豆传媒在线观看 | 美女免费视频网站|