• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Speed sensorless FCS-MPTC based on FOSM-MRAS five-phase permanent magnet synchronous motor

    2022-09-19 07:07:24ZHANGHaimingWANGYunkunMIAOZhongcuiWANGZhihao

    ZHANG Haiming, WANG Yunkun, MIAO Zhongcui, WANG Zhihao

    (1. School of Mechanical and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

    Abstract: For the two-level five-phase permanent magnet synchronous motor (FP-PMSM) drive system, an improved finite-control-set model predictive torque control (MPTC) strategy is adopted to reduce torque ripple and improve the control performance of the system. The mathematical model of model reference adaptive system (MRAS) of FP-PMSM is derived and a method based on fractional order sliding mode (FOSM) is proposed to construct the model reference adaptive system (FOSM-MRAS) to improve the motor speed estimation accuracy and eliminate the sliding mode integral saturation effect. The simulation results show that the FP-PMSM speed sensorless FCS-MPTC system based on FOSM-MRAS has strong robustness, good dynamic performance and static performance, and high reliability.

    Key words: model reference adaptive system (MRAS); finite-control-set model predictive torque control (FCS-MPTC); fractional order sliding mode (FOSM); speed sensorless; five-phase permanent magnet synchronous motor (FP-PMSM)

    0 Introduction

    Compared with the traditional three-phase motor the five-phase permanent magnet synchronous motor (FP-PMSM) has the advantages of large capacity, more control freedom, and good fault tolerance due to its redundant phase number. It is widely used in occasions with high reliability requirements, such as new energy vehicles, ship propulsion system, etc.

    Direct torque control (DTC) is a high-performance control method developed after vector control. It has been widely used in the FP-PMSM control system. However, the traditional DTC has some problems, such as low equivalent switching frequency, poor steady-state performance and large torque ripple[6-9]. These problems hinder its application in high-precision control situations. In recent years, finite set model predictive torque control has received widespread attention in the field of motor control due to its easy online implementation, fast dynamic response, and flexible control[10-13]. Since this method directly considers the constraints of the input, output and state variables of the controlled process, and directly deals with the multi-variable coupling system, it can overcome the shortcomings of the above-mentioned DTC and does not require a modulator[14-16]. In Ref.[17], FCS-MPTC replaces the traditional DTC and significantly improved the motor control performance. In Refs.[18-19], the predictive current algorithm based on FP-PMSM control system is studied, and 25 basic voltage vectors are classified according to the magnitude. In Ref.[20], the harmonic subspace current under vector space decomposition (VSD) coordinate transformation is considered in the traditional FCS-MPC objective function, and the third harmonic of multi-phase motor is suppressed. In Ref.[21], an optimal deadbeat method based on torque and flux linkage is proposed to estimate the voltage vector in each control cycle and to reduce the computation burden of FCS-MPTC algorithm on line.

    In the FP-PMSM control system, it is necessary to obtain feedback information of the motor speed through a sensor. However, a high-resolution speed sensor will increase the complexity of the system and may cause problems such as measurement noise quantization, which will reduce the reliability of the system. Speed sensorless control technology can reduce the cost of control system, improve the stability of FP-PMSM system, and broaden the application of motor control systems. In Refs.[22-23], the expansion Kalman filter is used to realize the speed identification. This method does not require the initial position information and mechanical parameters of the motor, and has strong robustness. But its calculation is complicated and the parameter selection is difficult. In Refs.[24-26], the speed estimation is achieved by superimposing a high frequency signal on the fundamental signal. But the injected high frequency signal affects the dynamic performance of the system. In Refs.[27-29], the sliding mode control algorithm is used to identify the motor parameters, which enhances the robustness of the system to motor parameter changes and load disturbances. However, the discontinuous switching variables make the estimated variables contain high-frequency distortion caused by switching. Also, it causes phase deviation. In Refs.[30-31], it is easy to realize a digital control system by using the observer based on model reference adaptive system (MRAS) to identify motor parameters. However, the precision of the parameters of the reference model directly affects the precision of the speed identification, and the dynamic response is affected in many aspects. In Refs.[32-33], sliding mode control (SMC) and MRAS are combined to construct an SM-MRAS observer, which can obtain better dynamic response and robustness. However, the sliding mode surface based on the integer-order integral of the state variable has an integral saturation effect when the initial error is relatively large or the given signal changes suddenly, which will cause the transient performance of the system to decrease and even become unstable. Fractional order sliding mode (FOSM) control algorithm can effectively improve the dynamic and static performance of the control system[34-36]. If the fractional calculus is applied to the SM-MRAS observer to design an FOSM-MRAS observer, it can accurately estimate the rotor position and speed, eliminate integral saturation and reduce sliding mode chattering.

    Taking the surface-mounted FP-PMSM as the control object, a speed sensorless FCS-MPTC system based on the FP-PMSM is designed in this study. By combining the fractional order theory with SM-MRAS, a new type of FOSM-MRAS speed observer is designed to improve the precision of rotational speed observation. The nonlinear exponential function is used to reduce the chattering of the sliding mode and carry on deduction and demonstration. Finally, its validity is verified by simulation.

    1 Mathematical model of FP-PMSM

    1.1 Generalized Clark transformation matrix

    The five-phase motor model contains four degrees of freedom and zero sequence components. Under normal operating conditions, according to the generalized Clark transformation matrix, the symmetric physical quantities in the natural coordinate system can be mapped to the double synchronous rotation coordinate systemsd1-q1andd2-q2, The mathematical model of FP-PMSM is as follows:

    1) Voltage vector equation

    (1)

    whereUdq=[ud1uq1ud2uq2u0]TandIdq=[id1iq1id2iq2i0]Tare the stator phase voltage and phase current, respectively;Rdq=diag[RsRsRsRsRs] is stator resistance matrix;Ldq=diag[LdLqLlsLlsLls]; andΓ=[(-Lqiq) (Lqiq+ψf) 0 0 0]T. Among them,LdandLqrepresent the inductances of the orthogonal and direct axes in thed-qcoordinate system, respectively;Llsrespresents the leakage inductane;ψfis the flux amplitude of the permanent magnet in the motor winding; andωeis the electric angular velocity.

    2) Flux vector equation

    Ψdq=LdqIdq+ΨfT(θe)Λ,

    (2)

    T(θe)=

    (3)

    3) Electromagnetic torque equation

    (4)

    whereNpis the number of motor pole pairs.

    1.2 FP-PMSM discrete mathematical model

    According to Eqs.(1), (2) and (4), the motor state equation discretized by the forward Euler approximation method is given by

    (5)

    (6)

    In addition,A,BandCare the coefficient matrices. For convenience, we define

    (7)

    thenA,BandCare expressed as

    (8)

    2 Design of FCS-MPTC

    FCS-MPTC is based on the system model and its constraints to achieve the optimization of the objective function within a predetermined time. The corresponding optimal action sequence is obtained by using the latest measurement data. The process of selecting the optimal voltage vector of the FCS-MPTC strategy is shown in Fig.1.

    Fig.1 Optimal voltage vector selection of FCS-MPTC

    2.1 Inverter voltage vector

    The main circuit topology diagram of the FP-PMSM drive system powered by a five-phase voltage source inverter is shown in Fig.2.

    Fig.2 Drive system for FP-PMSM

    According to the theory of five-phase coordinate transformation, the set of voltage vectors in the Eq.(5) can be transformed into

    (9)

    whereTis the five-phase inverter switching matrix as

    (10)

    Let the inverter phase voltage and switch status be

    Sk=[SaSbScSdSe]T,

    (11)

    the inverter space voltage vector can be expressed as

    (12)

    All switching states of the five-phase inverter are combined into Eq.(12). Then 32 basic voltage vectors are obtained, including 30 non-zero voltage vectors and 2 zero vectors. The distribution of the space voltage vectors in thed1-q1andd2-q2coordinates is shown in Fig.3.

    (a) d1-q1 coordinates

    (b) d2-q2 coordinates

    2.2 Design of objective function and selection of voltage vector

    The FCS-MPTC calculates the predicted values for each possible execution by the objective function. To predict the future of stator flux and torque, the design objective function is given as

    s.t.V(i)∈{V1,V2,…,V31},

    (13)

    wherek1,k2are the weight coefficients. The given electromagnetic torque is obtained from the output of the speed regulator. The given flux linkage is calculated according to the maximum torque current ratio (MTPA)[35], that is,

    (14)

    2.3 Delay compensation and improvement strategy

    To improve the effect of delay on the performance of FCS-MPTC, the variable at timet(k+1) is used as the starting value for prediction, and the variable at timet(k+2) is predicted. Considering a beat delay, the flux linkage and torque at timet(k+2) are predicted according to Eq.(5), and the FCS-MPTC objective function with the maximum allowable stator current limit is re-designed as

    s.t.V(i)∈{V1,V2,…,V31}.

    (15)

    The last term in Eq.(15) is a nonlinear function that limits the amplitude of the FP-PMSM stator current, which is expressed as

    (16)

    whereImaxis the maximum allowable stator current amplitude. If the predicted current amplitude generated by the specified voltage vector is greater thanImax, the voltage vector is not selected by the objective function. If the predicted current amplitude is less thanImax, the objective function contains only the first two terms and the optimal voltage vector is selected.

    3 Design of FOSM-MRAS observer

    In the MRAS algorithm, the equations that do not contain unknowns are used as reference models, and the equations that include parameter variables are used as adjustable models, and the output difference is used to adjust the parameters to be estimated of the adjustable model in real time according to the adaptive law.

    3.1 Design of reference model and adjustable model

    Assuming that the five-phase windings are distributed symmetrically, according to Eq.(1), the current model of FP-PMSM with stator current as the variable in the dual rotating coordinate system can be obtained as

    (17)

    It can be seen that the harmonic subspace current model does not contain rotor speed information. This means that the harmonic current does not participate in the energy conversion of the motor, and the existence of harmonic subspace (including zero-sequence subspace) current has no effect on the construction of the speed observer. The current fundamental current model contains both rotor speed information and flux linkage information. In order to obtain an adjustable model, the fundamental current model needs to be transformed as

    (18)

    For surface mounted FP-PMSM, the inductance of motor underd-qcoordinate axis is uniformly expressed byLs, i.e.Ld=Lq=Ls. Then Eq.(18) can be expressed as

    (19)

    Let the parameters be

    (20)

    Eq.(19) can be further expressed as

    (21)

    (22)

    In Eq.(22), the state matrixAcontains the speed information of FP-PMSM, which can be used as an adjustable model. FP-PMSM itself is chosen as the reference model, andωeis the parameter to be identified. Thus, we have

    (23)

    3.2 Adaptive law of MRAS observer

    Since the motor speed is unknown, the state equation represented by the estimated value of the stator current is shown as where

    (24)

    (25)

    The error dynamic equation of stator current vector can be obtained by subtracting the phase of Eqs.(22) and (24), and then we get

    (26)

    Eq.(26) is equivalent to a standard feedback system, where

    Ae=A,

    andJis the coefficient matrix as

    (27)

    3.3 Stability law of MRAS observer

    According to Popov’s super stability theory, to make the feed back system shown in Eq.(26) asymptotically stable, the following constraints must be satisfied, namely

    (28)

    wherer0is any finite positive number.

    To obtain the MRAS adaptive law, it is necessary to solve Popov’s integral inequality inversely. SubstitutingeandWinto the constraint conditions, we can get

    (29)

    (30)

    According to Eqs.(29) and (30), we can get

    η(0,t1)=

    η1(0,t1)+η2(0,t1),

    (31)

    where

    (32)

    Choosing

    (33)

    and taking the derivatives on both sides of the first expression of Eq.(33), we can get

    (34)

    It is proved that the dynamic equation of stator voltage vector error expressed by Eq.(26) can ensure the stabilization of the feedback system. Then the speed estimator is obtained as

    (35)

    (36)

    Eq.(36) can be expressed as

    (37)

    3.4 Design of FOSM-MRAS observer

    For integer-order sliding mode observers, when the initial error of the observer is large or the given signal is abrupt, the cumulative effect of the integral term on the deviation will lead to integral saturation and deteriorate the dynamic performance of motor speed. This problem can be solved by designing fractional integral sliding surface.

    In order to satisfy the condition of fractional integral type symbolic function, the sliding surface is designed as a global sliding mode as

    (38)

    The design of reaching law can guarantee the dynamic quality of sliding mode motion. The isokinetic approaching law is selected as

    (39)

    where sgn(s) is a symbolic function. In order to reduce the chattering phenomenon of the system, the nonlinear exponential function fal(s,α,γ) is used instead of sgn(s) as

    (40)

    where fal(s,α,γ) is linearl continuousγandαare constant. Whenγ>0 and 0<α<1, small error and large gain can be realized. For convenince, we write fal(s,α,γ) as fal(s). The observer with fal(s) function is designed as

    (41)

    whereksis a constant greater than zero.

    3.5 Stability of FOSM-MRAS observer

    The derivation of the stator current error is shown as

    (42)

    where

    (43)

    In order to prove the stability of the designed observer, the Lyapunov function is selected as

    (44)

    (45)

    (45)

    It can be seen that a sufficiently large sliding mode gainkshould be selected to ensure the observer to be asymptotically stable in a large range.

    Based on the above analysis, the designed FOSM-MRAS observer structure diagram is shown in Fig.4.

    Fig.4 Structure block diagram of FOSM-MRAS observer

    4 Simulation

    The frame diagram of the sensorless MPTC system of FP-PMSM is shown in Fig.5.

    Fig.5 Block diagram of PMSM-MPTC based on FOSM-MRAS observer

    The parameters of FP-PMSM are shown in Table 1.

    Table 1 Parameters of FP-PMSM

    4.1 Comparison of SM-MRAS and FOSM-MRAS

    The given speed is 1 000 r/min and the simulation time is set to 0.4 s. After no-load starting of the motor, the load of 3 N·m is added suddenly at 0.2 s. Fig.6 is the speed response of sensorless MPTC system of FP-PMSM.

    Fig.6 Speed response of sudden load

    In order to compare objectively and fairly, the overshoot of the speed response curves of both systems is close to zero by adjusting the parameters. It can be seen that the control system based on two kinds of observers can respond to the system load quickly when running without load, but FOMS-MRAS has a shorter rise time. After 0.2 s sudden load, both of them can quickly respond to the load change. However, the dynamic descent and response time of FOSM-MRAS are significantly shorter. It means that the control system based on FOSM-MRAS has good dynamic and static performance and strong anti-load disturbance.

    (a) Observation error of SM-MRAS angular velocity

    (b) Observation error of FOSM-MRAS angular velocityFig.7 Angular velocity error

    (a) SM-MRAS Rotor position>

    (b) FOSM-MRAS rotor positionFig.8 Curve of rotor position estimation and actual value change

    Fig.9 shows the load response of the control system based on two observers. The torque ripple of FOSM-MRAS is smaller. After the sudden load is applied, the SM-MRAS has obvious torque fluctuations, while the FOSM-MRAS torque ripple remains stable.

    (a) Torque response of SM-MRAS under sudden load

    (b) Torque response of FOSM-MRAS under sudden loadFig.9 Torque response to sudden load

    Fig.10 shows the five-phase current response of the two control systems. Total harmonic distortion (THD) is shown in Table 2, and it is defined as

    (a) Five-phase current of SM-MRAS

    (b) Five-phase current of FOSM-MRAS

    Table 2 Current harmonic distortion

    (47)

    whereX1is the fundamental wave,Xnis the high-order harmonic wave, andDTHD,xis the distortion of each phase harmonic wave.

    It can be seen that the FOSM-MRAS based control system has smaller THD value and better control performance.

    4.2 Comparison of FCS-MPTC and DTC

    Based on FOSM-MRAS observer, the sensorless PMSM drive systems using FCS-MPTC and DTC control strategies are presented, respectively. The five-phase current response during no-load operation is shown in Fig.11.

    (a) Five-phase current response of DTC control

    (b) Five-phase current response of FCS-MPTC controlFig.11 Five-phase current response

    It can be seen that the current fluctuation of FCS-MPTC is significantly smaller than that of the DTC.

    5 Conclusions

    In this study, the FCS-MPTC system based on FP-PMSM discrete mathematical model is realized. Firstly, in order to optimize the selection of the voltage vector of the control system and improve the delay of one cycle when the digital control system is realized, the objective function of the FCS-MPTC system is improved and designed. Secondly, a new type of FOSM-MRAS speed observer is designed, and the stability of the designed observer is proved. Finally, the improved FP-PMSM speed sensorless FCS-MPTC control system is realized through simulation. Simulation results show that the FOSM-MRAS speed observer has high observation accuracy and stability. Under different operating conditions of the motor, the improved FCS-MPTC system based on FOSM-MRAS speed observation is stable in operation, more robust to load disturbance, and has good dynamics. Compared with the DTC system, the designed FCS-MPTC system significantly reduces the pulsation of the motor’s five-phase current.

    欧美激情 高清一区二区三区| 色94色欧美一区二区| 欧美精品人与动牲交sv欧美| 七月丁香在线播放| 国产1区2区3区精品| 亚洲精品成人av观看孕妇| 日韩视频在线欧美| 久久女婷五月综合色啪小说| av免费观看日本| www.精华液| 一本大道久久a久久精品| 国产一级毛片在线| 精品人妻熟女毛片av久久网站| 亚洲av欧美aⅴ国产| 中国三级夫妇交换| 亚洲综合精品二区| 免费黄频网站在线观看国产| 肉色欧美久久久久久久蜜桃| 久久久久国产一级毛片高清牌| 亚洲国产欧美网| 欧美日韩亚洲高清精品| 国产在线视频一区二区| 国产欧美日韩综合在线一区二区| 国产精品欧美亚洲77777| 丰满迷人的少妇在线观看| av在线播放精品| 精品少妇久久久久久888优播| 日日摸夜夜添夜夜爱| 两个人看的免费小视频| 大香蕉久久成人网| 精品久久久久久电影网| www.熟女人妻精品国产| 两个人看的免费小视频| 久久国内精品自在自线图片| 下体分泌物呈黄色| 亚洲美女搞黄在线观看| 另类亚洲欧美激情| 晚上一个人看的免费电影| 啦啦啦啦在线视频资源| 亚洲欧美精品综合一区二区三区 | 99九九在线精品视频| 人妻人人澡人人爽人人| av在线播放精品| 国精品久久久久久国模美| 亚洲四区av| 国产成人欧美| 两个人免费观看高清视频| 国产成人精品在线电影| 国产精品无大码| 国产亚洲午夜精品一区二区久久| 天天躁日日躁夜夜躁夜夜| 免费看av在线观看网站| 在线观看免费视频网站a站| 色94色欧美一区二区| 中文欧美无线码| 高清av免费在线| 一级毛片我不卡| 久热久热在线精品观看| 精品人妻在线不人妻| 五月开心婷婷网| 视频在线观看一区二区三区| 亚洲av.av天堂| 久久久久久久精品精品| 亚洲精品日本国产第一区| 久久久久久久大尺度免费视频| 两个人免费观看高清视频| 女性生殖器流出的白浆| 成人毛片60女人毛片免费| 黄片播放在线免费| 国产熟女午夜一区二区三区| 黑人猛操日本美女一级片| 精品卡一卡二卡四卡免费| 丝袜在线中文字幕| 久久这里有精品视频免费| 精品国产露脸久久av麻豆| 午夜av观看不卡| 国产亚洲午夜精品一区二区久久| 一本大道久久a久久精品| 久久久久久人妻| 免费在线观看完整版高清| 亚洲av日韩在线播放| 国产成人免费观看mmmm| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久久精品古装| 精品人妻在线不人妻| 永久免费av网站大全| 色吧在线观看| videossex国产| 美女视频免费永久观看网站| a级片在线免费高清观看视频| 男的添女的下面高潮视频| 七月丁香在线播放| 91在线精品国自产拍蜜月| 在线免费观看不下载黄p国产| 少妇精品久久久久久久| 五月开心婷婷网| 一区二区三区精品91| 高清av免费在线| 一本大道久久a久久精品| 黑人巨大精品欧美一区二区蜜桃| 国产在线视频一区二区| 免费高清在线观看视频在线观看| 亚洲欧洲日产国产| 不卡av一区二区三区| 亚洲av在线观看美女高潮| 国产探花极品一区二区| 视频在线观看一区二区三区| 国产精品 欧美亚洲| 男人爽女人下面视频在线观看| 久久精品国产鲁丝片午夜精品| 不卡视频在线观看欧美| 国产精品成人在线| 精品一区在线观看国产| 久久久久网色| 在线观看一区二区三区激情| 久久久久久久久久久免费av| 男女啪啪激烈高潮av片| 色哟哟·www| av不卡在线播放| 女人高潮潮喷娇喘18禁视频| 免费大片黄手机在线观看| 青草久久国产| 校园人妻丝袜中文字幕| 另类精品久久| 国产精品不卡视频一区二区| 国产精品国产三级专区第一集| 97在线视频观看| 9热在线视频观看99| 日韩电影二区| 国产有黄有色有爽视频| 18在线观看网站| 成人18禁高潮啪啪吃奶动态图| 一二三四在线观看免费中文在| 亚洲三级黄色毛片| 欧美日韩综合久久久久久| 亚洲国产av新网站| av卡一久久| 狠狠精品人妻久久久久久综合| 国产精品二区激情视频| 欧美日韩成人在线一区二区| 国产亚洲最大av| 日韩一区二区三区影片| 欧美激情 高清一区二区三区| 18在线观看网站| 国产精品女同一区二区软件| 黄色视频在线播放观看不卡| 青春草视频在线免费观看| 亚洲欧美精品自产自拍| 中文字幕色久视频| 亚洲 欧美一区二区三区| 在线免费观看不下载黄p国产| 午夜免费观看性视频| 人成视频在线观看免费观看| www.精华液| 久久久久国产精品人妻一区二区| 国产精品香港三级国产av潘金莲 | 丰满饥渴人妻一区二区三| 日韩在线高清观看一区二区三区| 男女边摸边吃奶| 欧美中文综合在线视频| 亚洲精品日本国产第一区| 免费少妇av软件| 成人毛片60女人毛片免费| 亚洲精品国产一区二区精华液| 亚洲av免费高清在线观看| 久久婷婷青草| 永久免费av网站大全| 国产男女内射视频| 免费黄色在线免费观看| 少妇被粗大的猛进出69影院| 午夜福利网站1000一区二区三区| 成人国语在线视频| 日韩欧美精品免费久久| 97在线人人人人妻| 大陆偷拍与自拍| 免费不卡的大黄色大毛片视频在线观看| 日韩欧美精品免费久久| 国产一区有黄有色的免费视频| 日本免费在线观看一区| 中文字幕色久视频| 欧美日韩av久久| 美女午夜性视频免费| 高清黄色对白视频在线免费看| 熟女少妇亚洲综合色aaa.| 亚洲综合精品二区| 九九爱精品视频在线观看| 久久狼人影院| 亚洲成色77777| av免费观看日本| 欧美另类一区| 在现免费观看毛片| 青春草视频在线免费观看| 欧美精品人与动牲交sv欧美| 欧美中文综合在线视频| 狂野欧美激情性bbbbbb| 亚洲国产精品国产精品| 国产毛片在线视频| 亚洲成人av在线免费| 免费女性裸体啪啪无遮挡网站| 两性夫妻黄色片| 黑人欧美特级aaaaaa片| 丝袜脚勾引网站| 欧美在线黄色| 精品酒店卫生间| 午夜福利在线观看免费完整高清在| 丝袜人妻中文字幕| 黑人猛操日本美女一级片| 嫩草影院入口| 最近的中文字幕免费完整| 欧美精品高潮呻吟av久久| 国产男女超爽视频在线观看| 99热国产这里只有精品6| 久久97久久精品| 婷婷成人精品国产| 国产毛片在线视频| 国产精品偷伦视频观看了| 国产高清国产精品国产三级| 午夜激情av网站| 一区二区日韩欧美中文字幕| 亚洲欧美一区二区三区黑人 | 精品国产超薄肉色丝袜足j| 女性生殖器流出的白浆| 久久热在线av| 国产亚洲av片在线观看秒播厂| 亚洲av国产av综合av卡| 亚洲四区av| 捣出白浆h1v1| 免费久久久久久久精品成人欧美视频| 亚洲伊人色综图| 久久久久久久久久久久大奶| videossex国产| 国产成人午夜福利电影在线观看| 亚洲欧洲国产日韩| 侵犯人妻中文字幕一二三四区| 亚洲成色77777| 一级毛片电影观看| 国产又爽黄色视频| 亚洲国产av影院在线观看| 夜夜骑夜夜射夜夜干| 午夜福利,免费看| 亚洲一级一片aⅴ在线观看| 老汉色∧v一级毛片| 亚洲欧美精品自产自拍| 日韩欧美精品免费久久| 伦理电影大哥的女人| 激情五月婷婷亚洲| 日韩视频在线欧美| 日韩伦理黄色片| 久久精品夜色国产| 永久网站在线| 久久午夜综合久久蜜桃| 啦啦啦啦在线视频资源| 成年美女黄网站色视频大全免费| videossex国产| 亚洲成av片中文字幕在线观看 | 久久久久久人妻| 亚洲av中文av极速乱| 婷婷色综合www| 国产探花极品一区二区| 久久热在线av| 亚洲精华国产精华液的使用体验| 国产亚洲午夜精品一区二区久久| 在线观看人妻少妇| 搡女人真爽免费视频火全软件| 在线免费观看不下载黄p国产| 免费女性裸体啪啪无遮挡网站| 国产av国产精品国产| 午夜免费男女啪啪视频观看| av网站在线播放免费| 九九爱精品视频在线观看| 只有这里有精品99| 一级a爱视频在线免费观看| 欧美日韩综合久久久久久| 校园人妻丝袜中文字幕| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一级黄片播放器| 免费观看在线日韩| 天天躁日日躁夜夜躁夜夜| 国产一区二区三区综合在线观看| 国产日韩一区二区三区精品不卡| 少妇被粗大的猛进出69影院| √禁漫天堂资源中文www| 国产日韩欧美亚洲二区| 成人国产麻豆网| 99热全是精品| 这个男人来自地球电影免费观看 | 久久精品国产综合久久久| 免费黄网站久久成人精品| 欧美激情极品国产一区二区三区| 国产熟女午夜一区二区三区| 欧美另类一区| 欧美日韩精品网址| 国产午夜精品一二区理论片| av有码第一页| 国产极品天堂在线| 日日摸夜夜添夜夜爱| av在线老鸭窝| 日韩av不卡免费在线播放| 综合色丁香网| 男人舔女人的私密视频| 高清视频免费观看一区二区| 亚洲av国产av综合av卡| 男女边吃奶边做爰视频| 久久久久网色| 欧美+日韩+精品| 精品久久久久久电影网| 不卡av一区二区三区| 日韩欧美一区视频在线观看| 日韩av在线免费看完整版不卡| 亚洲欧洲日产国产| 秋霞在线观看毛片| 久久毛片免费看一区二区三区| 午夜福利在线免费观看网站| 色吧在线观看| 热99国产精品久久久久久7| 午夜免费观看性视频| 亚洲美女黄色视频免费看| 日日摸夜夜添夜夜爱| 国产成人精品一,二区| 这个男人来自地球电影免费观看 | 成人黄色视频免费在线看| 男男h啪啪无遮挡| 欧美97在线视频| 香蕉国产在线看| 在线观看免费高清a一片| 妹子高潮喷水视频| 欧美日韩综合久久久久久| 日韩制服骚丝袜av| 免费观看性生交大片5| 天天影视国产精品| av免费观看日本| 亚洲国产最新在线播放| 久热这里只有精品99| 亚洲精品自拍成人| 久久久久久久久免费视频了| 女的被弄到高潮叫床怎么办| 看免费成人av毛片| 99热国产这里只有精品6| 久久午夜福利片| 精品视频人人做人人爽| 精品福利永久在线观看| 免费av中文字幕在线| 下体分泌物呈黄色| 亚洲,欧美精品.| 国产黄频视频在线观看| 亚洲精品久久午夜乱码| 国产精品久久久久久精品古装| 亚洲精品美女久久av网站| 欧美bdsm另类| 午夜福利影视在线免费观看| 午夜免费观看性视频| 日本av免费视频播放| 国产成人a∨麻豆精品| 高清在线视频一区二区三区| 亚洲一码二码三码区别大吗| av网站在线播放免费| 久久人人爽人人片av| 美女高潮到喷水免费观看| 各种免费的搞黄视频| 亚洲欧美日韩另类电影网站| 国产探花极品一区二区| 美女国产视频在线观看| 美女国产高潮福利片在线看| 欧美激情 高清一区二区三区| 久久久久精品久久久久真实原创| 亚洲综合精品二区| 国产av一区二区精品久久| 久久精品国产自在天天线| 日韩免费高清中文字幕av| 午夜免费观看性视频| 成人黄色视频免费在线看| 亚洲综合精品二区| 少妇的逼水好多| 一区在线观看完整版| 天天躁日日躁夜夜躁夜夜| 亚洲人成网站在线观看播放| 男人操女人黄网站| 欧美日韩国产mv在线观看视频| 日本欧美视频一区| 大香蕉久久成人网| 精品国产国语对白av| 午夜免费观看性视频| 五月伊人婷婷丁香| 欧美 亚洲 国产 日韩一| 午夜福利乱码中文字幕| 哪个播放器可以免费观看大片| 日韩欧美精品免费久久| 成人午夜精彩视频在线观看| 99香蕉大伊视频| 亚洲av免费高清在线观看| 欧美老熟妇乱子伦牲交| 国产国语露脸激情在线看| 国产老妇伦熟女老妇高清| 免费看不卡的av| 成人国产麻豆网| 欧美日韩精品网址| 岛国毛片在线播放| 亚洲综合色网址| 久热久热在线精品观看| 免费观看av网站的网址| 国产精品女同一区二区软件| 亚洲图色成人| 交换朋友夫妻互换小说| 啦啦啦在线免费观看视频4| 日本欧美视频一区| 男人操女人黄网站| 99久国产av精品国产电影| 亚洲第一青青草原| 精品一区二区免费观看| 久久久久精品性色| 日本黄色日本黄色录像| 免费不卡的大黄色大毛片视频在线观看| 久久人人爽人人片av| 99国产综合亚洲精品| 成人18禁高潮啪啪吃奶动态图| 一个人免费看片子| 国产一区二区三区av在线| 99久国产av精品国产电影| 亚洲,欧美,日韩| 久久久久视频综合| 婷婷成人精品国产| xxx大片免费视频| 国产免费一区二区三区四区乱码| 久久毛片免费看一区二区三区| 日韩制服骚丝袜av| 97精品久久久久久久久久精品| 成人亚洲欧美一区二区av| 久久ye,这里只有精品| 亚洲欧美色中文字幕在线| 久久这里只有精品19| 欧美精品亚洲一区二区| 老汉色av国产亚洲站长工具| 中国国产av一级| 亚洲精品一二三| 久久久久人妻精品一区果冻| 精品国产一区二区三区四区第35| 一区二区av电影网| 如何舔出高潮| 亚洲av国产av综合av卡| 在现免费观看毛片| 亚洲成色77777| 青青草视频在线视频观看| 巨乳人妻的诱惑在线观看| 国产成人免费观看mmmm| 欧美 日韩 精品 国产| 国产一区二区三区av在线| 9191精品国产免费久久| 男女无遮挡免费网站观看| av又黄又爽大尺度在线免费看| 精品亚洲成a人片在线观看| 日本vs欧美在线观看视频| 国产深夜福利视频在线观看| 亚洲欧洲国产日韩| 中文字幕亚洲精品专区| 国产精品无大码| 一区二区三区激情视频| 国产福利在线免费观看视频| 国产精品国产av在线观看| 免费观看av网站的网址| 亚洲,一卡二卡三卡| 亚洲欧美色中文字幕在线| 精品久久久久久电影网| 久久久久久久国产电影| 免费观看a级毛片全部| 亚洲国产精品成人久久小说| 黄色一级大片看看| 欧美国产精品一级二级三级| 国产亚洲av片在线观看秒播厂| 亚洲精品久久久久久婷婷小说| 中文字幕精品免费在线观看视频| 女人久久www免费人成看片| 中文字幕最新亚洲高清| 精品人妻在线不人妻| av网站在线播放免费| 亚洲伊人色综图| 99香蕉大伊视频| 免费黄色在线免费观看| 国产福利在线免费观看视频| av国产久精品久网站免费入址| 在线天堂中文资源库| 国产成人av激情在线播放| 久热这里只有精品99| 日本猛色少妇xxxxx猛交久久| 久久精品国产a三级三级三级| 欧美日韩视频精品一区| 狂野欧美激情性bbbbbb| 在线看a的网站| 在线观看免费高清a一片| 成年人免费黄色播放视频| 亚洲国产精品一区三区| 人妻 亚洲 视频| 国产男女内射视频| 亚洲精品久久成人aⅴ小说| 777米奇影视久久| 久久久久久人妻| 成人国语在线视频| 久久亚洲国产成人精品v| 日日摸夜夜添夜夜爱| 久久精品国产亚洲av高清一级| 久久人人爽人人片av| 亚洲欧洲国产日韩| 久久这里有精品视频免费| 日本爱情动作片www.在线观看| 你懂的网址亚洲精品在线观看| 少妇熟女欧美另类| 亚洲国产av新网站| 精品人妻在线不人妻| 亚洲 欧美一区二区三区| 午夜福利在线观看免费完整高清在| 99热全是精品| 色婷婷av一区二区三区视频| 国产成人午夜福利电影在线观看| 热re99久久国产66热| 久久久久久久久久久久大奶| 中文字幕制服av| xxx大片免费视频| 高清视频免费观看一区二区| 国产在视频线精品| 最新的欧美精品一区二区| 亚洲国产成人一精品久久久| 熟女少妇亚洲综合色aaa.| 人人妻人人爽人人添夜夜欢视频| 日韩免费高清中文字幕av| 18在线观看网站| 伊人久久国产一区二区| 男女高潮啪啪啪动态图| 女性生殖器流出的白浆| av女优亚洲男人天堂| 哪个播放器可以免费观看大片| 欧美 亚洲 国产 日韩一| 在线观看一区二区三区激情| 综合色丁香网| 在线天堂最新版资源| 一区二区三区激情视频| 99久久中文字幕三级久久日本| 国产精品不卡视频一区二区| 天天躁日日躁夜夜躁夜夜| 国产精品国产三级专区第一集| 亚洲国产精品国产精品| 久久午夜综合久久蜜桃| 99国产综合亚洲精品| 国产乱来视频区| 少妇人妻 视频| 欧美变态另类bdsm刘玥| 王馨瑶露胸无遮挡在线观看| 2022亚洲国产成人精品| www.自偷自拍.com| 伦理电影免费视频| 欧美最新免费一区二区三区| 97精品久久久久久久久久精品| 视频区图区小说| 赤兔流量卡办理| av卡一久久| 婷婷色麻豆天堂久久| 久久精品国产a三级三级三级| 国产亚洲最大av| 亚洲人成77777在线视频| 一边摸一边做爽爽视频免费| 色婷婷av一区二区三区视频| 免费在线观看完整版高清| 精品久久久精品久久久| 亚洲美女黄色视频免费看| 国产精品久久久av美女十八| 国产成人av激情在线播放| 免费女性裸体啪啪无遮挡网站| 国产一级毛片在线| 又粗又硬又长又爽又黄的视频| 国产成人精品福利久久| 97人妻天天添夜夜摸| 日韩制服骚丝袜av| 亚洲视频免费观看视频| 婷婷色综合www| 制服诱惑二区| 国产xxxxx性猛交| av国产精品久久久久影院| 国产成人精品无人区| 亚洲国产成人一精品久久久| 国产97色在线日韩免费| 日韩精品免费视频一区二区三区| √禁漫天堂资源中文www| 国产成人午夜福利电影在线观看| 黄色怎么调成土黄色| 成年人免费黄色播放视频| 最近中文字幕高清免费大全6| 亚洲,欧美,日韩| 久久99热这里只频精品6学生| 午夜福利乱码中文字幕| 国产精品欧美亚洲77777| 国产一区有黄有色的免费视频| 国产亚洲午夜精品一区二区久久| 尾随美女入室| 久久久久久久久免费视频了| 91精品三级在线观看| 精品少妇久久久久久888优播| a级片在线免费高清观看视频| 中国国产av一级| 91精品三级在线观看| 日韩欧美精品免费久久| 纵有疾风起免费观看全集完整版| 欧美精品亚洲一区二区| 少妇被粗大猛烈的视频| 国产野战对白在线观看| 日本猛色少妇xxxxx猛交久久| 国产精品不卡视频一区二区| 日本av手机在线免费观看| 老汉色av国产亚洲站长工具| 久久韩国三级中文字幕| 叶爱在线成人免费视频播放| 春色校园在线视频观看| 男女下面插进去视频免费观看| videosex国产| 天天躁日日躁夜夜躁夜夜| 久久久久久久久久人人人人人人| 我要看黄色一级片免费的| 99精国产麻豆久久婷婷|