• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單葉亞純螺旋象函數(shù)的刻畫和積分表示

    2022-10-10 07:13:14錢繼曉
    關(guān)鍵詞:亞純黎曼單葉

    錢繼曉

    單葉亞純螺旋象函數(shù)的刻畫和積分表示

    錢繼曉

    (南京理工大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,江蘇 南京 210094)

    黎曼映射定理為復(fù)變函數(shù)的性質(zhì)提供了幾何刻畫;Carathéodory收斂定理把函數(shù)像域的收斂與函數(shù)的收斂性緊密聯(lián)系起來(lái)。利用黎曼映射定理、極值原理和Carathéodory收斂定理,研究極點(diǎn)在原點(diǎn)和極點(diǎn)在點(diǎn) (0<<1)的單葉亞純螺旋象函數(shù),得到了相應(yīng)函數(shù)族的解析刻畫和積分表示。

    單葉函數(shù);亞純函數(shù);螺旋象函數(shù)

    1 引言

    2 單葉亞純螺旋象函數(shù)的刻畫

    [1] BIEBERBACH L. über einige extremal probleme im Gebiete der konformen abbildung[J]. Mathematische annalen, 1916, 77(2): 153–172.

    [2] LOWNER K. Untersuchungen über schlichte konforme Abbildungen des Einheitskreises[J]. Mathematische annalen, 1923, 89(1): 103–121.

    [3] GARABEDIAN P, SCHIFFER M. A proof of the Bieberbach conjecture for the fourth coefficient[J]. Journal of rational mechanics and analysis, 1955, 4: 427–465.

    [4] PEDERSON R N. A proof of the Bieberbach conjecture for the sixth coefficient[M]. Carnegie institute of technology, department of mathematics, 1968.

    [5] OZAWA M. An elementary proof of local maximality for a6[C]//Kodai Mathematical seminar reports, department of mathematics, Tokyo institute of technology, 1968, 20(4): 437–439.

    [6] PEDERSON R N, SCHIFFERR M. A proof of the Bieberbach conjecture for the fifth coefficient[J]. Archive for rational mechanics and analysis, 1972, 45(3): 161–193.

    [7] BRANGES L D, A proof of the Bieberbach conjecture[J]. Acta mathematica, 1985, 154(1): 137–152.

    [8] PFALTZGRAFF J A, PINCHUK B. A variational method for classes of meromorphic functions[J]. J. Analyse math, 1971, 24: 101–150.

    [9] OHNO R. Characterizations for concave functions and integral representations[J]. Topics in finite or infinite dimensional complex analysis, 2013: 203–216.

    [10] POMMERENKE C. Boundary behaviour of conformal maps[M]. Springer science & business media, 2013.

    Characterization and Integral Representation of Univalent Metamorphic Spirallike Functions

    QIAN Ji-xiao

    (School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing Jiangsu 210094, China)

    The Riemann mapping theorem provides a geometric characterization for the properties of complex functions; the Carathéodory convergence theorem closely links the convergence of the function image field with the convergence of the function. Using the Riemann mapping theorem, the extreme value principle and the Carathéodory convergence theorem, the univalent meromorphic spirallike functions with the pole at the origin and the pole at the p point (0

    univalent functions; meromorphic functions; spirallike functions

    2022-03-20

    江蘇省研究生科研與實(shí)踐創(chuàng)新計(jì)劃項(xiàng)目 (KYCX21–0247)

    錢繼曉(1983—),男,江蘇連云港人,碩士研究生,研究方向:復(fù)分析。

    O174.52

    A

    2095-9249(2022)03-0011-05

    〔責(zé)任編校:吳侃民〕

    猜你喜歡
    亞純黎曼單葉
    非齊次二維Burgers方程的非自相似黎曼解的奇性結(jié)構(gòu)
    亞純函數(shù)關(guān)于單葉離散值的正規(guī)定理
    緊黎曼面上代數(shù)曲線的第二基本定理
    算子作用下調(diào)和函數(shù)類的單葉半徑
    不同因素對(duì)單葉蔓荊無(wú)性繁殖育苗的影響
    亞純函數(shù)的差分多項(xiàng)式
    數(shù)學(xué)奇才黎曼
    少兒科技(2019年4期)2019-01-19 09:01:15
    亞純函數(shù)與其差分的唯一性
    非等熵 Chaplygin氣體極限黎曼解關(guān)于擾動(dòng)的依賴性
    亞純函數(shù)差分多項(xiàng)式的值分布和唯一性
    牙克石市| 白银市| 洛隆县| 白城市| 禹州市| 河南省| 西林县| 纳雍县| 平塘县| 柞水县| 拉孜县| 来宾市| 兰州市| 集安市| 卢湾区| 秀山| 两当县| 永昌县| 扶沟县| 广东省| 漳平市| 偃师市| 星子县| 内江市| 驻马店市| 金坛市| 天祝| 五指山市| 辉县市| 农安县| 察隅县| 衡东县| 固安县| 珠海市| 大城县| 绵阳市| 平塘县| 鲁甸县| 故城县| 南召县| 桓仁|