• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The cyclotomic numbers of order k=2m-1

    2022-10-09 01:54:14-,-,-
    廣州大學學報(自然科學版) 2022年3期

    -, -, -

    (School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China)

    Abstract: Let n=2m be an even number, for k=2m-1, we provide a method to calculate all the corresponding k-th cyclotomic numbers ai,j over the finite field 2n, and study the value distribution of the k-th cyclotomic matrix. These results can be used to construct a class of de Bruijn sequences by jointing all the cycles of the graph state of the linear shift register with irreducible connective polynomials, and the number of cycles that are joined is as many as possible.

    Key words: cyclotomic class; cyclotomic number; finite field; trace; de Bruijn sequence

    0 Introduction

    The cyclotomic numbers have many applications in coding theory and combinatorial designs. In coding theory, for example, Delsarte et al.[1]used the cyclotomies to construct two-weight irreducible cyclic codes, which was called the “semi-primitive” case, i.e.,k|2s+1 and 2s|n.

    Cyclotomies can be used to construct difference sets[2-3], which is an important structure in combinatory designs. There are many results on the cyclotomic numbers for the case of prime finite fields[4-10].

    A de Bruijn sequence of stagenis a binary sequence with period 2nwhich contains all binaryn-tuples. De Bruijn sequences can be generated by the cycle join method from a linear feedback shift register(LFSR), especially from irreducible codes[11-18].

    In Ref.[19], the authors establish an isomorphism from the finite field2nto stage space2n={(a1,a2, …,an)|ai∈2}, which maps cyclotomic classes to the cycles of the LFSR generated by the irreducible definition polynomialf(x) of the finite field2n, and maps pairs (α,α+1) to conjugate states, and hence the cyclotomic matrix can be used to calculate the number of de Bruijn sequences generated from the LFSR by the cycle join method.

    From what we said above, we consider the cyclotomic numbers of the binary finite field2n. From the contribution of Delsarte et al., the semi-primitive case of cyclotomic numbers can be easily derived. In this paper, we consider the casefor even field dimensionn.

    1 Preliminaries

    We consider the binary finite field2n, letθbe the primitive element of this field. Supposekdivides 2n-1, letl=(2n-1)/k. For everyj=0, 1, 2, …,k-1, we call the subsets of the finite field2n

    Tj={θu·k+j|u=0,1,2,…,l-1}

    thek-th cyclotomic classes. So there arekcyclotomic classesT0,T1, …,Tk-1. For each pair of cyclotomic classesTiandTj, the cyclotomic number, denoted by (i,j)kis defined to be the number of elements of the set

    {(α,α+1)|α∈Ti,α+1∈Tj}

    (1)

    Firstly, the following lemma and corollary can be easily derived form the basic arithmetics of the finite field2n:

    Lemma1Thek-th binary cyclotomic numbersai,jprocesses the following relation:

    (1)ai,j=aj,i;

    (2)ai,j=a2i,2j;

    (3)ai,j=ak-i,j-i=ai-j,k-j;

    all the operations on the subscripts are modk.

    Corollary1For everyi=1, 2, …,k-1,a0,i=ai,0=a-i,-i.

    In Ref.[1], the authors calculate the weight-distributions of binary semi-primitive cyclic codes of even length:nis even and 2n-1=kl, there exists an integerssuch thatk|2s+1 ands|n. For each cyclotomic class

    Tj={θuk+j|u=0,1,2,…,l-1},

    we define a define corresponding binary vectorS(Tj) of dimensionnas follwing:

    S(Tj)={Tr(θj),Tr(θk+j),Tr(θ2k+j), …,

    Tr(θ(l-1)k+j)}

    (2)

    whereTr(x) is the trace function of2n, defined byTr(x)=x+x2+x22+… +x2n-1for allx∈2n.

    Theorem1[1]Letsbe any divisor of 2r+1, and letkbe an even multiple ofr, sayk=2mr. Then the irreducible code of lengthn=(2k-1)/sand dimensionkoverGF(2) has only two distinct weightsw0andw1which are the unique solution of the following equations

    (3)

    From this result, and by using the method of exponent sum, we can easily get the following result:

    that is, there are only three values in the matrix: ①a0,0denotea; ② excepta0,0, all the other elements of the first row, the first column and the diagram have the same valueb; ③ all the other elements of the matrix have the same valuec. Furthermore, we have that

    a=x(x+(-1)m(3-k))-1,
    b=x(x+(-1)m),
    c=x2

    (4)

    We consider the quadratic equation over finite field2n. The general quadratic equation over finite field2nhas the following form:

    x2+ax+b=0

    (5)

    witha,b∈2n. Ifa=0, the Eq.(5) has only one root, since the mapxx2is an automorphism of2n. Ifa≠0, by dividinga2on both sides of Eq.(5), we get the following form:

    z2+z+c=0

    (6)

    withc=b/a2∈2n. The following Lemma 2 can be proven easily.

    Lemma2Ifcis an element of2n, then the Eq.(6) has 2-2Tsolutions over2n, whereT=Tr(c). Furthermore, ifzis one solution, then the other solution isz+1.

    Corollary2Ifa≠0, then the quadratic Eq.(5) has two solutions if and onlyTr(b/a2)=0.

    2 The cyclotomic number of order

    In number theory, we have the following lemma:

    Lemma3Suppose thatGis a finite cyclic group, andHis a subgroup ofGof orderl, then for everya∈G,a∈Hif and only ifal= 1, where 1 denotes the identity element of the groupG.

    Sincen=2m, the finite field2nhas a unique finite subfield2m. Letθbe a primitive element of2n. For every nonzero elementα∈2n,α∈2mif and only ifα2m-1=1, that isαk=1. Therefore2m{0}={θjl|j=0, 1, 2, …,k-1}. Thus we have the following lemma:

    Lemma4Supposen=2m,k=2m-1, andl=2m+1, then in the finite field2n, all the elementsθjlare distinct for allj=0, 1, 2, …,k-1.

    Furthermore, we have the following lemma:

    Lemma5Eachk-th cyclotomic classTicontains only one element of the formθjl.

    ProofFromk=2m-1 andl=2m+1, we know thatkandlare coprime, so the congruent equationuk+i≡0 (modl) has only one solutionu. That is, thek-th cyclotomic classTicontains only one elementθuk+iwhich has the form ofθjl. Since all thek-th cyclotomic classes are disjoint, each cyclotomic classTicontains only one nonzero element of the subfield2m.

    In the following, we use the symbolT1(α) to denote the trace function over the subfield2mof2n, that is, for everyα∈2m(i.e., for every elementα∈2nof the formθjl),T1(α)=α+α2+α22+…+α2m-1.

    Now, we will prove the following lemma, which gives the bound of all thek-th cyclotomic number:

    Lemma6For everyi,j=0, 1, 2, …,k-1, thek-th cyclotomic numberai,j≤2.

    ProofLetGbe the multiplicative group of all the nonzero elements of the finite field2n, andθbe the primitive element, thenGis a cyclic group of order 2n-1. The cyclotomic classT0is the unique subgroup of orderlgenerated by the elementθk, in the following, we useHinstead ofT0for simplicity. The other cyclotomic classesTjare just the left cosetsθjHofHinG.

    For any giveni,j=0, 1, 2, …,k-1, ifai,j=0, the assertion is true. Now assume thatai,j>0. Then there exist an elementα=θuk+i∈Ti=θiH, such that 1+α∈Tj=θjH. Therefore (1+α)θ-j=(1+θuk+i)θ-j∈H, and by Lemma 3, we have that (1+θuk+i)lθ-lj=1, it is the same thing as

    (1+θuk+i)l=θjl

    (7)

    We calculate the left side of Eq.(7) as following:

    (1+θuk+i)l=(1+θuk+i)2m+1=

    (1+θuk+i)2m(1+θuk+i)=

    (1+θ2m(uk+i))(1+θuk+i)=

    1+θ2m(uk+i)+θuk+i+θil

    whereθ2m(uk+i)θuk+i=θ(2m+1)(uk+i)=θl(uk+i)=θil. Sincek=2m-1, then 2m(uk+i)=2muk+(2m-1)i+i=(2mu+i)k+i. Letu1be the remainder oflthat divides 2mu+i, that is, there exist 5 an integerqsuch that 2mu+i=ql+u1, with 0≤u1

    θ2m(uk+i)=θ(2mu+i)k+i=θqlk+u1k+i=θu1k+i∈Ti.

    Now, the Eq.(7) becomes

    θuk+i+θu1k+i=1+θil+θjl

    (8)

    Setξ=1+θil+θjl, then bothα=θuk+iandα1=θu1k+iinTiare the roots of the following equation in the finite field2n:

    x2+ξx+θil=0

    (9)

    Leti,jbe given as above, we define the setΓi,j={γ∈Ti|1+γ∈Tj}. Notice that the Eq.(9) is only related toiandj, all the element ofΓi,jare the solutions of the Eq.(9). Since the quadratic equation over any field has at most two roots, we have thatai,j=|Γi,j|≤2 for thisiandj. Therefore, the assertion of Lemma 6 is true.

    Now, we can prove the following result:

    Theorem3Suppose thatn=2m, andk=2m-1,l=2m+1. Letθbe a primitive element of the finite field2n, then we have that

    (1)ai,j=1 if and only if 1+θil+θjl=0.

    (2) For all thei,j=0, 1, 2, …,k-1, such thatξ=1+θil+θjl≠0, then

    ProofNotice that the coefficientsξ=1+θil+θilandθjlof the Eq.(9) belong to the subfield2m. We will consider the general quadratic Eq.(9) of alli,j=0, 1, 2, …,k-1.

    Ifξ=1+θil+θjl=0, then the quadratic Eq.(9) becomes

    x2=θil

    which has only one solution. Therefore,ai,j=1. In this case, the corresponding elementα∈Tibelongs to the subfield2m. On the other hand, ifai,j=1, then there exists only one elementa∈Tisuch that 1+α∈Tj, sinceαis the solution of the Eq.(9), thenξmust be zero, otherwise, this quadratic equation would have two solutions inTi, contrary to the condition thatai,j=1.

    Ifξ= 1+θil+θjl≠0, setη=θil/ξ2. By dividing both sides of Eq.(9), we get the following quadratic equation

    z2+z+η=0

    (10)

    If the trace functionT1(η) of the subfield2mis zero, then the quadratic Eq.(10) has two solutions in2m, in this case, the correspondingk-th cyclotomic numberai,jmust be zero. Otherwise, thek-th cyclotomic classTiwould contain two solutions of the quadratic Eq.(9), which belong to the subfield2m, contrary to the Lemma 5.

    If the trace functionT1(η) of the subfield2mis one, we will prove that the correspondingk-th cyclotomic numberai,j=2. In this case, the quadratic equation of the form Eq.(9) has no solution in the subfield2m, i.e., it is irreducible over2m, and it has two solutions in the large field2n. Letαbe one of its solution, then,αmust belong to one of thek-th cyclotomic class, sayTr. By the process of the proof of Lemma 6,αis a solution of the following quadratic equation:

    x2+(1+θrl+θjl)x+θrl=0.

    We know that, any two different irreducible polynomial over any field can not contain a common solution, thereforeθrl=θil, andr=i, that is, the quadratic Eq.(9) has two solutions in thek-th cyclotomic classTi. Hence the correspondingk-th cyclotomic numberai,j=2, which completes the proof.

    The following example illustrates the idea in the proof of Theorem 3:

    Example1It is easy to verify thatf(x)=x6+x+1 is a primitive polynomial of degreen=6 over the finite field2. Letθbe a root off(x), then each element of the finite field26has a unique formc5θ5+c4θ4+c3θ3+c2θ2+c1θ+c0with eachci∈2={0,1}, the binary 0-1 stringc5c4c3c2c1c0of length 6 can be used to represent the field element of26, yet we would like to use the corresponding hexadecimal form for short. For example, the binary form of the field elementθ5+θ3+θ2+1 is 101101, and the corresponding hexadecimal form is 2d.

    Letk=7,l=9, then the 7-th cyclotommic classes are listed as follows:

    T0={1,θ7,θ14,θ21,θ28,θ35,θ42,θ49,θ56}={01, 06, 14, 3b, 1c, 0b, 3a, 1a, 1f},

    T1={θ,θ8,θ15,θ22,θ29,θ36,θ43,θ50,θ57}={02, 0c, 28, 35, 38, 16, 37, 34, 3e},

    T2={θ2,θ9,θ16,θ23,θ30,θ37,θ44,θ51,θ58}={04, 18, 13, 29, 33, 2c, 2d, 2b, 3f},

    T3={θ3,θ10,θ17,θ24,θ31,θ38,θ45,θ52,θ59}={08, 30, 26, 11, 25, 1b, 19, 15, 3d},

    T4={θ4,θ11,θ18,θ25,θ32,θ39,θ46,θ53,θ60}={10, 23, 0f, 22, 09, 36, 32, 2a, 39},

    T5={θ5,θ12,θ19,θ26,θ33,θ40,θ47,θ54,θ61}={20, 05, 1e, 07, 12, 2f, 27, 17, 31},

    T6={θ6,θ13,θ20,θ27,θ34,θ41,θ48,θ55,θ62}={03, 0a, 3c, 0e, 24, 1d, 0d, 2e, 21}.

    From this, we can calculate easily the 7-th cyclotomic matrix of26as follows:

    We calculate the trace functionT1(x) of the subfield23for allx∈23as following:

    T1(0)=0,

    T1(1)=1+1+1=1,

    T1(θ9)=θ9+θ18+θ36=18+0f+16=1=

    T1(θ18)=T1(θ36),

    T1(α27)=θ27+θ54+θ45=0e+17+19=0=

    T1(θ54)=T1(θ45).

    It is easy to check that 1+θ2l+θ3l=1+0f+0e=1, so the cyclotomic numbera2,3=1.

    To compute the cyclotomic numbera3,6, letξ=1+θ3l+θ6l=1+θ27+θ54=01+0e+17=18=θ9, thenθil/ξ2=θ3l/θ2l=θ9, sinceT1(θil/ξ2)=T1(θ9)=1, we havea3,6=2 by Theorem 3.

    To compute the cyclotomic numbera4,5, letξ= 1+θ4l+θ5l=1+θ36+θ45=01+16+19=0e=θ27=θ3l, thenθil/ξ2=θ4l/θ6l=θ5l, sinceT1(θil/ξ2)=T1(θ5l)=0, we havea4,5=0 by Theorem 3.

    In fact, the proof of Lemma 6 provides another method to calculate the cyclotomic numberai,jas following:

    Now, we can show that the cyclotomic classTican be partitioned into subsets of the form {θuk+i,θu1k+i}, whereu1is the remainder ofldivides 2mu+ias above. Since 2mu1+i≡22mu+2mi+i=(2n-1)u+(2m+1)i+u=lku+li+u≡u(modl),uis the remainder ofldivides 2mu1+i. Furthermore, if 0≤v

    For each subset {θuk+i,θu1k+i}, from the relation (8), we can obtain a uniquej, and then the corresponding cyclotomic numberai,jequals the cardinal number of the subset {θuk+i,θu1k+i}.

    Example2Letn=6,k=7,l=9, we consider the finite field26as in Example 1. We takei=3 as an example to illustrate the idea used in the above statement:

    Letu=0, thenu1≡2mu+i=23·0+3≡3 (mod 9), we have the subset {θ3,θ3k+3=θ24}. By Eq.(8), we shall compute the unique valuejwith 0≤j

    Letu=1, thenu1≡2mu+i=23·1+3≡2 (mod 9), we get the subset {θ10,θ17}. By the similarly calculation, we have thatj=5, and thusa3,5=2.

    Letu=4, thenu1≡2mu+i=23·4+3≡8 (mod 9), we get the subset {θ31,θ59}. By the similarly calculation, we have thatj=6, and thusa3,6=2.

    Letu=5, thenu1≡2mu+i=23·5+3≡7 (mod 9), we get the subset {θ38,θ52}. By the similarly calculation, we have thatj=0, and thusa3,0=2.

    Letu=6, thenu1≡2mu+i=23·6+3≡6 (mod 9), we get the subset {θ45}, which contains only one element. Sinceθjl=1+θil=1+θ27=0f=θ18, we have thatj=2, and thusa3,2=1.

    3 The value distribution of the (2m-1)-th cyclotomic matrix

    The result of Theorem 3 just provides a method to compute eachai,j, and can not give any global information of the wholek-th cyclotomic matrixA=(ai,j)k×k. In this section, we study the value distribution of this cyclotomic matrix. Let2mbe any finite field, for eachα∈2mwithα≠0, we define a mapψα(x) parameterized byα:

    (11)

    The following Lemma 7 shows that the mapψα(x) is a one-to-one map from the finite field2minto itself for every nonzero elementα∈2m:

    Lemma7For every nonzeroα∈2m, the mapψα(x) defined by Map (11) is a one-to-one map.

    ProofIt is necessary to show that this map is onto, since the set2mis finite. For everyy∈2m, ify=0, thenψα(1+α)=yby definition of the Map (11). Ify≠0, we can solvexform

    Lemma8For every nonzeroα∈2m, we have thatwhereTr(x) is the trace function of the finite field2m.

    ProofFor every nonzero elementα∈2m, we consider the following quadratic equation over the finite field2m:

    x2+(1+α)x+α=0.

    Theorem4Supposen=2mis an even integer, letk=2m-1, andl=2m+1, then thek-th cyclotomic matrixA=(ai,j)k×kof finite field2nprocesses the following properties:

    (1)a0,0=0, ifmis even, anda0,0=2, ifmis odd.

    (2) In the first row, there are 2m-1elements taking value 2, and the other 2m-1-1 elements taking value 0.

    (3) In each of the other rows, there are 2m-1elements taking value 2, only one element taking value 1, and all the other 2m-1-2 elements taking value 0.

    Proof(1) Ifi=0,j=0, then the correspondingξ= 1+θil+θjl=1, andθil/ξ2=1, and henceT1(θil/ξ2)=T1(1) =m(mod 2). By the (2) of Theorem 11, we have thata0,0=2 if and only ifmis odd.

    For eachi=0, 1, 2, …,k-1, letα=θil. By Lemma 7, the mapψα(x) is one-to-one over the subfield2m. For the special valuex0=θjlsuch that 1+θil+θjl=0, the corresponding valueψα(x0)=0. Let ∑i=2m{0=ψα(x0),ψα(0)}.By the part (2) of Theorem 3, the whole elements of thei-th row of the matrixAthat taking values 0 or 2 are exactly the {T1(x)|x∈∑i}.Since the trace functionT1(x) of the subfield2mtaking value 0 for half elements of2mand value 1 for the other half elements of2m, andT1(0)=0,T1(ψα(0))=0 by Lemma 8, there are 2m-1elements of ∑ithat taking 1 as the trace function value of2m, thus there are 2m-1elements of thei-th row of the matrixAthat taking value 2.

    Ifi=0, then the element 1 belongs to the cyclotomic classT0, and 1+1=0 does not appear in any cyclotomic classes, therefore in the first row of the matrixA, no element can take value 1, therefore the part (2) of this theorem is held.

    Ifi≠0, then there exists only valuejsuch that 1+θil+θjl=0, and by part (1) of Theorem 3, the correspondingai,j=1, and part (3) of this theorem is held.

    4 Application

    In this section, we will use our results to construct a class of de Bruijn sequences of stagen. Letp(x) be a primitive polynomial of degreen=2mover2, withθbeing one of its primitive roots. Letk=2m-1 andl=2m+1 as above. Now, we takeα=θk, andf1(x) be the minimal polynomial ofαover the finite field2. Consider the set {α,α2,α22, …,α2d-1}, withα2d=α. Then, we have that

    f1(x)=(x-α)(x-α2)(x-α22)…(x-α2d-1),

    andf1(x) is an irreducible polynomial of degreedover2. The following Lemma 9 shows that the degreedoff1(x) isn:

    Lemma9Letn=2m,k=2m-1,l=2m+1, anddbe as above, thend=n.

    ProofWe know thatdis the minimal integer such thatα2d=α, i.e.,θ2dk=θk. Since the multiplicative order ofθin the finite field2nis 2n-1=kl, we have that 2dk≡k(modkl), that is, 2d≡1 (modl). Thusdis the multiplicative order of 2 modl. By 2n≡1 (modl), we have thatd|n.

    On the contrary, if we suppose thatd1. By 2d≡1 (modl), we can say that 2d-1=ls, withs≥1. Then

    kl=2n-1=2n1d-1=

    (2d-1)(1+2d+22d+… +2(n1-1)d)=

    ls(1+2d+22d+…+2(n1-1)d).

    Thus, we have that 2m-1=k=s(1+2d+22d+…+2(n1-1)d)≥1+2d>2d-1>l=2m+1, a contradiction.

    Letf(x)=xnf1(1/x) be the reciprocal polynomial off1(x), thenf(x) is the minimal polynomial ofα-1. Since both the multiplicative order ofα-1andαare equal, the period off(x), i.e., the smallest integerlsuch thatf(x)l≡1 (modf(x)), isl=(2n-1)/k=2m+1.

    If we takef(x) as the feedback polynomial of a linear feedback shift register (LFSR), then stage graphG(f) of the resulting LFSR consists ofk+1 cycles, one of which is the 1-cycle generated by the zero state (called zero cycle), and the otherkcycles have the same lengthl.

    Iff(x)=1+c1x+c2x2+…+cn-1xn-1+xnis an irreducible polynomial of degreenin2[x] with periodl=2m+1, then the matrix

    Z=s={s,sT,sT2, …,sTl-1}.

    The characteristic polynomial ofTis

    det(xI-T)=xnf(1/x)=f*(x)=f1(x),

    which is the reciprocal polynomial off(x). By Cayley-Hamilton Theorem, we have thatf1(T)=0.

    Then there is an field isomorphismψform the finite field2n=2[α] to the set2[T]={a0In+a1T+a2T2+…+an-1Tn-1|ai∈2}, by sendingαtoT. All nonzero matrices of2[T] form a multiplicative cyclic group of order 2n-1, and the subgroupH0={I,T,T2, …,Tl-1} is of orderl. There existk-1 matricesgi(T)∈2[T] (i=1, 2, …,k-1) such that all the other left cosets ofH0are of the following form:

    Hi=gi(T)H0={gi(T),gi(T)T,

    gi(T)T2, …,gi(T)Tl-1}.

    Lets0=(1, 0, …, 0) be a fixed vector. Then the mapφfrom2[T] to the vector spaceby sendingg(T) of2[T] tos0g(T), is a one-to-one map. This map also sends each cosetHiinto the corresponding state cycleZi=s0gi(T). If two state vectorsx=s0g(T) andy=s0h(T) are conjugate, then, byx+y=s0, we have thatg(T)+h(T)=In. Through the isomorphismψ, we can get a one-to-one mapψfrom the finite field2n=2[α] to the vector spaceby sendingg(α) tos0g(T). In the multiplicative cyclic group2[α]{0}, there is a unique cyclic subgroupW0={1,α,α2, …,αl-1} of orderl. There existk-1 elementgi(α)∈2[α]{0} (i=1, 2, …,k-1) such that all the other left cosets ofW0are of the following form

    Wi=gi(α)W0={gi(α),gi(α)α,

    gi(α)α2, …,gi(α)αl-1}.

    The mapψsends each cosetWiinto the corresponding state cycleZi=s0gi(T). Two state vectorsx=s0g(T) andy=s0h(T) are conjugate if and only ifg(α)+h(α)=1.

    The adjacent matrixB=(bi,j)k×kof the LFSR generated byf(x) is defined as following:

    bi,j=the pairs of conjugate states that lie inZiandZjrespectively.

    The adjacent matrix can be used to calculate the number of de Bruijn sequences that the cycle-join method can generate. Next, we will show that by suitable chosengi(α), the cosetsWiof2[α] equals the cyclotomicTirespectively.

    W0={1,α,α2,…,αl-1}={1,θk,θ2k, …,θ(l-1)k}=T0

    for eachi=1, 2, …,k-1, setgi(α)=θi, then, we have that

    Wi={θi,θiα,θiα2, …,θiαl-1={θuk+i|u=0,1,2,…,l-1}=Ti.

    Thus, by suitable labeling the state cycles, the adjacent matrix is exactly thek-th cyclotomic matrix. From the adjacent matrixAk=(ai,j)k×k, we letM=(mi,j)k×kas following:

    (12)

    The BEST theorem shows that the number of de Bruijn sequences generated by cycle-join method is equal to the minor of any element ofM. The following theorem shows that the cycle-join method does work for our case, that is, forn=2m,k=2m-1.

    Theorem5Suppose thatn,k,l, andf(x) as above, then we can find enough pairs of conjugate states that can join all the cycles of theG(f) into a full cycle.

    ProofSince the zero cycle (0) can be joined withZ0=s0as above. We just consider how to join all thekcyclesZ0,Z1, …,Zk-1.

    Firstly, consider the cycleZ0. Let ∑1={Zi|a0,i=2, 0

    For eachZj∈∑2, that is,Zjcan not be joined withZ0directly. We shall show that there exists at least oneZi∈∑1such thatai,j=2. For otherwise, there are at least 2m-1cycles suchai,j=0 in thej-th row of thek-th cycotomic matrix. However, there are exactly 2m-1-2 cycles such thataj,i=0 by (3) of Theorem 4, a contridication. That is, the cycleZjcan be joined with the cycleZi, andZican be joined with the cycleZ0, thus all the cycles can be joined with the cycleZ0.

    Example3Letn=6,k=7,l=9 as before. It is easy to check that the polynomialf(x)=x6+x3+1 is irreducible with periodl=9. By suitable labeling, the adjacent matrix of the state graph is equal the 7-th cyclotomic matrixA=(ai,j)7×7as in Example 1.

    In this case, ∑1={Z3,Z5,Z6}, that is, the cyclesZ3,Z5andZ6can be joined withZ0, and ∑2={Z1,Z2,Z4}, none of which can not be joined withZ0.

    For the state cycleZ1, consider the 1-th column of the matrixA, since there are only two elementsaj,1taking value 0, i.e.,a0,1=0 anda3,1=0. Thus there must exist state cycleZjsuch thataj,i=2, in facta5,1=2, andZ1can be joined withT5.

    For the state cycleZ2, we can find thata3,2=1 anda5,2=2, then the cycleZ2can be joined withZ3orZ5of the set ∑1.

    For the state cycleZ4, we can find thata3,4=2 anda6,4=1, then the cycleZ4can be joined withZ3orZ6of the set ∑1.

    All the cycles ofG(f) are joined into a full cycle.

    It seems difficult to calculate any one minor of the matrix defined by Eq.(12) to get the number of de Bruijn sequences generated by the cycle-join method. In the following, we list, in the following Table 1, some experimental data of the number of de Bruijn sequences for small dimensionn:

    Table 1 The number of de Bruijn sequences that can be generated

    国产精品久久久久久亚洲av鲁大| 女警被强在线播放| 1024香蕉在线观看| 欧美三级亚洲精品| 久久久久久久久中文| 色尼玛亚洲综合影院| 特大巨黑吊av在线直播| www国产在线视频色| 精品无人区乱码1区二区| 性色av乱码一区二区三区2| 日本 av在线| 又紧又爽又黄一区二区| 看免费av毛片| 亚洲免费av在线视频| 人成视频在线观看免费观看| 国产精品av视频在线免费观看| 999久久久精品免费观看国产| 一级毛片高清免费大全| 狂野欧美激情性xxxx| 中亚洲国语对白在线视频| 免费在线观看完整版高清| 97碰自拍视频| 久久久久国产精品人妻aⅴ院| 久久人妻av系列| 国产成人一区二区三区免费视频网站| 在线免费观看的www视频| 999久久久国产精品视频| 日韩欧美国产一区二区入口| 91字幕亚洲| 啦啦啦免费观看视频1| 午夜福利欧美成人| 日韩 欧美 亚洲 中文字幕| 全区人妻精品视频| 国产免费男女视频| 99国产精品99久久久久| 国产亚洲精品av在线| 亚洲av片天天在线观看| netflix在线观看网站| 真人做人爱边吃奶动态| 亚洲在线自拍视频| 亚洲av成人精品一区久久| 麻豆一二三区av精品| 国产熟女xx| 色老头精品视频在线观看| 精品高清国产在线一区| 日韩有码中文字幕| 淫秽高清视频在线观看| 国产精品日韩av在线免费观看| 九九热线精品视视频播放| 久久久久久国产a免费观看| 他把我摸到了高潮在线观看| 老司机靠b影院| 国内精品一区二区在线观看| 精品国产乱子伦一区二区三区| 亚洲第一欧美日韩一区二区三区| 日本a在线网址| 深夜精品福利| 日韩精品免费视频一区二区三区| 亚洲国产精品999在线| 村上凉子中文字幕在线| 日本 av在线| 搡老岳熟女国产| 91字幕亚洲| 成人特级黄色片久久久久久久| 国产成人精品久久二区二区免费| 国内精品久久久久精免费| 亚洲男人的天堂狠狠| 中文字幕最新亚洲高清| 成人一区二区视频在线观看| 一级毛片高清免费大全| 丁香六月欧美| 久久久国产成人精品二区| 午夜亚洲福利在线播放| 天堂√8在线中文| 天堂动漫精品| 亚洲无线在线观看| 国产亚洲欧美在线一区二区| 亚洲男人天堂网一区| 国产91精品成人一区二区三区| 欧美午夜高清在线| 女生性感内裤真人,穿戴方法视频| or卡值多少钱| 99在线人妻在线中文字幕| videosex国产| 国产一区二区在线av高清观看| 国产三级黄色录像| 搡老妇女老女人老熟妇| 床上黄色一级片| 99国产极品粉嫩在线观看| 亚洲人成网站在线播放欧美日韩| 日本黄色视频三级网站网址| 亚洲 国产 在线| 亚洲片人在线观看| 老熟妇仑乱视频hdxx| 国产精品久久久久久久电影 | 成年版毛片免费区| 韩国av一区二区三区四区| 国内精品久久久久精免费| 国产在线精品亚洲第一网站| 中文字幕最新亚洲高清| 99热这里只有是精品50| 久久久久国产精品人妻aⅴ院| 国产亚洲精品一区二区www| 看免费av毛片| 精品第一国产精品| 蜜桃久久精品国产亚洲av| 热99re8久久精品国产| 嫁个100分男人电影在线观看| 亚洲av熟女| 国产精品自产拍在线观看55亚洲| 免费高清视频大片| 久久中文看片网| 国产免费av片在线观看野外av| 在线视频色国产色| 亚洲av成人不卡在线观看播放网| 国产精品一区二区精品视频观看| 国产一级毛片七仙女欲春2| 国产av在哪里看| 日本 av在线| www.精华液| 久久久久国内视频| а√天堂www在线а√下载| 岛国在线免费视频观看| 桃红色精品国产亚洲av| 亚洲免费av在线视频| 中文字幕最新亚洲高清| 亚洲人成网站高清观看| 国产99久久九九免费精品| 特级一级黄色大片| 精品一区二区三区视频在线观看免费| 此物有八面人人有两片| 欧美在线黄色| 亚洲片人在线观看| 久久亚洲精品不卡| 少妇人妻一区二区三区视频| 美女免费视频网站| 国产真人三级小视频在线观看| 国产精品九九99| 国产一区二区激情短视频| www.999成人在线观看| 免费在线观看完整版高清| 1024香蕉在线观看| 他把我摸到了高潮在线观看| 久久99热这里只有精品18| 国产真人三级小视频在线观看| 国产成人系列免费观看| 无遮挡黄片免费观看| 色在线成人网| 国产精品影院久久| 亚洲精品在线观看二区| 日韩精品青青久久久久久| 999精品在线视频| 999久久久国产精品视频| 欧美+亚洲+日韩+国产| 男女下面进入的视频免费午夜| 精品乱码久久久久久99久播| 99国产综合亚洲精品| 久久天躁狠狠躁夜夜2o2o| 国产精华一区二区三区| 日本免费a在线| 九九热线精品视视频播放| 俄罗斯特黄特色一大片| 亚洲精华国产精华精| 无人区码免费观看不卡| 天堂影院成人在线观看| 国产精品亚洲美女久久久| 亚洲一区二区三区色噜噜| 亚洲精品在线观看二区| 少妇人妻一区二区三区视频| 美女免费视频网站| 宅男免费午夜| 国产黄a三级三级三级人| 两个人免费观看高清视频| www.999成人在线观看| 国产成人精品无人区| 国产精品久久久久久人妻精品电影| 一本一本综合久久| 久久久久久久精品吃奶| av超薄肉色丝袜交足视频| 免费在线观看成人毛片| 亚洲国产中文字幕在线视频| xxx96com| 天天一区二区日本电影三级| 每晚都被弄得嗷嗷叫到高潮| 99热只有精品国产| 叶爱在线成人免费视频播放| 18禁黄网站禁片午夜丰满| 精品第一国产精品| 国产伦在线观看视频一区| 香蕉久久夜色| 女人爽到高潮嗷嗷叫在线视频| 熟女电影av网| 美女大奶头视频| 国产精品九九99| 欧美成狂野欧美在线观看| 1024手机看黄色片| 国内精品久久久久久久电影| 成人国语在线视频| 亚洲avbb在线观看| 淫妇啪啪啪对白视频| 韩国av一区二区三区四区| 国产黄片美女视频| 身体一侧抽搐| 99国产极品粉嫩在线观看| 久久精品国产清高在天天线| 欧美日韩中文字幕国产精品一区二区三区| 青草久久国产| 欧美色欧美亚洲另类二区| 又爽又黄无遮挡网站| 日韩欧美在线二视频| 精品久久久久久久久久免费视频| 天堂av国产一区二区熟女人妻 | 日韩欧美在线乱码| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av电影不卡..在线观看| 中文在线观看免费www的网站 | avwww免费| 黄片小视频在线播放| 久久久精品欧美日韩精品| 黄频高清免费视频| 日本一二三区视频观看| 婷婷丁香在线五月| 国产午夜精品论理片| 国产亚洲精品第一综合不卡| 国产精品久久久av美女十八| 欧美黄色片欧美黄色片| 欧美在线一区亚洲| 成人国语在线视频| netflix在线观看网站| 国产精品综合久久久久久久免费| 香蕉av资源在线| 精品久久久久久久毛片微露脸| 十八禁人妻一区二区| 精品久久久久久成人av| 亚洲午夜精品一区,二区,三区| 婷婷精品国产亚洲av在线| 国产精品日韩av在线免费观看| 这个男人来自地球电影免费观看| 久久久精品国产亚洲av高清涩受| 精品久久久久久成人av| 国产精品电影一区二区三区| 亚洲欧美日韩东京热| 久久久国产欧美日韩av| 国产精品自产拍在线观看55亚洲| 久久午夜亚洲精品久久| 国产69精品久久久久777片 | 久久香蕉激情| 亚洲欧美精品综合久久99| 男女那种视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美精品综合一区二区三区| 成人av一区二区三区在线看| 日韩欧美精品v在线| 亚洲男人天堂网一区| 亚洲av第一区精品v没综合| 亚洲五月婷婷丁香| 国产精品亚洲av一区麻豆| 黑人操中国人逼视频| 一区二区三区高清视频在线| 宅男免费午夜| 久久性视频一级片| 正在播放国产对白刺激| 欧美日韩国产亚洲二区| 精品国产亚洲在线| 国产真人三级小视频在线观看| 日韩欧美免费精品| 亚洲一区高清亚洲精品| 精品午夜福利视频在线观看一区| 99热这里只有精品一区 | 中文字幕精品亚洲无线码一区| 免费在线观看日本一区| 老司机在亚洲福利影院| 午夜影院日韩av| 亚洲国产欧洲综合997久久,| 久久亚洲真实| 在线观看免费午夜福利视频| 精品第一国产精品| 国产av麻豆久久久久久久| 欧美日韩精品网址| 久久人人精品亚洲av| 亚洲美女视频黄频| 日本一二三区视频观看| 级片在线观看| 国产精品国产高清国产av| 国产亚洲精品第一综合不卡| 日韩欧美免费精品| 特大巨黑吊av在线直播| 麻豆一二三区av精品| 久久香蕉精品热| 99re在线观看精品视频| 一夜夜www| 午夜福利成人在线免费观看| 国产精品98久久久久久宅男小说| 啦啦啦免费观看视频1| 制服丝袜大香蕉在线| 久久精品91无色码中文字幕| 97超级碰碰碰精品色视频在线观看| 国产激情偷乱视频一区二区| 亚洲精品在线观看二区| 黄色视频不卡| 可以在线观看的亚洲视频| 婷婷丁香在线五月| 最近最新中文字幕大全电影3| 激情在线观看视频在线高清| 欧美+亚洲+日韩+国产| 一二三四社区在线视频社区8| 丝袜人妻中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 日韩国内少妇激情av| 午夜免费成人在线视频| 国产精品九九99| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美在线二视频| 成年版毛片免费区| 中文字幕人妻丝袜一区二区| 欧美人与性动交α欧美精品济南到| 国产人伦9x9x在线观看| 欧美激情久久久久久爽电影| 97碰自拍视频| 哪里可以看免费的av片| 99riav亚洲国产免费| 亚洲国产精品久久男人天堂| 国产精品野战在线观看| 欧美激情久久久久久爽电影| 美女大奶头视频| 黄色视频,在线免费观看| 很黄的视频免费| 日日爽夜夜爽网站| 麻豆久久精品国产亚洲av| 亚洲,欧美精品.| 1024手机看黄色片| netflix在线观看网站| 精品人妻1区二区| 国产亚洲精品久久久久5区| 久久久久精品国产欧美久久久| 我的老师免费观看完整版| 免费电影在线观看免费观看| 在线观看午夜福利视频| 成人三级做爰电影| 亚洲av五月六月丁香网| 男人舔女人下体高潮全视频| 亚洲精品久久国产高清桃花| 国产99久久九九免费精品| 久久久久久国产a免费观看| 欧美zozozo另类| 欧美中文日本在线观看视频| 国产伦在线观看视频一区| av国产免费在线观看| 俺也久久电影网| 国产精品野战在线观看| 亚洲成人中文字幕在线播放| 两个人视频免费观看高清| 欧美黄色淫秽网站| 黑人操中国人逼视频| 久久精品人妻少妇| 国产成年人精品一区二区| 色精品久久人妻99蜜桃| 国产激情久久老熟女| 又黄又爽又免费观看的视频| 欧美av亚洲av综合av国产av| 舔av片在线| 亚洲欧美激情综合另类| 中文字幕高清在线视频| 大型黄色视频在线免费观看| 国产精品九九99| 欧美日韩一级在线毛片| 精品国内亚洲2022精品成人| 国产99白浆流出| 1024香蕉在线观看| 欧美成狂野欧美在线观看| 日本一本二区三区精品| 久久精品91蜜桃| 成在线人永久免费视频| 中出人妻视频一区二区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品色激情综合| 亚洲欧美日韩高清专用| 夜夜躁狠狠躁天天躁| 国产午夜福利久久久久久| 亚洲av成人av| 精品欧美国产一区二区三| 黑人操中国人逼视频| 午夜免费成人在线视频| 亚洲五月天丁香| 看片在线看免费视频| 国产三级中文精品| 亚洲av日韩精品久久久久久密| 在线观看日韩欧美| 在线观看舔阴道视频| 一级a爱片免费观看的视频| 国产成人精品无人区| 国产在线精品亚洲第一网站| 男人舔奶头视频| 国产精品久久久久久人妻精品电影| 亚洲在线自拍视频| 日韩成人在线观看一区二区三区| 久久精品91无色码中文字幕| 99热这里只有是精品50| 国产爱豆传媒在线观看 | 伦理电影免费视频| 嫩草影视91久久| 久久精品国产亚洲av高清一级| 九色国产91popny在线| 国产成人系列免费观看| 香蕉国产在线看| 无限看片的www在线观看| 久久精品国产亚洲av香蕉五月| 午夜免费激情av| 成人一区二区视频在线观看| 国产一区在线观看成人免费| 欧美成狂野欧美在线观看| 超碰成人久久| 九色成人免费人妻av| 国产激情久久老熟女| 日韩精品青青久久久久久| 99国产精品一区二区蜜桃av| 国产又黄又爽又无遮挡在线| 国产三级中文精品| 欧美日韩亚洲综合一区二区三区_| 亚洲avbb在线观看| 一区二区三区激情视频| 一个人免费在线观看的高清视频| 日韩欧美在线二视频| 男人舔奶头视频| 亚洲欧美一区二区三区黑人| 亚洲国产中文字幕在线视频| 免费在线观看视频国产中文字幕亚洲| 国产亚洲精品第一综合不卡| 69av精品久久久久久| 久久国产精品人妻蜜桃| 伊人久久大香线蕉亚洲五| 午夜亚洲福利在线播放| 伦理电影免费视频| 国内少妇人妻偷人精品xxx网站 | 岛国视频午夜一区免费看| 操出白浆在线播放| 国产99久久九九免费精品| 日韩精品免费视频一区二区三区| 久久久久国内视频| 黄色毛片三级朝国网站| 亚洲精品在线观看二区| 99国产精品一区二区蜜桃av| 成人18禁高潮啪啪吃奶动态图| 久久久久久九九精品二区国产 | 午夜精品一区二区三区免费看| www.自偷自拍.com| 国产成人精品久久二区二区91| 黑人欧美特级aaaaaa片| 亚洲乱码一区二区免费版| 1024视频免费在线观看| 麻豆一二三区av精品| 他把我摸到了高潮在线观看| 欧美黄色淫秽网站| 看黄色毛片网站| 国产精品亚洲一级av第二区| 久久精品影院6| 色综合欧美亚洲国产小说| 精品一区二区三区视频在线观看免费| 免费观看人在逋| 精品国内亚洲2022精品成人| 在线永久观看黄色视频| 久久精品国产99精品国产亚洲性色| 精品国产超薄肉色丝袜足j| 免费看美女性在线毛片视频| 观看免费一级毛片| 日韩欧美国产一区二区入口| 亚洲国产精品成人综合色| 日韩大尺度精品在线看网址| www日本黄色视频网| 在线观看日韩欧美| 久久精品91蜜桃| 99久久无色码亚洲精品果冻| 久久 成人 亚洲| 婷婷六月久久综合丁香| 国产野战对白在线观看| 日韩大码丰满熟妇| 国产亚洲精品综合一区在线观看 | 亚洲欧美日韩高清专用| 无限看片的www在线观看| 99热只有精品国产| 国产精品亚洲av一区麻豆| 亚洲成人免费电影在线观看| 成在线人永久免费视频| 日韩欧美国产在线观看| 欧美+亚洲+日韩+国产| 最近最新中文字幕大全免费视频| 久久国产精品人妻蜜桃| 村上凉子中文字幕在线| 国产精华一区二区三区| 熟妇人妻久久中文字幕3abv| 美女高潮喷水抽搐中文字幕| 久久久国产成人精品二区| 精品一区二区三区视频在线观看免费| 免费看美女性在线毛片视频| 久久热在线av| 在线视频色国产色| 欧美成狂野欧美在线观看| 国产伦一二天堂av在线观看| 88av欧美| 欧美国产日韩亚洲一区| 最好的美女福利视频网| 精品欧美国产一区二区三| 国产精品98久久久久久宅男小说| 我要搜黄色片| 看黄色毛片网站| 琪琪午夜伦伦电影理论片6080| 亚洲欧美日韩高清在线视频| 国产精品,欧美在线| www.精华液| 久久这里只有精品中国| 国产成人欧美在线观看| 身体一侧抽搐| 亚洲国产欧美一区二区综合| 国产成人精品久久二区二区免费| 香蕉av资源在线| 欧美中文综合在线视频| 日韩成人在线观看一区二区三区| 国产成人av教育| 国产高清视频在线播放一区| 国产精华一区二区三区| 一二三四在线观看免费中文在| 人成视频在线观看免费观看| 久久久久免费精品人妻一区二区| 老汉色av国产亚洲站长工具| 久久午夜综合久久蜜桃| 日韩 欧美 亚洲 中文字幕| 亚洲成a人片在线一区二区| 日本免费一区二区三区高清不卡| 桃红色精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 岛国在线免费视频观看| 国产精品亚洲美女久久久| 天天添夜夜摸| 午夜日韩欧美国产| 欧美日韩中文字幕国产精品一区二区三区| 看免费av毛片| 国产av不卡久久| 亚洲av成人精品一区久久| 亚洲精品美女久久久久99蜜臀| 中文字幕久久专区| 久久久久久国产a免费观看| 国产高清videossex| 91麻豆精品激情在线观看国产| 亚洲av电影不卡..在线观看| 又粗又爽又猛毛片免费看| 一级作爱视频免费观看| 日本黄色视频三级网站网址| 精品久久久久久久末码| 国产黄片美女视频| 1024视频免费在线观看| 久久国产精品影院| 亚洲国产精品成人综合色| 日本熟妇午夜| 欧美日韩乱码在线| 国产伦在线观看视频一区| 性色av乱码一区二区三区2| 亚洲自偷自拍图片 自拍| 午夜亚洲福利在线播放| 日韩国内少妇激情av| 欧美成人性av电影在线观看| 一本综合久久免费| 51午夜福利影视在线观看| 黑人操中国人逼视频| 国产精品精品国产色婷婷| 日韩欧美在线乱码| 久久香蕉国产精品| 免费观看精品视频网站| 日韩三级视频一区二区三区| 成人一区二区视频在线观看| 九九热线精品视视频播放| 女人爽到高潮嗷嗷叫在线视频| 国产精品精品国产色婷婷| 香蕉久久夜色| 日本a在线网址| 精品福利观看| 母亲3免费完整高清在线观看| 色老头精品视频在线观看| 久久久国产精品麻豆| 99国产精品99久久久久| 欧美日韩中文字幕国产精品一区二区三区| 精品国产乱子伦一区二区三区| 88av欧美| 免费在线观看日本一区| 老汉色av国产亚洲站长工具| 中出人妻视频一区二区| 一进一出抽搐gif免费好疼| 久久午夜亚洲精品久久| 999精品在线视频| 国产真实乱freesex| 老汉色∧v一级毛片| 欧美在线一区亚洲| 天堂av国产一区二区熟女人妻 | 午夜免费观看网址| 特大巨黑吊av在线直播| 国产主播在线观看一区二区| 91大片在线观看| 亚洲精品美女久久久久99蜜臀| 最近最新中文字幕大全电影3| 久久天堂一区二区三区四区| 国产精品永久免费网站| 精品国产美女av久久久久小说| 久久伊人香网站| 丰满的人妻完整版| 久久午夜综合久久蜜桃| 在线免费观看的www视频| 男女那种视频在线观看| 五月玫瑰六月丁香| 免费在线观看日本一区| 床上黄色一级片| 精品久久久久久久人妻蜜臀av| 亚洲精品粉嫩美女一区| 麻豆一二三区av精品| 精品久久久久久久毛片微露脸| 亚洲国产日韩欧美精品在线观看 | 中文字幕久久专区|