劉占宇,于 洋,李明政,滕振超
(1.黑龍江省建筑設(shè)計(jì)研究院,黑龍江 哈爾濱 150000;2.東北石油大學(xué) 土木建筑工程學(xué)院,黑龍江 大慶 163318)
料倉(cāng)-框架因其結(jié)構(gòu)簡(jiǎn)單、制作方便等特點(diǎn)而較多用于石油化工項(xiàng)目[1].料倉(cāng)-框架的重心較高,對(duì)地震作用和風(fēng)荷載等自然災(zāi)害十分敏感且抵抗力較差,而我國(guó)地處環(huán)太平洋地震帶和歐亞地震帶,地震災(zāi)害的發(fā)生極易對(duì)其造成破壞[2-3],故而對(duì)框架-料倉(cāng)抗震性能的研究顯得尤為重要.目前,對(duì)料倉(cāng)-框架的地震作用分析主要包括譜分析和時(shí)程分析兩種[4-6],本文通過對(duì)比兩種方法的特點(diǎn),找出更適合料倉(cāng)-框架結(jié)構(gòu)的分析方法,并對(duì)結(jié)構(gòu)進(jìn)行動(dòng)力時(shí)程分析,找出結(jié)構(gòu)應(yīng)力、位移的變化趨勢(shì),以求為相關(guān)研究提供借鑒.
結(jié)構(gòu)的長(zhǎng)寬高分別為9、9、39 m,其中框架部分高度為15 m,分為2層,第1層高6.2 m,第2層高8.8 m,材料為鋼筋混凝土;料倉(cāng)中圓柱體部分高度為24 m,直徑為7.3 m,厚度為16 mm,錐體卸料部分高度為7 m,材料為5052-H112鋁合金;料倉(cāng)部分與框架部分剛性接觸.采用Mass21單元模擬倉(cāng)內(nèi)貯料以及工藝設(shè)備的質(zhì)量,料倉(cāng)-框架結(jié)構(gòu)各部分材料及所填物料參數(shù)見表1.
表1 材料的力學(xué)性能參數(shù)
選用廣東宇泰減震科技有限公司生產(chǎn)的GZY500型號(hào)的鉛芯橡膠隔震支座,由于其直徑為600 mm,故取Ab=0.28 m2.共布置4個(gè)Combin14彈簧單元,每根柱子布置1個(gè),為Y方向;設(shè)置8個(gè)Combin40彈簧單元,每根柱子布置2個(gè),X、Z方向各1個(gè).單元參數(shù)具體見表2.
表2 彈簧隔震支座參數(shù)
利用ANSYS有限元軟件,自底向上建立料倉(cāng)-框架有限元模型,其中柱底與基礎(chǔ)固定連接,料倉(cāng)與環(huán)梁剛接并進(jìn)行耦合,由點(diǎn)、線、面、體的形式逐步推進(jìn)建模進(jìn)程.各部分及整體結(jié)果模型如圖1所示.
圖1 料倉(cāng)-框架結(jié)構(gòu)模型
建立結(jié)構(gòu)整體模型之后,按照相關(guān)規(guī)范[7-9]的要求,運(yùn)用ANSYS中的Block Lanczos進(jìn)行計(jì)算及模態(tài)分析.料倉(cāng)-框架結(jié)構(gòu)及其帶隔震支座模型結(jié)構(gòu)的自振頻率見表3.
表3 料倉(cāng)-框架結(jié)構(gòu)及其帶隔震支座模型結(jié)構(gòu)的自振頻率 單位:Hz
料倉(cāng)-框架結(jié)構(gòu)的X向基本自振頻率為2.951 Hz,對(duì)照文獻(xiàn)[1]的自振頻率2.924 Hz,誤差為0.93%,小于5%;滿倉(cāng)中誤差為11.9%,文獻(xiàn)[1]中的滿倉(cāng)誤差為11.28%,二者相差不大.產(chǎn)生此誤差的主要原因是試驗(yàn)?zāi)P椭敽偷装逑嘟訒r(shí),為防止混凝土和鋼板黏結(jié)性較差,在柱底進(jìn)行了配筋的加強(qiáng),導(dǎo)致模型結(jié)構(gòu)剛度的增大,基頻也隨之增大.因此,空倉(cāng)結(jié)構(gòu)所造成的誤差是符合實(shí)際的,說明本模型具有分析價(jià)值.
2.1.1 結(jié)構(gòu)位移分析
由振型分解反應(yīng)譜法計(jì)算結(jié)果可知,空料倉(cāng)-框架結(jié)構(gòu)基頻下最大位移為52 mm,出現(xiàn)在料倉(cāng)頂部中點(diǎn);帶隔震支座空料倉(cāng)-框架結(jié)構(gòu)基頻下最大位移為5.1 mm,同樣出現(xiàn)在料倉(cāng)頂部中點(diǎn),框架部分最大位移為5.77 mm,出現(xiàn)在頂層框架角點(diǎn)處,帶隔震支座結(jié)構(gòu)框架部分最大位移為1.13 mm.滿倉(cāng)中原結(jié)構(gòu)與帶隔震支座結(jié)構(gòu)基頻下最大位移點(diǎn)分別為66.6、5.4 mm,也均為料倉(cāng)頂部中點(diǎn);框架部分最大位移為8.71 mm,出現(xiàn)在頂層框架角點(diǎn)處,帶隔震支座結(jié)構(gòu)框架部分最大位移為1.46 mm,位置與未加隔震支座結(jié)構(gòu)相同.發(fā)現(xiàn)料倉(cāng)每一剛度變化較大處的位移最大點(diǎn)隨高度的增加逐漸增大,如圖2所示.由圖2可知,料倉(cāng)框架結(jié)構(gòu)隨高度的增加,側(cè)移量整體呈逐漸增大趨勢(shì).
圖2 料倉(cāng)-框架結(jié)構(gòu)位移隨高度變化的曲線
2.1.2 結(jié)構(gòu)應(yīng)力分析
對(duì)7度設(shè)防烈度且加速度為0.1g地震作用下料倉(cāng)-框架結(jié)構(gòu)和帶隔震支座料倉(cāng)-框架結(jié)構(gòu)各關(guān)鍵節(jié)點(diǎn)進(jìn)行計(jì)算,結(jié)合分析結(jié)果對(duì)最大等效應(yīng)力點(diǎn)進(jìn)行驗(yàn)算,得出并對(duì)比加隔震支座與未加隔震支座結(jié)構(gòu)的振型分解反應(yīng)譜法的應(yīng)力作用.
由振型分解反應(yīng)譜法計(jì)算可知,空料倉(cāng)-框架原結(jié)構(gòu)最大等效應(yīng)力為13.1 MPa,帶隔震支座空料倉(cāng)-框架最大等效應(yīng)力為2.2 MPa;滿料倉(cāng)-框架原結(jié)構(gòu)最大等效應(yīng)力為16.2 MPa,帶隔震支座滿料倉(cāng)-框架最大等效應(yīng)力為3.1 MPa;最大應(yīng)力值發(fā)生在框架柱頂端4個(gè)角點(diǎn)處和柱底4個(gè)點(diǎn)處,8個(gè)點(diǎn)數(shù)值大小相等,柱頂端4個(gè)點(diǎn)處受應(yīng)力方向沿X軸正方向的為拉應(yīng)力,柱底4個(gè)點(diǎn)處受應(yīng)力方向?yàn)閄軸負(fù)方向的為壓應(yīng)力.結(jié)構(gòu)的應(yīng)力值隨高度變化曲線如圖3所示.
圖3 料倉(cāng)-框架結(jié)構(gòu)所受最大應(yīng)力隨高度變化曲線
由圖可知:滿倉(cāng)下的移動(dòng)位移和所受應(yīng)力均比同條件下的空倉(cāng)要大;當(dāng)料倉(cāng)內(nèi)質(zhì)量一定時(shí),帶隔震支座料倉(cāng)-框架結(jié)構(gòu)上同一點(diǎn)所移動(dòng)的位移比原結(jié)構(gòu)所移動(dòng)的位移有大幅度減小,所受應(yīng)力也相應(yīng)減小;底部框架至框架柱中部結(jié)構(gòu)所受應(yīng)力均為壓應(yīng)力,中部以上為拉應(yīng)力,框架柱頂端最高點(diǎn)處為最大值,且小于30 MPa,均滿足規(guī)范要求.結(jié)構(gòu)由下到上的位移與應(yīng)力分布合理,符合實(shí)際情況;結(jié)構(gòu)受力最大值點(diǎn)處在柱頂和柱底的邊緣處.
2.2.1 調(diào)整與施加
選取符合工程實(shí)際要求的2組天然波和1組根據(jù)場(chǎng)地?cái)M合的人工波作為時(shí)程分析曲線,分別為EL-Centro波、Taft波和人工SHM2波.在實(shí)際計(jì)算時(shí),對(duì)選用的地震波數(shù)據(jù)進(jìn)行調(diào)整,地震波峰值調(diào)整之后應(yīng)滿足抗震規(guī)范對(duì)底部剪力、結(jié)構(gòu)位移限值和應(yīng)力限值的要求.
根據(jù)文獻(xiàn)[10],結(jié)合料倉(cāng)-框架結(jié)構(gòu)基本情況,采用的地震波參數(shù)如下:場(chǎng)地土屬Ⅱ—Ⅲ類,EL-Centro波,時(shí)間間隔0.02 s,持續(xù)時(shí)間53.76 s,加速度峰值出現(xiàn)在第2.14 s,峰值341.7 cm/s2,如圖4所示;場(chǎng)地土屬Ⅱ類,Taft波,時(shí)間間隔0.02 s,持續(xù)時(shí)間54.4 s,加速度峰值出現(xiàn)在第3.72 s,峰值175.9 cm/s2,如圖5所示;場(chǎng)地土屬Ⅳ類,SHM2波,時(shí)間間隔0.02 s,持續(xù)時(shí)間78.64 s,加速度峰值出現(xiàn)在第13 s,峰值35 cm/s2,如圖6所示.
圖4 EL-Centro波時(shí)程與幅度變化
圖5 Taft波時(shí)程與幅度變化
圖6 SHM2波時(shí)程與幅度變化
根據(jù)建筑抗震設(shè)計(jì)規(guī)范推薦的方法,對(duì)加速度地震波的持續(xù)時(shí)間進(jìn)行壓縮,故而輸入的EL-Centro波持時(shí)為25 s,Taft波持時(shí)為25 s,人工波SHM2波持時(shí)為40 s[11].
2.2.2 結(jié)構(gòu)位移分析
利用ANSYS分別建立料倉(cāng)-框架結(jié)構(gòu)和帶隔震支座的料倉(cāng)框架結(jié)構(gòu)有限元模型,采用時(shí)程分析法,輸入調(diào)整后的EL-Centro波、Taft波和人工波SHM2波,進(jìn)行地震作用下的結(jié)構(gòu)動(dòng)力響應(yīng)分析.由結(jié)果分析可知結(jié)構(gòu)所受最大位移點(diǎn)在料倉(cāng)的頂部中點(diǎn).用振型分解反應(yīng)譜法繪制7度以上水平地震動(dòng)加速度作用下的數(shù)據(jù),并將每種物料荷載工況(滿倉(cāng)和空倉(cāng))下的原結(jié)構(gòu)和帶隔震支座結(jié)構(gòu)數(shù)據(jù)進(jìn)行整合.如圖7、8、9所示.
圖7 EL-Centro波位移變化
圖8 Taft波位移變化
圖9 SHM2波位移變化
從圖中可知:EL-Centro地震波作用下空倉(cāng)下結(jié)構(gòu)的最大位移為21.00 mm,滿倉(cāng)下結(jié)構(gòu)的最大位移為39.10 mm;帶隔震支座空倉(cāng)下結(jié)構(gòu)的最大位移為4.66 mm,帶隔震支座滿倉(cāng)下結(jié)構(gòu)的最大位移為4.94 mm.Taft地震波作用下空倉(cāng)下結(jié)構(gòu)的最大位移為32.30 mm,滿倉(cāng)下結(jié)構(gòu)的最大位移為43.40 mm;帶隔震支座空倉(cāng)下結(jié)構(gòu)的最大位移為8.72 mm,帶隔震支座滿倉(cāng)下結(jié)構(gòu)的最大位移為9.26 mm.SHM2地震波作用下空倉(cāng)下結(jié)構(gòu)的最大位移為16.20 mm,滿倉(cāng)下結(jié)構(gòu)的最大位移為43.40 mm;帶隔震支座空倉(cāng)下結(jié)構(gòu)的最大位移為4.51 mm,帶隔震支座滿倉(cāng)下結(jié)構(gòu)的最大位移為6.01 mm.
2.2.3 結(jié)構(gòu)應(yīng)力分析
采用上述3種地震波進(jìn)行時(shí)程分析,由結(jié)果發(fā)現(xiàn)基頻下結(jié)構(gòu)受力最大點(diǎn)為4根框架柱頂點(diǎn)和底部支座處,頂點(diǎn)與支座處點(diǎn)受力數(shù)值大小相同,方向相反,底部框架值為負(fù),即壓應(yīng)力.下面以其中1個(gè)點(diǎn),即2層框架頂部角點(diǎn)進(jìn)行分析.用振型分解反應(yīng)譜法繪制7度以上水平地震動(dòng)加速度作用下的數(shù)據(jù),并將每種物料荷載工況(滿倉(cāng)和空倉(cāng))下的原結(jié)構(gòu)和帶隔震支座結(jié)構(gòu)應(yīng)力數(shù)據(jù)進(jìn)行整合.如圖10、11、12所示.
圖10 EL-Centro波應(yīng)力變化
圖11 Taft波應(yīng)力變化
圖12 SHM2波應(yīng)力變化
從圖中可知:EL-Centro地震波作用下空倉(cāng)下結(jié)構(gòu)的最大應(yīng)力為12.00 MPa,滿倉(cāng)下結(jié)構(gòu)的最大應(yīng)力為14.60 MPa;帶隔震支座空倉(cāng)下結(jié)構(gòu)的最大應(yīng)力為2.02 MPa,帶隔震支座滿倉(cāng)下結(jié)構(gòu)的最大應(yīng)力為2.75 MPa.Taft地震波作用下空倉(cāng)下結(jié)構(gòu)的最大應(yīng)力為10.50 MPa,滿倉(cāng)下結(jié)構(gòu)的最大應(yīng)力為13.80 MPa;帶隔震支座空倉(cāng)下結(jié)構(gòu)的最大應(yīng)力為1.80 MPa,帶隔震支座滿倉(cāng)下結(jié)構(gòu)的最大應(yīng)力為2.60 MPa.SHM2地震波作用下空倉(cāng)下結(jié)構(gòu)的最大應(yīng)力為8.50 MPa,滿倉(cāng)下結(jié)構(gòu)的最大應(yīng)力為11.10 MPa;帶隔震支座空倉(cāng)下結(jié)構(gòu)的最大應(yīng)力為1.92 MPa,帶隔震支座滿倉(cāng)下結(jié)構(gòu)的最大應(yīng)力為2.33 MPa.
采用有限元軟件ANSYS對(duì)料倉(cāng)-框架結(jié)構(gòu)進(jìn)行模態(tài)分析,得出結(jié)構(gòu)在前10階陣型下的頻率,進(jìn)而采用振型分解反應(yīng)譜法和時(shí)程分析法計(jì)算料倉(cāng)-框架結(jié)構(gòu)及其帶隔震支座下結(jié)構(gòu)的動(dòng)力響應(yīng),并對(duì)其位移和應(yīng)力進(jìn)行比較,得出以下結(jié)論:
1)通過結(jié)構(gòu)的模態(tài)分析得出的頻率數(shù)據(jù)可以確定模型是符合實(shí)際的,并且可以看出由于滿倉(cāng)下結(jié)構(gòu)質(zhì)量大而導(dǎo)致結(jié)構(gòu)頻率變小,后期時(shí)程分析中對(duì)應(yīng)點(diǎn)滿倉(cāng)所受應(yīng)力也比空倉(cāng)要大,說明滿倉(cāng)下結(jié)構(gòu)損傷要比空倉(cāng)大,結(jié)構(gòu)更加不穩(wěn)定.
2)時(shí)程分析法與振型分解反應(yīng)譜法計(jì)算的料倉(cāng)位移與地震施加方向一致,料倉(cāng)結(jié)構(gòu)頂部中點(diǎn)處位移值最大,并且結(jié)構(gòu)所移動(dòng)的位移由下到上的變化也是逐漸增大的.
3)料倉(cāng)-框架結(jié)構(gòu)與帶隔震支座料倉(cāng)-框架結(jié)構(gòu)在水平地震波(EL-Centro)波作用下,空倉(cāng)時(shí)倉(cāng)頂位移最大值為21.00 mm,滿倉(cāng)時(shí)倉(cāng)頂位移最大值為39.10 mm,滿倉(cāng)時(shí)位移大于空倉(cāng)時(shí)位移,且另外2種地震波作用下結(jié)果也是如此.因此,料倉(cāng)內(nèi)物料對(duì)料倉(cāng)結(jié)構(gòu)在地震作用下的位移變形有比較大的影響,即料倉(cāng)-框架結(jié)構(gòu)最大位移出現(xiàn)在料倉(cāng)頂部,帶隔震支座料倉(cāng)-框架結(jié)構(gòu)最大位移也出現(xiàn)在料倉(cāng)頂部.滿倉(cāng)狀態(tài)下的地震反應(yīng)比空倉(cāng)狀態(tài)下的地震反應(yīng)更加劇烈,表明滿倉(cāng)狀態(tài)對(duì)料倉(cāng)結(jié)構(gòu)更為不利.
4)按時(shí)程分析法進(jìn)行計(jì)算,原料倉(cāng)-框架結(jié)構(gòu)的最大位移值小于同條件下按振型分解反應(yīng)譜法的計(jì)算值;空倉(cāng)下EL-Centro地震波約為相同點(diǎn)振型分解反應(yīng)譜法的40.4%,Taft地震波約為相同點(diǎn)振型分解反應(yīng)譜法的62.1%,SHM2地震波約為振型分解反應(yīng)譜法相同點(diǎn)數(shù)據(jù)的62.3%;滿倉(cāng)下EL-Centro地震波約為相同點(diǎn)振型分解反應(yīng)譜法的58.7%,Taft地震波約為相同點(diǎn)振型分解反應(yīng)譜法的65.2%,SHM2地震波約為振型分解反應(yīng)譜法相同點(diǎn)數(shù)據(jù)的65.2%.計(jì)算帶隔震支座料倉(cāng)-框架結(jié)構(gòu)最大應(yīng)力值,小于同條件下原結(jié)構(gòu)按振型分解反應(yīng)譜法計(jì)算的最大等效應(yīng)力值,空倉(cāng)下EL-Centro地震波約為振型分解反應(yīng)譜法的91.6%,Taft地震波約為振型分解反應(yīng)譜法的80.2%,SHM2地震波約為振型分解反應(yīng)譜法的84.7%;滿倉(cāng)下EL-Centro地震波約為振型分解反應(yīng)譜法的90.1%,Taft地震波約為振型分解反應(yīng)譜法的85.2%,SHM2地震波約為振型分解反應(yīng)譜法的68.5%.
顯然,時(shí)程分析法的數(shù)據(jù)結(jié)果變化較小,偏于精確;振型分解反應(yīng)譜法數(shù)據(jù)變化較大,偏于保守.