• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on single image super-resolution based on very deep super-resolution convolutional neural network

    2022-09-19 06:50:30HUANGZhangyu

    HUANG Zhangyu

    (Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham B152TT, United Kingdom)

    Abstract: Single image super-resolution (SISR) is a fundamentally challenging problem because a low-resolution (LR) image can correspond to a set of high-resolution (HR) images, while most are not expected. Recently, SISR can be achieved by a deep learning-based method. By constructing a very deep super-resolution convolutional neural network (VDSRCNN), the LR images can be improved to HR images. This study mainly achieves two objectives: image super-resolution (ISR) and deblurring the image from VDSRCNN. Firstly, by analyzing ISR, we modify different training parameters to test the performance of VDSRCNN. Secondly, we add the motion blurred images to the training set to optimize the performance of VDSRCNN. Finally, we use image quality indexes to evaluate the difference between the images from classical methods and VDSRCNN. The results indicate that the VDSRCNN performs better in generating HR images from LR images using the optimized VDSRCNN in a proper method.

    Key words: single image super-resolution (SISR); very deep super-resolution convolutional neural network (VDSRCNN); motion blurred image; image quality index

    0 Introduction

    Image super-resolution (ISR) is a process which can create a high-resolution (HR) image from a low-resolution (LR) image.HR means that pixel density within an image is high, therefore, an HR image can offer details that may be critical in various applications[1]. For ISR, the main method is super-resolution image reconstruction (SRIR). The learning-based method, one of the SRIR methods, is used in our work. Learning-based methods mainly depend on the missing high-frequency information of LR images. This information can be assumed by learning from a training set of LR or HR images[2]. Very deep super-resolution (VDSR) is a learning-based method based on deep learning. In several visual recognition tasks, convolutional neural network(CNN) has demonstrated recognition accuracy better than or comparable to human beings[3]. Single image super-resolution (SISR) is a fundamentally challenging problem because an LR image can correspond to a set of HR images, while most are not expected. Recently, SISR can be achieved by a deep learning-based method. By constructing very deep super-resolution convolutional neural network (VDSRCNN), the LR images can be improved to HR images. Kim et al. considered that training a very deep CNN was difficult because of slow convergence rate. However, the residual-learning and extremely high learning rates can solve this problem[4-5]. Rampal et al. proposed VDSRCNN based on residual learning, which means the network can learn to estimate the residual image.

    In recent years,the CNN has been extensively popular owing to its success in image classification, as stated by He et al.[6]. A CNN-based SISR starts from super-resolution convolution neural network (SRCNN) proposed by Dong et al. firstly[7]. Then Lee et al. analyzed SRCNN including three convolution layers and generating super-resolution images with a higher image quality index than past SISR[8]. The three layers are composed of a image input layer, several convolutional and rectified linear unit (ReLU) layers, and a regression layer instead of an ReLU layer. VDSRCNN is based on SRCNN. Kim et al. considered that VDSRCNN with 20 convolutional layers is deeper than SRCNN with three layers[9]. Besides, Lee et al. pointed out that VDSR was extremely hard to implement in hardware with a reasonable cost. Hence, it might be effectively achieved in software-based optimization[8], in which three interpolation algorithms were often employed: bilinear interpolation, bicubic interpolation and nearest neighbour interpolation. In three classical interpolations, although the bicubic interpolation has the lowest operational speed, it can ensure the best performance in the result.

    The main objectives of this study include constructing a VDSRCNN using Matlab and modifying the different parameters of VDSRCNN training options to test the performance of VDSRCNN. The former is achieved by observing the image quality index of test images to acquire the validity of VDSRCNN. The latter is achieved by adding motion blurs to the test images and then reconstructing the HR image of the motion blurred image. In the same way, we can judge the performance of the motion blurred image optimized by VDSRCNN.

    1 Image super-resolution

    1.1 Structure of VDSRCNN

    Training a very deep CNN is difficult because of its slow convergence rate. VDSRCNN is based on residual learning, which means the network can learn to estimate the residual image. A residual image is a difference between an HR image and an LR image, which is up-scaled to match the reference image size[4-5]. In this case, a residual image includes the high-frequency information of the test image.

    SRCNN has included three convolution layers and can generate super-resolution images with a higher image quality index than past SISR[6-8]. The three layers are a image input layer, several convolutional and ReLU layers, and a regression layer instead of an ReLU layer. The difference between SRCNN and VDSRCNN is that SRCNN has three layers while VDSRCNN has 20 convolutional layers, which means the latter is deeper[9]. The structure of VDSRCNN is shown in Fig.1.

    Fig.1 Structure of VDSRCNN

    In Fig.1, circles represent image batches,Frepresents the input layer, andLrepresents the output layer. Layer 1 is the image input layer, layers 2-18 are the convolution and ReLU layers, layer 19 is the computation layer, and layer 20 is the regression layer. Except for input/output layers, the size of each layer is 41×41.

    The middle layer contains 18 convolutional and ReLU layers. Each convolutional layer includes 64 filters with 3×3 size. In this study, the mini-batch size is specified as 64, thus there are 64 filters. To keep the same size between the feature maps and the input which is passed each convolution, we specify the ‘pad’ of the layer to ‘0’. To Ensure the asymmetry of deep learning, He-initializer is used. The middle 17 layers aim to reconstruct images with a single filter of 3×3 size. The final layer is a regression layer. Its function is to evaluate the mean square error between the residual images and the prediction of the network.

    1.2 Image quality index

    After obtaining HR images from VDSRCNN, some methods can be used to detect the quality of image reconstruction. Those methods can be divided into objective and subjective methods. The subjective methods depend on human judgement, such as visual sense. The objective methods are based on the accuracy of values[10-11]. The commonly-used objective methods are peak signal to noise ratio (PSNR), structural similarity index (SSIM), and natural image quality evaluations. The research shows that the PSNR value approaches infinity as the mean square error (MSE) approaches zero, which means that a higher PSNR value provides a higher image quality[12]. PSNR is calculated by

    (1)

    wherePSNRis defined as the logarithm ofMSEbetween the original image and pre-processed image relative to (2n-1)2,nis the number of bits of each sampling value. For two images (x,y), the SSIM can be derived by[13]

    (2)

    1.3 Motion blur

    Motion blur is a phenomenon generated by a camera that moves faster than its exposure time. In real life, motion blur can be observed when someone looks out of the window of a car which moves at a breakneck speed.

    It also appears on camera shaking. Bora et al. pointed out that adding motion blur to an image depends on the perception of the person creating the forgery[14]. Hence, the motion blur of this study is not a natural phenomenon generated by camera shaking or some other reasons. To obtain the restoration image from a motion blurred image, the blur direction and the motion-blurred image are the essential key points[15]. To generate a deblurred test image, the blur direction and the blurred image should be in a new training set of the VDSRCNN.

    2 SISR in VDSRCNN

    2.1 Preparation of training data

    VDSRCNN can learn the mapping between LR and HR images.Therefore, it is essential to create a training data set. The training data set comprises up-sampled images and the corresponding residual images[16-18]. Considering the performance of graphics processing unit (GPU), the training data set includes 344 images. The function will do these steps:

    1) Convert the training set images to the ones in YCbCr colour space.

    2) Decrease the luminance channelYby different scale factors to generate LR images and restore the processed images to their original size using bicubic interpolation.

    3) Calculate the difference between the two images. One of the up-sampled images in the training set is shown in Fig.2, and the corresponding residual image is shown in Fig.3.

    Fig.2 One of up-sampled images in training set

    Fig.3 Corresponding residual image of Fig.2

    In this case, the input of VDSRCNN can be obtained. However, the number of input images is not enough. In order to make it easier to increasethe number of input images of VDSRCNN, we specify random rotation by 90 degrees and random reflections on the x-axis. Thus, the random patch extraction datastore meets the requirement that it can extract a large set of small image patches[19]. The result from the datastore can provide a mini-batch size of data of VDSRCNN at every iteration of the epoch.

    2.2 Construction of VDSRCNN

    After creating the input images of VDSRCNN, the next step is to build the three layers of VDSRCNN. The image input layer is operated on image patches for layer 1. The image patches are based on VDSRCNN receptive fields. Besides, the ideal situation is that the size of receptive fields is the same as that of the image patches. Hence, all high-frequency features can be observed in the receptive field. However, convolutional layernhas a receptive field of (2n+1)×(2n+1). In VDSRCNN, there are 20 convolutional layers, so the receptive field size is 41×41. Besides, the image batch size is also 41×41. Because VDSR training just uses a luminance channel, the image input layer allows the channel. The signal processing of VDSRCNN is shown in Fig.4.

    As shown in Fig.4,Xrepresents the image data,Amrepresents the mapping layer + the enhancement layer,Wmis the weight matrix corresponding to the linear transformation, andYrepresents the output image classification result. For example, supposing that we provide the input image dataXand use the functionXWi. The mapping featureziof groupiis generated by functionXWimapping, whereWiis a random weight coefficient with appropriate dimensions. The given markZi≡[z1,…,zi] represents all mapping features of the firstigroup. Similarly, we record the enhancement nodeξ([z1,z2,…,zn]Whj+βhj) in groupjashj, and all the enhancement nodes in groupjare recorded asHj≡[h1,…,hj]. According to the complexity of modeling tasks, differentiandjcan be selected.

    Fig.4 Signal processing of VDSRCNN

    Firstly, the feature values of moving images are extracted through the constructed CNN. Then, the feature values are sent to the feature layer of VDSRCNN. Finally, the classification results are obtained in the output layer through the hidden layer.

    2.3 Generation of HR test images from VDSRCNN

    The stage after constructing VDSRCNN is to generate HR test images. Here, we take Matlab database ‘sherlock.jpg’ as an example. The high-frequency feature is lost when the image is resized with a scale factor of 0.25. Fig.5 shows the LR image with a scale factor of 0.25. Fig.6 is the classical HR images by using bicubic interpolation.

    Fig.5 LR image (scale factor=0.25, sherlock)

    Fig.6 HR image by using bicubic interpolation (sherlock)

    The VDSRCNN only uses the luminance channel. In term of human perception, the brightness change is more evident than the change of colour. The residual image from VDSRCNN is shown in Fig.7.

    Fig.7 Residual image by using VDSRCNN (sherlock)

    By adding the residual image and the luminance element, we obtain the HR image. Then the HR image in YCbCr color space is converted to that in RGB colour space, and the final HR image is obtained, as shown in Fig.8.

    Fig.8 HR image from VDSRCNN (sherlock)

    2.4 Usage of image quality indexes to test the performance of images

    Though the two HR images from bicubic interpolation (BI) and VDSRCNN are obtained, it is also hard to observe which image shows better performance from human eyes. Hence, using an image quality index to distinguish which is better is a suitable method. Table 1 shows the difference between the images using BI and VDSRCNN in one training result, respectively.

    Table Difference in image quality index between BI and VDSRCNN

    In Table 1, NIQE is naturalness image quality evaluator. It can be seen that for PSNR, the more significant the number, the better the performance; for SSIM, the more significant the number, the better the performance; and for NIQE, the smaller the number, the better the performance.

    2.5 Modification of different parameters to test the performance of VDSRCNN

    In order to ensure the value of the image quality index is not accidental, five-time trainings in each different parameter of training options are completed. Different training parameters are used to distinguish the image quality. Table 2 shows the image quality indexes in different training parameters. The learning drop factor and the init-learning rate are adjusted to obtain different image performances. Different image quality indexes is listed in Section 4.

    Table 2 Three image quality indexes in different training parameters

    3 Image restoration from motion blur in VDSRCNN

    3.1 Modification of training data by adding motion blur

    The first parameter that should be modified is the training set. In the original training set, all images are not added motion blur. Because the number of images in the original training set is 344, the motion blurred images should be more than 1/2. Hence, 200 motion blurred images instead of the same images in the original training set are added. In order to make it simplified, the motion blur will be created in the horizontal direction.

    Figs.9 and 10 show one of the motion-blurred images and original images in the new training set, respectively.

    Fig.9 One of original training images

    Fig.10 One of original training images with motion blur

    3.2 Usage of image quality index to test the performance of deblurred image

    As the same structure as the VDSRCNN, the CNN structure for motion blurred images is not changed. The only changed element is the training set with 200 motion blurred images. The parameters of training options are set to the same as those to the best performance of VDSRCNN with the init-learning rate of 0.1 and the learning drop factor of 0.01.

    After constructing the CNN for motion blurred images, we also use the image quality index to test the performance of the deblurred image. The difference between the motion-blurred image and the deblurred image by using CNN is shown in Fig.11.

    Fig.11 Difference between motion blurred image and deblurred image from new VDSRCNN

    Though it is hard to distinguish whether the deblurred image would be better or not, the image quality index can also test the performance.

    4 Result and discussion

    4.1 Result of ISR

    From the experiment above, it can be seen that the performance of VDSR is better. The reason is that compared with the classical method of bicubic interpolation, those three image quality indexes show that an image using VDSRCNN has an enormous value except for that of NIQE because for NIQE, the smaller the value, the better the image quality.

    In order to know which train parameter makes the performance of VDSRCNN best, the average of PSNR is shown in Table 3, and the variance is shown in Table 4.For PSNR, when the initial-learning rate is equal to 0.1 and the learning drop factor is equal to 0.01, VDSR has the best performance while the variance of PSNR is not the smallest. In other words, the performance of this VDSRCNN might be worse than that of VDSRCNN in other training parameters. Therefore, it can be sure that when the initial-learning rate is equal to 0.1 and the learning drop factor is equal to 0.01, VDSRCNN can show the best performance.

    Table 3 Average of PSNR

    Table 4 Variance of PSNR

    4.2 Result of motion blurred image using VDSRCNN

    In the new VDSRCNN, its training parameters are applied based on the above results, with the initial-learning rate of 0.1 and the learning drop factor of 0.01. The results are shown in Table 5.

    Table 5 Result of deblurred image in three image quality indexes

    It is obvious that the deblurred image using the new VDSRCNN has a better image quality than the classical method. Finally, the results prove the availability of the new VDSRCNN.

    5 Conclusions

    This study is devoted to implementing HR images from a motion blurred image by constructing VDSRCNN and modifying the training parameters for the best performance of VDSRCNN. We obtain the best training parameters of VDSRCNN and prove the availability of VDSRCNN successfully. Besides, adding motion blur to the training set also achieves a new VDSRCNN, which includes a motion blurred training set and can deblur the image with motion blur. If changing the structure of VDSRCNN in a proper method, the VDSRCNN might show better performance in generating HR images from LR images.

    亚洲天堂av无毛| 777米奇影视久久| 亚洲欧洲精品一区二区精品久久久| 可以免费在线观看a视频的电影网站| 色精品久久人妻99蜜桃| 国产老妇伦熟女老妇高清| 午夜激情久久久久久久| 一区二区av电影网| 你懂的网址亚洲精品在线观看| 大香蕉久久网| 手机成人av网站| 丁香六月欧美| 中文字幕色久视频| 日本wwww免费看| 麻豆av在线久日| 国产亚洲精品久久久久5区| www.av在线官网国产| 亚洲av美国av| av欧美777| 久久精品熟女亚洲av麻豆精品| 在线观看人妻少妇| 精品国产超薄肉色丝袜足j| 久久久久网色| 免费在线观看视频国产中文字幕亚洲 | 人人澡人人妻人| 日本猛色少妇xxxxx猛交久久| 各种免费的搞黄视频| 国产一区二区三区av在线| 又大又爽又粗| 免费女性裸体啪啪无遮挡网站| 纯流量卡能插随身wifi吗| 后天国语完整版免费观看| 日韩欧美一区视频在线观看| av线在线观看网站| 精品亚洲成a人片在线观看| 每晚都被弄得嗷嗷叫到高潮| 日韩中文字幕欧美一区二区 | 另类精品久久| 丝袜美足系列| 中文字幕色久视频| 老司机午夜十八禁免费视频| 欧美亚洲 丝袜 人妻 在线| 欧美在线一区亚洲| 亚洲av日韩在线播放| 国产熟女欧美一区二区| 国产精品.久久久| 在线观看人妻少妇| 国产在线观看jvid| 美女中出高潮动态图| 欧美在线黄色| 一边摸一边抽搐一进一出视频| 另类精品久久| 亚洲欧美色中文字幕在线| 欧美激情高清一区二区三区| 国产国语露脸激情在线看| 国产精品三级大全| 老司机影院成人| 亚洲专区中文字幕在线| 欧美老熟妇乱子伦牲交| 午夜福利免费观看在线| 久久精品国产亚洲av高清一级| 国产欧美日韩综合在线一区二区| 国产一区二区 视频在线| 韩国精品一区二区三区| 午夜精品国产一区二区电影| 久久亚洲国产成人精品v| 国产亚洲欧美在线一区二区| 操出白浆在线播放| 国产精品一区二区在线不卡| 中文字幕亚洲精品专区| 国产日韩欧美在线精品| 成人午夜精彩视频在线观看| 午夜福利免费观看在线| 国产女主播在线喷水免费视频网站| 久久久久久亚洲精品国产蜜桃av| 久久精品国产综合久久久| 欧美亚洲日本最大视频资源| 国产在线视频一区二区| 日本vs欧美在线观看视频| 夫妻午夜视频| 五月天丁香电影| 日韩制服丝袜自拍偷拍| 在线精品无人区一区二区三| 中文欧美无线码| 一级片'在线观看视频| 中文字幕高清在线视频| 久久久久久久国产电影| 午夜福利一区二区在线看| 色精品久久人妻99蜜桃| 国产精品三级大全| 黄色视频在线播放观看不卡| 美女中出高潮动态图| 夫妻性生交免费视频一级片| 亚洲人成电影免费在线| 久久久久久久精品精品| 无遮挡黄片免费观看| 啦啦啦 在线观看视频| 亚洲人成电影观看| 18禁裸乳无遮挡动漫免费视频| 国产av国产精品国产| 激情视频va一区二区三区| av欧美777| 黄频高清免费视频| 国产成人av教育| 99久久综合免费| 婷婷成人精品国产| 精品人妻熟女毛片av久久网站| 一级片免费观看大全| 亚洲成国产人片在线观看| 真人做人爱边吃奶动态| 晚上一个人看的免费电影| 亚洲成人国产一区在线观看 | 一区二区三区四区激情视频| 不卡av一区二区三区| 热re99久久精品国产66热6| 欧美激情 高清一区二区三区| 亚洲av日韩在线播放| 亚洲免费av在线视频| 真人做人爱边吃奶动态| 99久久人妻综合| 捣出白浆h1v1| 99热国产这里只有精品6| 久久国产精品人妻蜜桃| 亚洲欧美激情在线| 日韩熟女老妇一区二区性免费视频| 国产精品一国产av| 成人影院久久| 亚洲熟女毛片儿| 80岁老熟妇乱子伦牲交| 最近最新中文字幕大全免费视频 | 啦啦啦啦在线视频资源| 一本一本久久a久久精品综合妖精| 日韩av不卡免费在线播放| 一级片'在线观看视频| netflix在线观看网站| 天天躁夜夜躁狠狠躁躁| 成年人免费黄色播放视频| 日韩大码丰满熟妇| 国产一区二区 视频在线| 美女国产高潮福利片在线看| videos熟女内射| 蜜桃在线观看..| 叶爱在线成人免费视频播放| 各种免费的搞黄视频| 又黄又粗又硬又大视频| 国产又爽黄色视频| 久久久亚洲精品成人影院| 爱豆传媒免费全集在线观看| 99九九在线精品视频| 中文字幕制服av| 宅男免费午夜| 国产精品成人在线| 国产成人av激情在线播放| 黄网站色视频无遮挡免费观看| kizo精华| 国产精品成人在线| 黄色a级毛片大全视频| 亚洲中文字幕日韩| 啦啦啦 在线观看视频| 国产免费福利视频在线观看| 一级片'在线观看视频| 夜夜骑夜夜射夜夜干| 涩涩av久久男人的天堂| 美女脱内裤让男人舔精品视频| 性少妇av在线| 亚洲精品国产av成人精品| 国产日韩欧美亚洲二区| 夫妻性生交免费视频一级片| 中文精品一卡2卡3卡4更新| 一区二区三区乱码不卡18| 搡老岳熟女国产| 精品免费久久久久久久清纯 | 欧美精品啪啪一区二区三区 | 777久久人妻少妇嫩草av网站| 国产高清视频在线播放一区 | 精品少妇黑人巨大在线播放| 欧美精品一区二区免费开放| 成人影院久久| 伊人久久大香线蕉亚洲五| 国产精品.久久久| 国产极品粉嫩免费观看在线| 啦啦啦视频在线资源免费观看| 久久久久久人人人人人| 19禁男女啪啪无遮挡网站| 欧美日韩一级在线毛片| 一级毛片我不卡| av国产精品久久久久影院| 91成人精品电影| 大话2 男鬼变身卡| 99热网站在线观看| 午夜激情av网站| 久久国产精品男人的天堂亚洲| 国产精品九九99| 日本wwww免费看| 天天躁日日躁夜夜躁夜夜| 亚洲少妇的诱惑av| 精品福利永久在线观看| 免费av中文字幕在线| 亚洲专区国产一区二区| 啦啦啦 在线观看视频| 亚洲欧美成人综合另类久久久| 免费一级毛片在线播放高清视频 | 9色porny在线观看| 蜜桃国产av成人99| 一二三四社区在线视频社区8| 男人操女人黄网站| 精品卡一卡二卡四卡免费| 久久久久久人人人人人| 国产精品麻豆人妻色哟哟久久| 国产精品久久久人人做人人爽| 成人亚洲欧美一区二区av| 人成视频在线观看免费观看| 欧美激情高清一区二区三区| 日韩熟女老妇一区二区性免费视频| a级毛片在线看网站| av片东京热男人的天堂| 青青草视频在线视频观看| 国产片特级美女逼逼视频| 三上悠亚av全集在线观看| 久久久精品免费免费高清| 欧美日韩综合久久久久久| 欧美日韩亚洲综合一区二区三区_| 精品免费久久久久久久清纯 | 香蕉丝袜av| 69精品国产乱码久久久| 国产精品亚洲av一区麻豆| 国产日韩一区二区三区精品不卡| 一级毛片电影观看| 亚洲成人手机| 欧美+亚洲+日韩+国产| 90打野战视频偷拍视频| 国产欧美日韩综合在线一区二区| 久久久久久久久免费视频了| 免费在线观看日本一区| 欧美乱码精品一区二区三区| 亚洲欧美日韩另类电影网站| 日本五十路高清| 十八禁网站网址无遮挡| 亚洲av欧美aⅴ国产| 亚洲伊人久久精品综合| 中国国产av一级| 97精品久久久久久久久久精品| 欧美激情 高清一区二区三区| 欧美日韩福利视频一区二区| 99国产精品一区二区三区| 赤兔流量卡办理| 亚洲美女黄色视频免费看| 久久久久久久精品精品| 一个人免费看片子| 叶爱在线成人免费视频播放| 搡老乐熟女国产| 日韩一区二区三区影片| 亚洲,欧美,日韩| 国产成人av教育| 一区二区三区激情视频| 电影成人av| 精品久久久精品久久久| 亚洲精品美女久久久久99蜜臀 | 亚洲欧美清纯卡通| 欧美av亚洲av综合av国产av| 制服诱惑二区| 91精品伊人久久大香线蕉| 免费黄频网站在线观看国产| 91国产中文字幕| 男男h啪啪无遮挡| tube8黄色片| 中国美女看黄片| 国产高清videossex| 丁香六月天网| 嫁个100分男人电影在线观看 | 欧美精品高潮呻吟av久久| 考比视频在线观看| 欧美人与性动交α欧美精品济南到| 天天躁日日躁夜夜躁夜夜| 久久精品aⅴ一区二区三区四区| 1024视频免费在线观看| 国产一区二区 视频在线| 韩国精品一区二区三区| 亚洲av国产av综合av卡| 91精品伊人久久大香线蕉| 日本91视频免费播放| 色精品久久人妻99蜜桃| 美女福利国产在线| 精品人妻在线不人妻| 嫁个100分男人电影在线观看 | 91麻豆精品激情在线观看国产 | 最近中文字幕2019免费版| 啦啦啦在线观看免费高清www| 韩国高清视频一区二区三区| 香蕉丝袜av| 国产人伦9x9x在线观看| 久久久久久久国产电影| 日韩一区二区三区影片| www.自偷自拍.com| 黄片小视频在线播放| 日本a在线网址| 欧美黄色淫秽网站| 好男人视频免费观看在线| 午夜精品国产一区二区电影| 人妻一区二区av| 最黄视频免费看| 久久热在线av| 国产精品一区二区精品视频观看| 亚洲国产看品久久| 国产1区2区3区精品| 亚洲精品一卡2卡三卡4卡5卡 | 国产亚洲欧美精品永久| 我要看黄色一级片免费的| 国产野战对白在线观看| 久久中文字幕一级| 女人精品久久久久毛片| 好男人视频免费观看在线| 精品国产超薄肉色丝袜足j| 99国产精品99久久久久| 精品少妇久久久久久888优播| 曰老女人黄片| 国产无遮挡羞羞视频在线观看| 日本欧美视频一区| 考比视频在线观看| 久久久国产精品麻豆| 婷婷成人精品国产| av天堂在线播放| 99re6热这里在线精品视频| 亚洲一码二码三码区别大吗| 久久久久久亚洲精品国产蜜桃av| 国产成人免费无遮挡视频| 秋霞在线观看毛片| 国产真人三级小视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 别揉我奶头~嗯~啊~动态视频 | 老汉色av国产亚洲站长工具| 十八禁人妻一区二区| av一本久久久久| 97精品久久久久久久久久精品| 国产不卡av网站在线观看| 99精品久久久久人妻精品| 最近手机中文字幕大全| 久久天堂一区二区三区四区| 少妇人妻 视频| 亚洲国产精品成人久久小说| 亚洲成av片中文字幕在线观看| 亚洲黑人精品在线| 大码成人一级视频| 飞空精品影院首页| 亚洲天堂av无毛| 亚洲精品国产区一区二| 日本色播在线视频| 亚洲专区中文字幕在线| 日韩制服骚丝袜av| av天堂在线播放| 精品一区二区三区四区五区乱码 | www.999成人在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 狠狠精品人妻久久久久久综合| 亚洲一码二码三码区别大吗| 久久精品国产综合久久久| 考比视频在线观看| 国产色视频综合| 建设人人有责人人尽责人人享有的| 亚洲九九香蕉| 中文字幕av电影在线播放| 成人午夜精彩视频在线观看| 一本色道久久久久久精品综合| 亚洲成人免费电影在线观看 | av不卡在线播放| 男女床上黄色一级片免费看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲 国产 在线| 国产伦人伦偷精品视频| 欧美人与性动交α欧美软件| 久久国产精品大桥未久av| 成人18禁高潮啪啪吃奶动态图| 赤兔流量卡办理| 又大又黄又爽视频免费| www.自偷自拍.com| 欧美人与性动交α欧美精品济南到| a 毛片基地| 最近最新中文字幕大全免费视频 | 欧美xxⅹ黑人| 少妇猛男粗大的猛烈进出视频| kizo精华| 黑人猛操日本美女一级片| 日本五十路高清| 国产一区二区三区av在线| 日韩免费高清中文字幕av| 尾随美女入室| 国产精品 欧美亚洲| 午夜免费成人在线视频| 亚洲熟女精品中文字幕| 亚洲专区国产一区二区| cao死你这个sao货| 高清欧美精品videossex| 欧美激情极品国产一区二区三区| 国产高清videossex| 搡老岳熟女国产| 十分钟在线观看高清视频www| 九色亚洲精品在线播放| 人人妻人人爽人人添夜夜欢视频| 久久久精品94久久精品| 久热这里只有精品99| 大香蕉久久成人网| 国产亚洲av高清不卡| 国产伦人伦偷精品视频| 下体分泌物呈黄色| 国产成人精品久久久久久| 精品高清国产在线一区| 欧美激情极品国产一区二区三区| 久久影院123| 精品少妇黑人巨大在线播放| 人人澡人人妻人| 久热这里只有精品99| 又大又黄又爽视频免费| 中文字幕制服av| 两性夫妻黄色片| 亚洲av综合色区一区| 汤姆久久久久久久影院中文字幕| 午夜激情av网站| 女人久久www免费人成看片| 丝袜美足系列| 黄色一级大片看看| 午夜免费鲁丝| 久久精品人人爽人人爽视色| 中文字幕av电影在线播放| 精品人妻熟女毛片av久久网站| 极品人妻少妇av视频| 少妇粗大呻吟视频| 汤姆久久久久久久影院中文字幕| 777久久人妻少妇嫩草av网站| 久久中文字幕一级| 女人爽到高潮嗷嗷叫在线视频| 亚洲七黄色美女视频| 老司机在亚洲福利影院| 久久99一区二区三区| 久久久久久久久免费视频了| 亚洲精品久久成人aⅴ小说| 首页视频小说图片口味搜索 | 精品第一国产精品| 成年动漫av网址| 亚洲伊人久久精品综合| 国产精品香港三级国产av潘金莲 | 午夜视频精品福利| 久久九九热精品免费| 亚洲精品成人av观看孕妇| 在线观看免费日韩欧美大片| 亚洲精品第二区| a级毛片在线看网站| 不卡av一区二区三区| 欧美xxⅹ黑人| 女性被躁到高潮视频| 国产av精品麻豆| 国产1区2区3区精品| 国产又色又爽无遮挡免| av在线老鸭窝| 日本一区二区免费在线视频| 飞空精品影院首页| 婷婷色综合大香蕉| 在线观看www视频免费| 交换朋友夫妻互换小说| 国产精品99久久99久久久不卡| 亚洲人成电影观看| 亚洲精品一卡2卡三卡4卡5卡 | 一本一本久久a久久精品综合妖精| 免费av中文字幕在线| 国产午夜精品一二区理论片| 亚洲精品国产一区二区精华液| 天天躁狠狠躁夜夜躁狠狠躁| 人人妻人人澡人人看| 久久精品久久久久久久性| 欧美精品一区二区大全| 久久久久国产精品人妻一区二区| 亚洲国产欧美一区二区综合| 真人做人爱边吃奶动态| 日韩欧美一区视频在线观看| 大片电影免费在线观看免费| 男人舔女人的私密视频| 日韩伦理黄色片| 波多野结衣av一区二区av| 操美女的视频在线观看| 国产无遮挡羞羞视频在线观看| 日韩一本色道免费dvd| 亚洲一区中文字幕在线| 交换朋友夫妻互换小说| 又黄又粗又硬又大视频| 美女高潮到喷水免费观看| 精品欧美一区二区三区在线| 丝袜喷水一区| 亚洲av男天堂| av在线老鸭窝| 99香蕉大伊视频| 国产爽快片一区二区三区| 欧美亚洲 丝袜 人妻 在线| 亚洲三区欧美一区| 国产成人精品久久二区二区91| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产看品久久| 日韩中文字幕视频在线看片| 在线观看人妻少妇| 国产成人欧美在线观看 | 精品亚洲成国产av| 亚洲成国产人片在线观看| 少妇精品久久久久久久| 91麻豆av在线| kizo精华| 黄色a级毛片大全视频| 热99久久久久精品小说推荐| 国产精品一区二区在线不卡| 99国产精品免费福利视频| 久久 成人 亚洲| 性高湖久久久久久久久免费观看| 亚洲欧美一区二区三区久久| 中文字幕另类日韩欧美亚洲嫩草| 热99国产精品久久久久久7| 一二三四社区在线视频社区8| 欧美另类一区| 午夜免费观看性视频| 久久影院123| 一本一本久久a久久精品综合妖精| 两个人看的免费小视频| 欧美激情 高清一区二区三区| 中文精品一卡2卡3卡4更新| www.999成人在线观看| 一级毛片女人18水好多 | 国产高清国产精品国产三级| 蜜桃在线观看..| 中文字幕高清在线视频| 国产精品av久久久久免费| netflix在线观看网站| 狠狠婷婷综合久久久久久88av| 天天躁日日躁夜夜躁夜夜| 中文字幕另类日韩欧美亚洲嫩草| 在现免费观看毛片| 亚洲黑人精品在线| 精品少妇久久久久久888优播| 看免费成人av毛片| 国产成人精品久久二区二区免费| 女人久久www免费人成看片| 色婷婷久久久亚洲欧美| 久久免费观看电影| 亚洲欧美一区二区三区久久| 久久毛片免费看一区二区三区| 国产日韩一区二区三区精品不卡| 亚洲国产精品999| 亚洲色图综合在线观看| 91精品三级在线观看| 各种免费的搞黄视频| 久久久精品免费免费高清| 亚洲欧洲日产国产| 国产成人一区二区在线| 国产1区2区3区精品| 99国产综合亚洲精品| 天天躁日日躁夜夜躁夜夜| 人人妻人人澡人人爽人人夜夜| 9色porny在线观看| 51午夜福利影视在线观看| 水蜜桃什么品种好| 久久精品亚洲av国产电影网| 女人被躁到高潮嗷嗷叫费观| 欧美日韩亚洲国产一区二区在线观看 | 精品人妻1区二区| 国产高清videossex| 99国产综合亚洲精品| 亚洲精品在线美女| 精品欧美一区二区三区在线| 欧美变态另类bdsm刘玥| 成人影院久久| 男女床上黄色一级片免费看| 中文字幕高清在线视频| 国产伦人伦偷精品视频| 下体分泌物呈黄色| 人人妻人人澡人人看| kizo精华| 激情五月婷婷亚洲| 热99久久久久精品小说推荐| 一区二区三区四区激情视频| 一级,二级,三级黄色视频| 新久久久久国产一级毛片| 久久国产精品人妻蜜桃| 精品免费久久久久久久清纯 | 国产成人免费观看mmmm| 人人妻人人爽人人添夜夜欢视频| 欧美精品啪啪一区二区三区 | 日韩av免费高清视频| 女人久久www免费人成看片| 亚洲欧美日韩另类电影网站| 成人国语在线视频| 国产欧美亚洲国产| 亚洲精品成人av观看孕妇| 国产成人欧美在线观看 | 亚洲国产精品成人久久小说| 一区二区av电影网| 午夜福利,免费看| 成年人午夜在线观看视频| 亚洲国产av新网站| 男女床上黄色一级片免费看| 手机成人av网站| 国产成人91sexporn| 欧美人与善性xxx| 一边摸一边抽搐一进一出视频| 极品人妻少妇av视频| 在线精品无人区一区二区三| 777久久人妻少妇嫩草av网站| 桃花免费在线播放| 在线精品无人区一区二区三| 国产精品99久久99久久久不卡| 十分钟在线观看高清视频www| 在线天堂中文资源库| 久久人人爽人人片av| 91麻豆av在线| 波野结衣二区三区在线| 丰满饥渴人妻一区二区三| 美女扒开内裤让男人捅视频| 大陆偷拍与自拍| 久久久久久久大尺度免费视频| 欧美大码av| 交换朋友夫妻互换小说|