• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modified spin wave theory applied to the low-temperature properties of ferromagnetic long-range interacting spin chain with the antiferromagnetic nearest-neighbor interaction

    2022-10-09 01:55:00-,
    廣州大學學報(自然科學版) 2022年3期

    -,

    (School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China)

    Abstract: In this paper, the modified spin-wave theory is applied to the Heisenberg ferromagnetic chain with the ferromagnetic long-range interaction J0/rp and antiferromagnetic nearest-neighbor interaction J. The spin-wave thermodynamics of the system are obtained within the self-consistent method by constraining the total magnetization to be zero. It is shown that the ferromagnetic long-range and antiferromagnetic nearest-neighbor interactions have great influence on the low-temperature properties of the system. At low temperatures, it is found that the specific heat C exhibits the temperature-dependent peak behavior which is induced by p and J, along with the specific heat coefficient C/T1/(p-1); while the susceptibility coefficient T2 shows the low-temperature behavior with a minimum induced by p and J. For J=0 and in the large-p limit, our results agree well with the exact Bethe ansatz results and the quantum Monte Carlo data.

    Key words: modified spin wave theory; Heisenberg ferromagnetic chain; long-range interaction; nearest-neighbor interaction

    0 Introduction

    The standard spin-wave theory[1-3]is known as a powerful method in the study of the low-temperature thermodynamics of magnetic systems which can be described by the Heisenberg model. It still gives a boost to further theoretical and experimental explorations[4-8]of Heisenberg magnets. However, when the space dimension is lower than three, the traditional spin-wave theory can’t work well, and gives no quantitative information on the thermodynamic physical properties in the paramagnetic phase. This is because there has no long-range order in the paramagnetic phase in low-dimensional isotropic magnetic systems[9]. The spin-wave theory can’t cure the thermodynamic divergences which come from the absence of long-range order in the paramagnetic phase.

    Fortunately, these thermodynamic divergences can be suppressed by use of Takahashi’s idea[10], which is to modify the traditional ferromagnetic spin-wave theory by constraining the total magnetization be zero. As a consequence, Takahashi[10]succeeded in deriving the correct low-temperature properties which are in excellent agreement with Bethe ansatz (BA) results in one dimension. His idea had been extended to many different kinds of low-dimensional magnets, such as the antiferromagnets[11-14], ferrimagnets[15-18], frustrated magnets[19-23], planar magnets[24-26], and spin-phonon coupling systems[27-29]. Based on Takahashi’s idea, the modified spin-wave theory gives the good description for inelastic-neutron-scattering measurements of the high-temperature-superconductor-parent antiferromagnet La2CuO4[14], and the existence of magnetically ordered phases of magnetic organic salts[30], and the quantum spin-liquid behavior of ultracold bosons on an inhomogeneous triangular lattice[31]. The nuclear spin-lattice relaxation time for the molecular cluster Mn12O12acetate[32]and the ferrimagnetic chain compound NiCu(C7H6N2O6)(H2O)3·2H2O[33]is explained well in terms of the modified spin-wave theory. Modified spin-wave analysis of the delta chain with competing ferro- and antiferromagnetic interactions[34]is in agreement with the experimental results of the synthesized cyclic compound Fe10Gd10.

    In this paper, along the same lines, we formulate a theory for the one-dimensional ferromagnetic long-range interacting Heisenberg model with the antiferromagnetic nearest-neighbor interaction (ANNI). The ferromagnetic long-range interaction (FLRI) considered in this paper decays asJ0/rpwithrbeing the distance between lattice sites. For the case without the ANNI, the FLRI effect was investigated for the low-temperature and critical properties of the one- and two-dimensional quantum Heisenberg ferromagnets by using modified spin-wave theory[35]and Green’s function method[36]. Quantum criticality induced by the transverse magnetic field was obtained in the competition between the anisotropic FLRI (in which its isotropic part decays asr-3) and nearest-neighbor ferromagnetic exchange interactions in the ferromagnetic chain within the traditional spin-wave theory and renormalization group method[37]. Exploiting the renormalization group theory and numerical density matrix renormalization group analysis, continuous symmetry breaking in the Heisenberg chain was shown[38]to take place in the presence of the FLRI without the ANNI. For the ferromagnetic chain in coexistence of the FLRI and ANNI, however, little is known about the thermodynamic properties and critical phenomena. Its corresponding one-dimensional antiferromagnetic cases had been studied for the ground-state properties affected by both the ANNI and antiferromagnetic long-range interactions within Lanczos exact diagonalization[39]and density matrix renormalization group[40]. The recent experimental studies of the perovskites suggested that Pr0.5Sr0.5MnO3[41]and Pr0.5Sr0.5CoO3-x[42]as well as Y2CoMnO6[43]can be described by the Heisenberg models with both the FLRI (decays asr-3.252in two dimensions[41]andr-4.5in three dimensions[42-43]) and the ANNI. Those theoretical and experimental studies show that the FLRI can lead to the novel magnetic properties. Motivated by the experimental studies, we will consider the magnetic properties which are induced by the competition between the FLRI and ANNI in the ferromagnetic chain. Unlike in the ground state of the one-dimensional ferromagnetic long-range systems without the ANNI[35-38], the ANNI tends to flip the spins and destroys the stability of the ferromagnetic ground state which is kept by the FLRI. In this paper, the scheme to realize Takahashi’s idea is a self-consistent method, which can cure the usual thermal divergences by introducing a Lagrangian multiplier in the Hamiltonian to keep zero magnetization. In the frame of spin-wave theory within Takahashi’s idea, how the FLRI and the ANNI affect the low-temperature behaviors of the thermodynamic properties is the aim in our paper.

    This paper is organized in the following manner. In Section 1, we rewrite the Hamiltonian by using the modified spin-wave theory within the self-consistent method. Then we obtain the analytical expression of the thermodynamic properties (such as the critical temperature, internal energy, specific heat, and susceptibility) as a function of the temperature, the FLRI and the ANNI. Numerical results and some discussions are displayed in Section 2. A brief conclusion is exhibited in Section 3.

    1 Model

    In this section, the modified spin-wave method will be used to study the thermodynamic properties of the quantum Heisenberg chain with the FLRI and ANNI. The Hamiltonian of the system can be described by

    (1)

    Two- and three-dimensional versions of the Hamiltonian (1) with the coexistence of the FLRI and ANNI have been experimentally shown to be realized in the perovskites Pr0.5Sr0.5MnO3[41], Pr0.5Sr0.5CoO3-x[42]and Y2CoMnO6[43]. As pointed out in Ref.[41] in the experimental study on the perovskites, the change in shape and size of the ferromagnetic clusters with temperature around the critical temperature can lead to quasi-one-dimensional perovskites, which may realize the chain Hamiltonian in Eq.(1). The perovskite is an example of the ABX3compounds, where A is an alkaline metal ion, B is a magnetic ion, and X is a halogen. These materials are particularly interesting because the ANNI is of the same order of magnitude as the FLRI. In these systems, due to the polarization of the itinerant electrons by interaction with the localized spins at a distancer[44], results in the FLRI between the localized spins of the magnetic ions. The Hamiltonian in Eq.(1) can also be realized in the experimental manipulation of quantum long-range interacting spin chains, which are designed by optical-dipole-force-induced spin-spin interactions in a trapped-ion ferromagnetic Heisenberg chain[45-47]. When the Coulomb interaction is considered as a perturbation to the trapping potential, the FLRI is approximated as a power-law-decayr-pwithin the frame of the quantum perturbation theory[45-47]. The exponentpof the FLRI corresponds physically to the Coulomb-like interaction forp=1, the monopole-dipole interaction forp=2, the dipole-dipole interaction forp=3, and van de Waals interactions forp=6.

    As mentioned above, the divergences of the occupation number per site are encountered in the usual spin-wave theory in the disorder phase in one dimension. In order to overcome these divergences, we use Takahashi’s idea[10]which constrains the total magnetization to be zero:

    (2)

    To enhance the Constraint (2), we introduce a Lagrange multiplierλin the Hamiltonian, then the effective Hamiltonian is given by

    (3)

    (4)

    the Hamiltonian is rewritten as

    (5)

    After making the Fourier transformations

    (6)

    the effective Hamiltonian is computed to be

    (7)

    where

    E0=-λNS-(J0(0)-JZ)NS2

    (8)

    and

    ωk=S[J0(0)-J0(k)]-S[ZJ-J(k)]+λ

    (9)

    HereJ0(k)/J0(0) andJ(k)/(JZ) are the structure factors for the long-range and nearest-neighbor interactions, respectively. They are given by

    (10)

    In one-dimensional case,J(k)=2 coskwithZ=2; andJ0(k) can be expanded in smallk[35-36, 49], i.e.,

    (11)

    with

    (12)

    in the thermodynamic limitN→∞.HereΓ(p) andξ(p) denote the gamma function and Riemann’s zeta function, respectively.

    Taking account of the Bose-Einstein distribution function

    (13)

    and inserting it into the thermal average of the Eq.(2), we can get the consistent equation

    (14)

    HereTstands for the temperature. In the largeNthermodynamic limit, the summation in Eq.(14) is replaced by the integral in the first Brillouin zone. The Lagrange multiplierλis self-consistently determined by Eq.(14).λgiven by Eq.(14) is a kind of nonzero chemical potential. Thus, ifλis known, we can obtain the solutions for the thermodynamic properties of the system.

    2 Results and discussions

    In this section, we will discuss how the FLRI and the ANNI affect the thermodynamic properties (such as the critical temperature, internal energy, specific heat, and susceptibility) of one-dimensional ferromagnetic Heisenberg model. For convenience, the interactionJ0and the spinSare all set to beJ0=1 andS=1/2, respectively. The coordination number takesZ=2.

    2.1 Lagrange multiplier

    In order to obtain the thermodynamic properties, it is important to know the temperature-dependent behavior of the Lagrange multiplierλ. Note thatλcan be computed from Eq.(14) which is obtained under the constraint condition of zero magnetization. As pointed out in Ref.[10], the Lagrange multiplierλhas the physical meaning of being treated as the nonzero chemical potential.

    Using the consistent Eq.(14),λis plotted as a function of the temperatureTin Fig.1 forp=2.2, 2.5, 3.0, 3.5 atJ=0.1 in Fig.1 (a), and forJ=0.1, 0.5, 0.9 whenp=2.2 in Fig.1 (b), respectively. If the ANNIJand the interaction rangepare given, it is easily found thatλincreases as the temperatureTincreases. WhenTandpare given,λincreases with the increasingJ. ForTfixed, the biggerporJ, the largerλ. The calculation of Eq.(14) at smallJshows thatλhas the low-temperature behavior of being proportion toT(p-1)/(p-2)for 23.

    Fig.1 Temperature dependence of the Lagrange multiplier λ (a) for p=2.2, 2.5, 3.0, 3.5 at J=0.1, and (b) for J=0.1, 0.5, 0.9 when p=2.2, respectively

    As seen in Fig.1 (a),λobtained at the smallerpdecreases more slowly than one obtained at the largerp. It is found in Fig.1 (b) that at a givenp, no matter what the valueJtakes,λhas the similar decaying behavior when the chain is in the low-temperature region ofT<0.2.

    2.2 Critical temperature

    In the former section, we have discussed the low-temperature behavior of the nonzeroλ. It is interesting that what happens whenλbecomes zero at the finite temperature.

    Seen from Eqs.(3) and (14),λ=0 shows that the systems can keep the zero-magnetization condition without needing to introduce the Lagrange multiplierλin the Hamiltonian (1). This means that the system has a ferromagnetic-paramagnetic phase transition at some finite temperatureTc, which is the critical temperature of the system. BelowT

    (15)

    with

    (16)

    In the largeNthermodynamic limit, Eq.(15) becomes the integral:

    (17)

    where 1BZdenotes the first Brillouin zone in one dimension. The calculations of Eq.(17) display that the finite-temperature phase transition exists atT=Tc≠0 when 10 withTc=0. This finding agrees with the extended Mermin-Wagner theorem[50]which is developed from the usual Mermin-Wagner theorem[9]. In the case without the ANNI, ourTcobtained in Eq.(17) recovers the one-dimensional results[35].

    To obtain the influence of the interaction rangepand the ANNIJin the behavior of the critical temperatureTc, Eq.(17) is used to plot the critical temperatureTcas a function ofpandJin Fig.2.

    Fig.2 The critical temperature Tc plotted as a function (a) of the interaction range p for J=0.1, 0.6, 0.8, and (b) of the ANNI J for p=1.2, 1.4, 1.6, respectively

    For 1

    It is interesting that what happens for the critical temperatureTcwhen the ANNIJis changed to the ferromagnetic next-neighbor interaction -J. In this situation, in the region 1

    It is shown in Ref.[38] that the continuousU(1) symmetry in the ferromagnetic chain is spontaneously broken for the FLRI in the regionp

    2.3 Internal energy

    Now, let us consider the behavior of the internal energyU, which is defined byU=〈Heff〉/N.From Eq.(7),Uis computed to be

    (18)

    in one dimension.

    In Fig.3, the temperature dependence of the internal energyUis presented for theS=1/2 chain atJ=0.1 forp=2.2, 2.5, 2.8, andp=3.2, 3.5, 3.8, respectively.

    Fig.3 Temperature dependence of internal energy U at J=0.1 for (a) p=2.2, 2.5, 2.8, and (b) p=3.2, 3.5, 3.8, respectively

    From the figures, forp>2 in the disorder phase, we can see thatUis the increasing function of bothTandpforJgiven. The main reason for this phenomenon ofUincreasing with the temperature is that aspincreases, the FLRI becomes weak, but the thermal fluctuations get stronger. It is noticed that the effect of the interaction rangepon the temperature dependence ofUfor 23. Fig.3(a) shows that the increasing value inpinduces the slow growth ofUin the region of 23, the largerpresults in the rapid growth ofUin the region of low temperature, as seen in Fig.3(b).

    Fig.4 illustrates that the temperature-dependent behavior of the internal energyUaffected by the ANNIJ.

    Fig.4 Temperature dependence of internal energy U for J=0.1, 0.5, 0.9 when p=2.2

    When both the temperature and the interaction range are given, the internal energyUis on the increase as the ANNIJgoes up. This behavior induced by the ANNI causing harm to the stability of the long-range ferromagnetic ordering at the finite temperatures.

    2.4 Heat capacity

    In this section, we will study how the FLRI and ANNI affect the temperature-dependent behavior of the specific heatC=?U/?T.By mean of Eq.(18), one has

    (19)

    (20)

    In the low-temperature region, we employ Eqs.(19) and (20) to obtain the temperature dependence of the specific heatC, as shown in Fig.5.

    The specific heatCexhibits the peak phenomenon which is characteristic of the interaction rangepand the ANNIJin the low-temperature region. Fig.5(a) shows that the specific heatCstarts from zero, and increases with the temperature, arrives at its maximum in the low-temperature region. Aspdecreases, the maximum height of the specific heat increases, and its maximum width is widening, and the corresponding maximum position moves to the higher temperature. Ifpis fixed, the largeJhelps the increase of the specific heat and its maximum height.

    Fig.5 Temperature dependence of the specific heat capacity C for (a) p=2.2, 2.5, 2.8, 3.5 at J=0.1, and (b) J=0.1, 0.5, 0.9 at p=2.2, respectively.

    At low temperatures and the small ANNI, the spin-wave calculations give the specific heatCto be in the form ofT1/(p-1)for 23, respectively. Then the quantitiesC/T1/(p-1)andC/T1/2are considered as the coefficients of the specific heat at low temperatures for 23, and their temperature dependences are shown in Fig.6 and Fig.7, respectively.

    Fig.6 Temperature dependence of C/T1/(p-1) for (a) p=2.2, 2.5, 2.8 at J=0.1, and (b) J=0.1, 0.5, 0.9 at p=2.2, respectively.

    Fig.7 Temperature dependence of C/T1/2 for (a) p=3.2, 3.5, 3.8 at J=0.1, and (b) J=0.1, 0.5, 0.9 at p=3.2, respectively

    Whenpis not far away fromp=2 in the region ofp>2, the coefficientC/T1/(p-1)displays the maximum behavior at low temperatures. Its maximum becomes larger and more widens with increasingJ, and shifts to the higher temperature. However, if the largepis far fromp=2, this kind of the maximum behavior disappears, andC/T1/(p-1)decreases as the temperature increases. Unlike the behavior ofC/T1/(p-1)for 23 and 0≤J≤1. For the givenT, it is shown that bothpandJgive the helping hands to the growth ofC/T1/2.

    In the zero-temperature limit, the values ofC/T1/(p-1)is the decreasing (or increasing) function ofp(orJ). For example, the zero-temperature values ofC/T1/(p-1)are computed to be 0.168 313, 0.169 393, 0.170 503 forJ=0.1, 0.5, 0.9 atp=2.2, respectively. ForJ=0 andp=2.2, limT→0C/T1/(p-1)=0.166 91 which agrees with the result obtained in Ref.[35]. As shown in Fig.7, the zero-temperature values ofC/T1/2are the increasing function of bothpandJ.

    In the nearest-neighbor limitp→∞, the FLRI is reduced to the ferromagnetic nearest-neighbor interaction, and then the model discussed in this paper becomes the Heisenberg chain with the ferromagnetic and antiferromagnetic nearest-neighbor interactions. In this case, forJ=0 andS=1/2, the analytical calculation within the modified spin wave theory gives the zero-temperature value of the specific heat coefficient to be limT→0C/T1/2=0.781 64, which recovers the result obtained by the Takahashi’s scheme[10], and agrees very well with the BA value 0.781 5[51].

    2.5 Magnetic susceptibility

    In the following, we turn to consider the behavior of the magnetic susceptibility, which is defined by

    (21)

    Due to the absence of the applied magnetic field in Eq.(1), the system has the spin-rotational symmetry, which results in the spin-correlation functions

    (22)

    With the help of Holstein-Primakoff and Fourier transformations, the susceptibilityis computed to be

    (23)

    In the regime of the very low temperature, the susceptibilitycan be solved from Eq.(23) at the small ANNIJ. The susceptibilitybehaves asT-(p-1)/(p-2)for 23 at low temperatures, respectively. Then like in the low-temperature case of the specific heatC, the quantitiesT(p-1)/(p-2)andT2are defined as the coefficients of the susceptibility at low temperatures for 23, respectively.

    Temperature dependence of the susceptibility and its coefficients are plotted in Figs.8~Figs.10 for some selected values ofpandJ, respectively. Fig.8 shows that the susceptibilityis a decreasing function of the temperature. However, the susceptibility coefficientT(p-1)/(p-2)is the increasing function of the temperature for both 23, as seen in Fig.9. It is found in Fig.10 that at low temperatures, the susceptibility coefficientT2shows the intriguing behavior in the region ofp>3. At very low temperatureT<0.2,T2displays a minimum. As the temperature increases,T2firstly decreases, and then increases after passing through the minimum.

    The interaction rangepaffects the temperature-dependent behaviors of the susceptibility and its coefficients in a similar way to the ANNIJ. If the temperatureTis fixed, the largeJand the largepboth impede the increase of the susceptibility, while the susceptibility coefficientsT(p-1)/(p-2)andT2both increase asporJincreases. Fig.8(a) shows that the interaction range causes the stronger suppression of the susceptibility forp>3 than for 2

    Fig.8 Temperature dependence of susceptibility for (a) p=2.5, 2.8, 3.5 at J=0.1, and (b) J=0.1, 0.5, 0.9 at p=2.2, respectively

    Fig.9 Temperature dependence of T(p-1)/(p-2) for (a) p=2.2, 2.5, 2.8 at J=0.1, and (b) J=0.1, 0.5, 0.9 at p=2.2, respectively

    Fig.10 Temperature dependence of T2 for p=3.2, 3.5, 3.8 at J=0.1, and (b) J=0.1, 0.5, 0.9 at p=3.2, respectively

    Note that in the zero-temperature limit, the values of the susceptibility coefficients limT→0T(p-1)/(p-2)and limT→0T2all increase with the increase inporJ, as shown in Fig.9 and Fig.10. Atp=2.2, limT→0T(p-1)/(p-2)=0.000 153, 0.002 977 forJ=0, 0.1, respectively. This value 0.000 153 is just the result in the case without the ANNI[35]. ForJ=0 andp→∞, our limT→0T2=1/24, which is obtained by the self-consistent method, reproduces the result obtained by Takahashi’s scheme[10]. It is also in good agreement with the BA value 0.041 675[51], and with 0.041 667 obtained by Green’s function method[52-53]and the quantum Monte Carlo[53].

    3 Conclusion

    In this paper, with the help of Takahashi’s idea constraining the total magnetization to be zero, the modified spin-wave theory has been applied to the ferromagnetic Heinsenberg chain with the FLRI and the ANNI. It is found that the FLRI rangepand the ANNIJhave great influence on the low-temperature properties of the system. ForJ=0, our results agree well with the exact BA results and the quantum Monte Carlo data.

    The internal energyUas well as the chemical potentialλis the increasing functions of bothpandJ. But the magnetic susceptibilityand the temperatureTcdecreases with the increase inporJ. At the very low temperatures and the smallJ, the specific heatCand susceptibilitydisplay the power laws in temperatureT:C~T1/(p-1)and~T(p-1)/(p-2)for 23, respectively.

    At low temperatures, it is found that the specific heatCexhibits the temperature-dependent peak behavior, along with the specific heat coefficientC/T1/(p-1); while the susceptibility coefficientT2shows a minimum. Aspincreases, the maximum ofCshortens and narrows, and its position shifts to the lower temperature. Note thatJpromotes the growth ofC. Whenpis close top=2, the coefficientC/T1/(p-1)has the maximum which grows up and widens with increasingJ, and shifts to the higher temperature. However, for the largepthe maximum behavior ofC/T1/(p-1)can’t survive. Forp>3, as the temperature increases, the susceptibility coefficientT2firstly decreases, and then increases after passing through the minimum whose height increases with the increase of bothpandJ.

    日日摸夜夜添夜夜添小说| 91久久精品电影网| 欧美午夜高清在线| а√天堂www在线а√下载| 麻豆国产av国片精品| 老司机福利观看| 可以在线观看毛片的网站| 亚洲成av人片在线播放无| 三级男女做爰猛烈吃奶摸视频| 国产午夜精品久久久久久一区二区三区 | 免费在线观看影片大全网站| 男女床上黄色一级片免费看| 欧美在线一区亚洲| 老司机福利观看| 亚洲国产日韩欧美精品在线观看 | 18禁黄网站禁片午夜丰满| 欧美大码av| www日本在线高清视频| 一区二区三区激情视频| 美女高潮喷水抽搐中文字幕| 欧美xxxx黑人xx丫x性爽| 老司机福利观看| 香蕉久久夜色| 国产野战对白在线观看| 18禁在线播放成人免费| x7x7x7水蜜桃| 亚洲欧美日韩高清在线视频| 亚洲中文字幕一区二区三区有码在线看| 国产高清激情床上av| 俄罗斯特黄特色一大片| 日本黄色片子视频| 国产精品亚洲美女久久久| 国产乱人视频| 女生性感内裤真人,穿戴方法视频| 青草久久国产| 亚洲人成网站高清观看| 三级男女做爰猛烈吃奶摸视频| eeuss影院久久| 中文字幕熟女人妻在线| 99久久精品国产亚洲精品| 国产视频内射| 午夜视频国产福利| 成人特级黄色片久久久久久久| 国产乱人视频| 俄罗斯特黄特色一大片| 99久久综合精品五月天人人| 国产毛片a区久久久久| 无遮挡黄片免费观看| 嫩草影院精品99| 美女 人体艺术 gogo| 日韩大尺度精品在线看网址| 三级国产精品欧美在线观看| 有码 亚洲区| 精品欧美国产一区二区三| 欧美中文综合在线视频| 成年版毛片免费区| 国产欧美日韩一区二区三| 免费搜索国产男女视频| 天堂影院成人在线观看| 欧美日韩黄片免| 欧美午夜高清在线| 岛国在线免费视频观看| 日韩人妻高清精品专区| 亚洲精品日韩av片在线观看 | 欧美一区二区亚洲| 欧美黄色片欧美黄色片| 国产一区二区三区在线臀色熟女| 国产精品嫩草影院av在线观看 | 日韩欧美国产一区二区入口| 久久精品国产清高在天天线| 国产一区二区在线av高清观看| 欧美在线一区亚洲| 亚洲五月天丁香| 在线观看午夜福利视频| 黄色片一级片一级黄色片| 校园春色视频在线观看| 久久久久久久亚洲中文字幕 | 精品福利观看| 久久久久久人人人人人| 丁香欧美五月| 国产国拍精品亚洲av在线观看 | 在线播放国产精品三级| 国产熟女xx| 成年女人看的毛片在线观看| 婷婷精品国产亚洲av在线| 精品乱码久久久久久99久播| 国产精品精品国产色婷婷| 国产欧美日韩一区二区精品| 熟女少妇亚洲综合色aaa.| 桃红色精品国产亚洲av| 亚洲av电影在线进入| 免费观看的影片在线观看| 毛片女人毛片| 亚洲av免费高清在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲第一欧美日韩一区二区三区| 欧美一级毛片孕妇| 亚洲国产日韩欧美精品在线观看 | 国产精华一区二区三区| 亚洲第一电影网av| 少妇高潮的动态图| 波多野结衣高清无吗| 久久精品国产自在天天线| 日韩欧美免费精品| 在线观看日韩欧美| 一本精品99久久精品77| 91在线观看av| 999久久久精品免费观看国产| 亚洲乱码一区二区免费版| 久久国产乱子伦精品免费另类| 18禁国产床啪视频网站| 亚洲av一区综合| 日本一二三区视频观看| 亚洲av不卡在线观看| 国产伦一二天堂av在线观看| 国产三级中文精品| 久久精品国产亚洲av香蕉五月| 免费观看人在逋| 欧美黄色淫秽网站| av专区在线播放| 婷婷精品国产亚洲av| 国产一区二区在线观看日韩 | 欧美在线一区亚洲| 亚洲欧美激情综合另类| 成人欧美大片| 午夜两性在线视频| 国产主播在线观看一区二区| 国产三级黄色录像| 久久久久国内视频| 日本三级黄在线观看| 成人一区二区视频在线观看| 色精品久久人妻99蜜桃| 91麻豆精品激情在线观看国产| av在线天堂中文字幕| 亚洲精品久久国产高清桃花| 成年人黄色毛片网站| 亚洲五月婷婷丁香| 久久久久久久亚洲中文字幕 | 国产精品亚洲一级av第二区| www日本黄色视频网| 51午夜福利影视在线观看| 国产69精品久久久久777片| 成人欧美大片| 国产一级毛片七仙女欲春2| 亚洲精品亚洲一区二区| 男女午夜视频在线观看| 热99在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久精品吃奶| 内地一区二区视频在线| 国产精品1区2区在线观看.| 啦啦啦免费观看视频1| 国内毛片毛片毛片毛片毛片| 亚洲第一欧美日韩一区二区三区| 亚洲色图av天堂| 国产一区二区在线观看日韩 | 国产亚洲av嫩草精品影院| 97超级碰碰碰精品色视频在线观看| 桃红色精品国产亚洲av| 免费大片18禁| 免费在线观看成人毛片| av专区在线播放| 国产极品精品免费视频能看的| 亚洲av成人不卡在线观看播放网| 99热只有精品国产| 99精品久久久久人妻精品| 亚洲中文日韩欧美视频| 日本与韩国留学比较| 欧美一区二区亚洲| 搞女人的毛片| 大型黄色视频在线免费观看| 九九热线精品视视频播放| 欧美色欧美亚洲另类二区| 亚洲国产日韩欧美精品在线观看 | 桃红色精品国产亚洲av| 午夜精品一区二区三区免费看| 精品电影一区二区在线| 噜噜噜噜噜久久久久久91| 欧美3d第一页| 在线观看舔阴道视频| 婷婷精品国产亚洲av在线| 国产亚洲欧美在线一区二区| 久久精品91无色码中文字幕| 欧美一级毛片孕妇| 9191精品国产免费久久| 成人国产一区最新在线观看| 国产精品久久久久久精品电影| а√天堂www在线а√下载| e午夜精品久久久久久久| 亚洲国产欧美网| 亚洲成人久久性| 久久久久久久午夜电影| 亚洲欧美激情综合另类| 色综合婷婷激情| 亚洲国产高清在线一区二区三| 麻豆一二三区av精品| 成人亚洲精品av一区二区| 内射极品少妇av片p| 国产不卡一卡二| 亚洲性夜色夜夜综合| 男女视频在线观看网站免费| 国产久久久一区二区三区| 免费av不卡在线播放| 亚洲国产欧洲综合997久久,| 精品一区二区三区视频在线 | 午夜免费成人在线视频| 天美传媒精品一区二区| 精品久久久久久成人av| 在线观看免费视频日本深夜| 久久久成人免费电影| 久久久精品欧美日韩精品| а√天堂www在线а√下载| 国产精品久久久久久精品电影| 精品久久久久久久毛片微露脸| 在线观看免费午夜福利视频| 精品一区二区三区av网在线观看| 欧美绝顶高潮抽搐喷水| 99久久精品热视频| 久久久国产成人免费| 人人妻人人看人人澡| 国产午夜精品久久久久久一区二区三区 | 国产精品99久久99久久久不卡| 丰满的人妻完整版| 男人和女人高潮做爰伦理| 免费在线观看日本一区| 伊人久久大香线蕉亚洲五| а√天堂www在线а√下载| 久久人妻av系列| 欧美又色又爽又黄视频| 国产精品自产拍在线观看55亚洲| 51国产日韩欧美| 国产探花在线观看一区二区| 日本黄大片高清| 88av欧美| 久久久国产成人免费| 琪琪午夜伦伦电影理论片6080| 免费电影在线观看免费观看| 高清毛片免费观看视频网站| 看片在线看免费视频| 久久欧美精品欧美久久欧美| 丰满乱子伦码专区| 国产成人av教育| 日日夜夜操网爽| 日韩中文字幕欧美一区二区| 宅男免费午夜| 日韩欧美精品免费久久 | 欧美中文综合在线视频| 麻豆成人av在线观看| 丰满的人妻完整版| 日韩高清综合在线| 亚洲欧美日韩高清在线视频| 亚洲美女黄片视频| 亚洲欧美日韩卡通动漫| 日本三级黄在线观看| 亚洲 欧美 日韩 在线 免费| 在线免费观看的www视频| 亚洲国产欧美人成| 国产真实伦视频高清在线观看 | 欧美高清成人免费视频www| 亚洲真实伦在线观看| 欧美性猛交黑人性爽| xxxwww97欧美| 无限看片的www在线观看| 不卡一级毛片| 国产精品一及| 少妇裸体淫交视频免费看高清| 亚洲欧美激情综合另类| 白带黄色成豆腐渣| 日韩欧美三级三区| 在线免费观看不下载黄p国产 | 中国美女看黄片| 99久久成人亚洲精品观看| 三级男女做爰猛烈吃奶摸视频| 热99在线观看视频| 成人无遮挡网站| 国产 一区 欧美 日韩| 欧美日韩黄片免| 综合色av麻豆| 欧美黄色淫秽网站| 国产亚洲精品久久久久久毛片| 免费高清视频大片| 18禁黄网站禁片午夜丰满| 日韩国内少妇激情av| 黄色女人牲交| 精品一区二区三区视频在线 | 亚洲av免费在线观看| 日韩欧美国产一区二区入口| 国产极品精品免费视频能看的| 在线观看一区二区三区| 欧美成人一区二区免费高清观看| 淫妇啪啪啪对白视频| 男女午夜视频在线观看| 夜夜爽天天搞| 尤物成人国产欧美一区二区三区| 伊人久久大香线蕉亚洲五| 免费搜索国产男女视频| 脱女人内裤的视频| 男女下面进入的视频免费午夜| 女警被强在线播放| 波野结衣二区三区在线 | 男插女下体视频免费在线播放| 99热精品在线国产| 日韩 欧美 亚洲 中文字幕| 亚洲精品久久国产高清桃花| 日日摸夜夜添夜夜添小说| 丁香欧美五月| 欧美成人一区二区免费高清观看| 免费观看精品视频网站| 午夜福利在线在线| 欧美zozozo另类| 日韩欧美在线二视频| 色哟哟哟哟哟哟| 狠狠狠狠99中文字幕| 精品久久久久久久久久免费视频| 好男人电影高清在线观看| 香蕉丝袜av| 欧美大码av| 欧美+亚洲+日韩+国产| 51午夜福利影视在线观看| 久久伊人香网站| 91久久精品电影网| 国产精品日韩av在线免费观看| 性欧美人与动物交配| 国产精品亚洲一级av第二区| 午夜a级毛片| 97碰自拍视频| 亚洲国产精品sss在线观看| 性色avwww在线观看| 午夜精品一区二区三区免费看| 精品人妻1区二区| 最近最新免费中文字幕在线| 亚洲天堂国产精品一区在线| 久久国产乱子伦精品免费另类| 别揉我奶头~嗯~啊~动态视频| h日本视频在线播放| 黄色视频,在线免费观看| 免费观看精品视频网站| 国产伦精品一区二区三区视频9 | 日韩精品中文字幕看吧| 免费电影在线观看免费观看| 女生性感内裤真人,穿戴方法视频| 高清毛片免费观看视频网站| 亚洲精品乱码久久久v下载方式 | 久久人人精品亚洲av| 久久精品影院6| 欧美色视频一区免费| 色av中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 美女大奶头视频| 18禁美女被吸乳视频| 桃色一区二区三区在线观看| 国产午夜精品论理片| 成人三级黄色视频| 男女之事视频高清在线观看| 一卡2卡三卡四卡精品乱码亚洲| 特级一级黄色大片| 国产午夜精品久久久久久一区二区三区 | 日本在线视频免费播放| 国产激情欧美一区二区| 精品一区二区三区视频在线观看免费| 男女做爰动态图高潮gif福利片| 最后的刺客免费高清国语| 国产 一区 欧美 日韩| 日韩中文字幕欧美一区二区| 日韩欧美三级三区| 亚洲欧美日韩高清专用| 国产欧美日韩精品一区二区| 成人国产一区最新在线观看| or卡值多少钱| 色视频www国产| 亚洲va日本ⅴa欧美va伊人久久| 日韩 欧美 亚洲 中文字幕| 久久天躁狠狠躁夜夜2o2o| 最新美女视频免费是黄的| 日本黄大片高清| 听说在线观看完整版免费高清| 成人鲁丝片一二三区免费| 老司机在亚洲福利影院| 五月玫瑰六月丁香| 亚洲成人久久爱视频| 搡老熟女国产l中国老女人| 18禁黄网站禁片免费观看直播| 日本 欧美在线| 免费在线观看日本一区| 人人妻人人澡欧美一区二区| 欧美zozozo另类| 精品一区二区三区av网在线观看| 国产乱人视频| 91在线精品国自产拍蜜月 | 午夜免费成人在线视频| 亚洲av熟女| 91麻豆av在线| 国产黄片美女视频| 黄片小视频在线播放| 首页视频小说图片口味搜索| 国内精品美女久久久久久| 亚洲av电影在线进入| 老司机福利观看| 国产老妇女一区| 成年女人永久免费观看视频| 国产美女午夜福利| 搞女人的毛片| 97超视频在线观看视频| x7x7x7水蜜桃| 欧美日韩瑟瑟在线播放| 岛国视频午夜一区免费看| 亚洲人成电影免费在线| 搡老熟女国产l中国老女人| 亚洲精品色激情综合| 狂野欧美白嫩少妇大欣赏| 99久久九九国产精品国产免费| 久久婷婷人人爽人人干人人爱| 欧美成狂野欧美在线观看| 成人永久免费在线观看视频| 美女免费视频网站| 欧美成人a在线观看| 国内精品久久久久精免费| 两个人的视频大全免费| 免费看美女性在线毛片视频| 精品人妻一区二区三区麻豆 | 一级毛片高清免费大全| 亚洲真实伦在线观看| 嫩草影院入口| 中文字幕久久专区| 男女午夜视频在线观看| 高清日韩中文字幕在线| 欧美在线一区亚洲| 色av中文字幕| www日本在线高清视频| 国产精品免费一区二区三区在线| 免费在线观看成人毛片| h日本视频在线播放| 少妇的逼好多水| 中出人妻视频一区二区| 成人av一区二区三区在线看| 成人午夜高清在线视频| 国产激情欧美一区二区| 国产精品久久久人人做人人爽| bbb黄色大片| 亚洲 欧美 日韩 在线 免费| 综合色av麻豆| 国产aⅴ精品一区二区三区波| 男女午夜视频在线观看| 美女cb高潮喷水在线观看| 欧美日本视频| 亚洲激情在线av| 色精品久久人妻99蜜桃| 亚洲最大成人手机在线| 国产精品乱码一区二三区的特点| 少妇的逼好多水| 国产精品永久免费网站| 亚洲av成人不卡在线观看播放网| 久久天躁狠狠躁夜夜2o2o| 成人永久免费在线观看视频| 中文字幕人妻丝袜一区二区| 国产精品久久久久久久久免 | 国产精品野战在线观看| 亚洲美女视频黄频| 午夜激情福利司机影院| 亚洲中文字幕日韩| 亚洲欧美一区二区三区黑人| 成人一区二区视频在线观看| avwww免费| 久久久久性生活片| 欧美最新免费一区二区三区 | 无遮挡黄片免费观看| 欧美日韩福利视频一区二区| 三级男女做爰猛烈吃奶摸视频| 51午夜福利影视在线观看| 国产亚洲精品av在线| 中文字幕人妻丝袜一区二区| 欧美成人免费av一区二区三区| 三级国产精品欧美在线观看| 夜夜爽天天搞| 亚洲无线观看免费| 一二三四社区在线视频社区8| 精品久久久久久成人av| 久久人人精品亚洲av| 嫁个100分男人电影在线观看| 少妇高潮的动态图| 日韩欧美免费精品| 可以在线观看毛片的网站| 99精品欧美一区二区三区四区| 国产精品久久电影中文字幕| 亚洲国产精品sss在线观看| 中文字幕精品亚洲无线码一区| 亚洲中文字幕一区二区三区有码在线看| 免费人成视频x8x8入口观看| 日韩欧美在线乱码| 床上黄色一级片| 精品久久久久久久久久免费视频| 在线观看一区二区三区| 99久国产av精品| 最好的美女福利视频网| 可以在线观看的亚洲视频| 中文亚洲av片在线观看爽| 99国产精品一区二区蜜桃av| 亚洲一区二区三区不卡视频| 亚洲熟妇熟女久久| 99久久成人亚洲精品观看| 18禁黄网站禁片免费观看直播| x7x7x7水蜜桃| 又粗又爽又猛毛片免费看| 久久性视频一级片| 亚洲精品一卡2卡三卡4卡5卡| 日日干狠狠操夜夜爽| 91在线观看av| 欧美一区二区国产精品久久精品| 两个人看的免费小视频| 国产高清激情床上av| 性欧美人与动物交配| av天堂在线播放| 99在线视频只有这里精品首页| 亚洲国产高清在线一区二区三| 天天躁日日操中文字幕| 搞女人的毛片| 俄罗斯特黄特色一大片| 小蜜桃在线观看免费完整版高清| 国产国拍精品亚洲av在线观看 | 亚洲成人免费电影在线观看| 69av精品久久久久久| 国产探花极品一区二区| 亚洲狠狠婷婷综合久久图片| 天堂av国产一区二区熟女人妻| 19禁男女啪啪无遮挡网站| 怎么达到女性高潮| 亚洲18禁久久av| 中文在线观看免费www的网站| 一a级毛片在线观看| 桃色一区二区三区在线观看| 亚洲专区中文字幕在线| 精品欧美国产一区二区三| 在线天堂最新版资源| a在线观看视频网站| 波野结衣二区三区在线 | av片东京热男人的天堂| 久久欧美精品欧美久久欧美| bbb黄色大片| 成人国产一区最新在线观看| 嫁个100分男人电影在线观看| 日本成人三级电影网站| 欧美成人a在线观看| 中文资源天堂在线| 日韩欧美免费精品| 伊人久久精品亚洲午夜| 性色av乱码一区二区三区2| 国产免费男女视频| 免费看美女性在线毛片视频| 特级一级黄色大片| 欧美激情在线99| 亚洲av二区三区四区| 日韩欧美精品免费久久 | 免费在线观看影片大全网站| 久99久视频精品免费| 嫩草影视91久久| 国产日本99.免费观看| 国产野战对白在线观看| 国产成人欧美在线观看| 亚洲片人在线观看| 黄色丝袜av网址大全| 色吧在线观看| 国产成人a区在线观看| 亚洲18禁久久av| 窝窝影院91人妻| 精品久久久久久久毛片微露脸| 国产熟女xx| 国产伦人伦偷精品视频| 国产精品乱码一区二三区的特点| 日日干狠狠操夜夜爽| 久久国产精品影院| 美女cb高潮喷水在线观看| 亚洲成人久久性| 日韩有码中文字幕| 精品人妻偷拍中文字幕| 很黄的视频免费| 成人三级黄色视频| 欧美中文综合在线视频| 精品国产美女av久久久久小说| 男女那种视频在线观看| 有码 亚洲区| 在线播放无遮挡| 免费观看人在逋| 国产精品98久久久久久宅男小说| 日韩高清综合在线| 三级国产精品欧美在线观看| 欧美日韩一级在线毛片| 又粗又爽又猛毛片免费看| 国产69精品久久久久777片| 午夜福利欧美成人| 99久久成人亚洲精品观看| 亚洲精品美女久久久久99蜜臀| 可以在线观看毛片的网站| 欧美一区二区亚洲| 天天一区二区日本电影三级| 亚洲国产精品成人综合色| 亚洲成人免费电影在线观看| 好男人在线观看高清免费视频| 国产午夜福利久久久久久| 国产美女午夜福利| 午夜福利18| 久久伊人香网站| 国产高清视频在线观看网站| 99久久99久久久精品蜜桃| 我要搜黄色片| 国产毛片a区久久久久| 欧美激情在线99| 国产精品98久久久久久宅男小说| 久久九九热精品免费| 99国产极品粉嫩在线观看| 亚洲精品456在线播放app | 波多野结衣巨乳人妻| 51午夜福利影视在线观看| 中文亚洲av片在线观看爽| 国产成人aa在线观看| eeuss影院久久|