• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preventive condition-based maintenance model of EMU components based on stochastic differential equation

    2022-09-19 07:07:58HUANGFULanlanZHAOYifanSUHongsheng

    HUANGFU Lanlan, ZHAO Yifan, SU Hongsheng

    (School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

    Abstract: To improve the operation and maintenance management level of large repairable components, such as electrical equipment, large nuclear power facilities, and high-speed electric multiple unit (EMU), and increase economic benefits, preventive maintenance has been widely used in industrial enterprises in recent years. Focusing on the problems of high maintenance costs and considerable failure hazards of EMU components in operation, we establish a state preventive maintenance model based on a stochastic differential equation. Firstly, a state degradation model of the repairable components is established in consideration of the degradation of the components and external random interference. Secondly, based on topology and martingale theory, the state degradation model is analyzed, and its simplex, stopping time, and martingale properties are proven. Finally, the monitoring data of the EMU components are taken as an example, analyzed and simulated to verify the effectiveness of the model.

    Key words: preventive maintenance; stochastic differential equation; simplex; martingale; electric multiple unit components

    0 Introduction

    With the progress of technology and development of industries, energy resources have become increasingly tense. High-speed electric multiple unit (EMU) are driven by electricity, which has advantages to energy-saving and environmental protection; thus, high-speed EMU are increasingly favored around the world. However, while facilitating travel, increase in the speed and transport competency of EMU also raises certain security issues and increases maintenance costs. Therefore, with the increasing input and operation of high-speed EMU, designing effective preventive maintenance strategies to ensure safe, reliable, efficient, and economic EMU operations is important. Moreover, examining and analyzing the reliability and condition-based maintenance (CBM) of EMU components have considerable theoretical significance and engineering application value.

    In the current research, preventive maintenance strategies are divided mainly into time-based maintenance (TBM) and CBM. Goble[1]argued that TBM is a preplanned maintenance activity that can sufficiently prepare corresponding maintenance resources at the planned maintenance time point but does not consider the actual operation status of components, thereby leading to “over maintenance” or “under maintenance.” The CBM strategy makes up for the shortcomings of TBM, as it implements targeted maintenance according to the real operation state of components, which can reduce the possibility of post maintenance, improve the dynamic behavior of a system, and lower preventive maintenance costs[2-3]. Scarf[4] proposed a CBM model with multiple parameters based on the determination of component condition characteristic parameters. Bruns[5]examined an optimal maintenance strategy satisfying the Markov property in the process of equipment deterioration under the condition of partial maintenance and infinite cost. Huang et al.[6]established a CBM decision model for a deteriorating system to determine the optimal maintenance times and preventive maintenance interval of components. Wang et al.[7]designed a dynamic CBM decision model for a system based on the historical data of monitored component condition characteristic parameters. Xiao et al.[8]proposed a CBM strategy of train multi-components based on reliability. However, most of the CBM models in the aforementioned studies are based on deterministic models, which do not comprehensively consider the influence of internal degradation and external random interference on the component state. A stochastic differential equation (SDE) can overcome deterministic models’ inability to describe uncertain factors in the process of component maintenance and describe random interference factors in the maintenance process[9].

    Presently, SDEs and martingale theory are widely used in filtering, finance, optimal control, and steady-state analyses. Burgess[10]established the Vasicek short rate model by the SDE. Faried et al.[11]analyzed the transient stability of a power system based on the SDE. Xu et al.[12]proposed the stochastic small signal stability model based on the SDE. But the SDE is used rarely to the maintenance engineering[13]. Doksum et al.[14]regarded the cumulative decay process as a Wiener process with drift and proposed an inverse Gaussian life model. Dual et al.[15]proposed a CBM model for a wind turbine based on a stochastic degradation model. The availability of equipment is analyzed via the update process, and the model is relatively simple. In reference to the problem of gearbox failure, Su et al.[16]established a novel gearbox stochastic differential model that considers the internal degradation and random disturbance of components but is biased toward the verification of the actual data state, which has yet to be proven theoretically. Moreover, the application of an SDE in research on the preventive maintenance of high-speed EMU components is limited. Therefore, this study applies an SDE to the preventive maintenance activities of EMU components. Huangfu et al.[17]proved that the dynamic maintenance process of repairable component belongs to Brownian motion,and the SDE could describe the dynamic processes of the random maintenance caused by the routine, upkeep, lubrication, patrol and the external changing environment. Therefore, in this study, SDE is used to describe the state transfortion model of the EMU component. Firstly, an SDE model of the EMU component state transition is established. The model is composed of two parts, that is, the fault function of the component state and operating mileage. The component state fluctuation is caused by external interference. It considers the internal degradation process of the components and adds the interference of external random factors to its state. Secondly, based on topology theory, the simplex property of the model is proven. Through martingale theory and the stopping time theorem, the martingale and stopping time properties of the model are likewise proven. Finally, the effectiveness of the model is verified through an analysis of an example.

    1 Description of SDE theory

    SDEs are widely used to describe uncertain dynamic behaviors in physics, economics, finance, and so on, and their form is represented as[9].

    dX(t)=b(X(t),t)dt+σ(X(t),t)dB(t),

    X(t0)=X0,

    (1)

    whereX(t)=[X1(t),X2(t), …,Xn(t)] is then-dimensional vector as random state variable on the complete probability space (Ω,F,P) fort∈[t0,T] indicating the state of the system at timet,Ωis a finite sample space, F is theσ-algebra ofΩ;b(X(t),t) is ann-dimensional vector function called the drift vector,σ(X(t),t) is ann×dmatrix function,b(X(t),t) andσ(X(t),t) are Borel measures; andB(t) is a 1-dimensional Brownian motion. Brownian motion is also called the Wiener process, which is a random process caused by random factors in practical applications that can generally be described by Brownian motion. For ?t≥0, the process obeys a normal distribution.

    Lemma1(Existence and uniqueness of strong solutions): If the coefficient vectorb(X(t),t) and matrix functionσ(X(t),t) satisfy the local Lipschitz condition and linear growth condition, that is, for all |x|, there exists |y|∈Rn, wherexandyare two variable vectors ofX(t).

    And when 0≤t≤T, ?K=const, s.t.

    |b(x,t)-b(y,t)|+|σ(x,t)-σ(y,t)|

    and ?KT=const, s.t.

    |b(x,t)|+|σ(x,t)|

    Then, when the initial valueX(0) is independent of Brownian motionB(t),E[|X(0) |2]<∞, and

    where sup|·| is the upper definite bound, which is the maximum value of |x(t)|2in the interval [0,T];Cis a constant only with respect toKandT; and Eq.(1) has a unique strong solution and a continuous path.

    2 CBM model of EMU component

    2.1 Modeling

    The degradation of EMU components generally results from the combined effects of the state degradation of the components and external random interference. The state degradation of the components can be expressed by failure rate, and the external interference is random. Before the state model of the EMU components is established, the following hypotheses are proposed:

    Hypothesis1(H1): The condition detection of the components is considered to be perfect, and no undetectable situation exists.

    Hypothesis2(H2): The external random disturbance is considered as a random fluctuation near a mean point, that is, the disturbance is consistently independent and stable, and its mathematical expectation is zero.

    Hypothesis3(H3): The failure of the components is with respect to their state and operating mileage.

    Hypothesis4(H4): The faulty components are repaired as new components.

    Based onH1-H4, an SDE-based state transformation model of the EMU components is established as

    dx(t)=b(x(t),t)dt+σ(x(t),t)dB(t).

    (2)

    In accordance with the definition of “timet” in reliability theory, the concept of “timet” is typically generalized, and the time evaluation scale of a high-speed train is generally the operating mileage. Therefore,tin Eq.(2) represents the operating mileage of the high-speed train in units of 104km. In Eq.(2),x(t) represents the state of the EMU components att. Whenx(t)=1, the components are brand new att. Whenx(t)=0, the components are completely damaged att. In addition,b(x(t),t) is called the drift coefficient, which is the comprehensive failure rate function of the components;σ(x(t),t) is the random disturbance coefficient, which is the volatility function of the components; andB(t) is a 1-dimensional Brownian motion.

    WhenLemma1is satisfied, Eq.(2) has a unique strong solution.

    The failure of the EMU components is caused by two factors, namely, time and state. Therefore, the comprehensive failure rate is composed of two parts, that is, the basic failure rate and state-related failure rate. The basic failure distribution of the equipment is also called life distribution. Common failure distributions include exponential distribution, normal distribution, gamma distribution, and the Weibull distribution. The Weibull distribution is widely used in reliability analysis, especially in the distribution form of fatigue strength, corrosion life, and accumulated wear failure in machinery[18]. Therefore, the Weibull distribution is selected as the basic failure rate of the EMU components, and it is expressed as

    (3)

    whereβis the shape parameter,ηis the scale parameter or characteristic life, andtis the operating mileage of the high-speed train.

    Let the state-related failure rate beg(x(t)), which is a bounded measurable real-valued continuous function in the interval [0,1]. It is the point where the EMU component statex(t) on theRnspace is mapped on theR1space [0,1]. Whenx(t)=0, that is, when the EMU components are completely damaged att, the failure rateg(x(t))=1. In accordance with Ref. [16],g(x(t)) is obtained as

    (4)

    The comprehensive failure rate model of the EMU components can be obtained as

    (5)

    The random interference of the EMU components is stochastic and thus not with respect to the operating mileaget of the train. However, this random interference will affect the state of the components, and the intensity of the impact is recorded as σ, which is the intensity of the state fluctuation. Then, the expression of the volatility function is

    σ(x(t),t)=σx(t).

    (6)

    The state transformation model of the EMU components can be obtained by substituting Eqs.(5) and (6) into Eq.(2), and then we can get

    (7)

    The integral form of Eq.(7) is

    (8)

    wherex(0)=1 is the initial value ofx(t), indicating that the components are brand new at initialt=0.

    Lety(t) be the state degradation function of the components, which constitutes the stochastic degradation process of the component state {Y(t),t≥0}, then

    y(t)=1-x(t)=

    (9)

    wherey(0)=0 indicates that the components are brand new at initialt=0, andy(t)=1 indicates that the components are completely damaged att.

    2.2 Model analysis

    Theorem1: Let setA={τ0,τ1,…,τi,…|a=y(τi),i∈Z}, whereτiis the replacement time of the preventive maintenance of the components. When the components satisfyH4, in the Euclidean space, setAis a 0-dimensional simplex.

    Proof: Fig.1 presents the schematic diagram of the change curve of the component degradation function. In Fig.1,ypis the preventive replacement threshold, andycis the corrective replacement threshold.θis the detection interval andτiis the preventive maintenance time. The curve 1 and curve 2 respectively represent the state degradation curves in different preventive maintenance cycles. It can be seen that the degradation curves of components show a trend of fluctuation due to the interference of random fluctuations.

    Fig.1 Schematic diagram of change curve of component degradation function

    Whent=τ0=0,y(0)=1-x(0)=0.

    In accordance withH4,y(τi)=0 can be obtained.

    Then, setA={τ0,τ1,…,τi,…|a=y(τi),i∈Z}.

    In the Euclidean space, in accordance with the definition of simplex[19], setAis a 0-dimensional simplex.

    Based onTheorem1, in an ideal case, the components can be in a reliable operating state after reasonable preventive maintenance.

    Letkbe the number of component degradation detection,θbe the detection interval, andd(ykθ)=|yp-ykθ| be the difference between the preventive replacement thresholdypand actual degradationykθ.

    Definition1: Given the real numberε>0,τε=min{kθ≥0,d(ykθ)<ε} is defined as the best replacement time of the components in the first preventive maintenance.

    Theorem2:τεis the stopping time of the stochastic degradation process {Y(t),t≥ 0} of the components under the condition-based preventive maintenance model.

    Proof: For ?t≥0, in order to facilitate the design of the controller, the variables are defined as

    {τε=t}={d(ykθ)≥ε,ktc

    whereσ(Ykθ,0≤kθ≤t) is theσ-algebra generated by {Y(t), 0≤kθ≤t}.

    In accordance with the strict definition of stopping time[20],τεis the stopping time of the stochastic degradation process {Y(t),t≥0} of the components under preventive maintenance.

    Based onTheorem2, all the preventive maintenance timesτ1,τ2,…,τi,… in Fig.1 are the stopping times of the stochastic degradation process of the components.

    At stopping timeτ, three component maintenance cases may exist. In the first case, the components are not faulty at τ, only minor maintenance is implemented, and no shutdown maintenance is implemented, which will not affect the overall development trend of the state degradation function of the components. In the second case, when the components fail atτ, that is, when the stopping time is hit, maintenance will be implemented. In the third case, beforeτ, the components failed and must be repaired after the failure. The first two cases belong under preventive maintenance, whereas the third case belongs under post maintenance. Therefore, only the first two cases are analyzed.

    Theorem3: The first case: Minor maintenance, that is, the components are not faulty,τis arriving, and the stochastic degradation process {Y(t),t≥0} of the components is a submartingale in probability.

    Proof: Lett∈[0,τ],s>0, and Ftbe theσ-algebra generated by the progress from 0 tot, that is, Ft=σ({Y(u),0≤u≤t}), then

    E[Y(t+s)|Ft]=E[Y(t)+Y(t+s)-Y(t)|Ft]=

    E[Y(t)|Ft]+E[Y(t+s)-Y(t)|Ft]=

    Y(t)+E[ΔY|Ft].

    (10)

    In accordance with Fig.1, the state degradation function of the components demonstrates an overall rising trend, and Eq.(10) can be written as

    E[Y(t+s)|Ft]=Y(t)+E[ΔY|Ft]≥Y(t),

    whereE[ΔY/Ft]≥0, andE[Y(t+s)]≤yn<∞.

    Based on the definition of a submartingale[9], {Y(t),t≥0} is a submartingale in probability.

    Theorem4: The second case: The stochastic degradation process {Y(t),t≥0} is a local martingale in probability when the components hit the stopping timeτand stoppage maintenance is implemented.

    Proof: Let the initial time of the component operation bet0. The stochastic degradation process {Y(t),t≥0} will operate within the maintenance interval [0,τ]. In accordance withH4, there is

    E[Y(t0+τ)|Ft0]=

    E[Y(t0)+Y(t0+τ)-Y(t0)|Ft0]=

    whereE[Y(t0+τ)-Y(t0)|(Ft0)=0.

    In accordance with the definition of a local martingale, {Y(t),t≥0} is a local martingale.

    Based onTheorem4, the state degradation curve in one stopping time range can be inferred to have the same changing trend as the curve in the other stopping time range. As shown in Fig.1, curve 1 isy(t) in the interval [0,τ1], and curve 2 isf(y(t)) in the interval [τ1,τ2]. Moreover,f(y(t)) is the mapping ofy(t) in the interval [τ1,τ2]. Therefore, only one of the stopping time ranges needs to be considered in the research on the preventive maintenance strategy for the components.

    3 Example analysis

    The monitoring data of the wheelset wear condition of the EMU components are selected, as shown in Table 1. The data in Table 1 reflect that the wear of train wheelsets increases with the increase of mileage. At the same time, according to the actual data statistics on site, when the running distance of high-speed train reaches 2×105km, the wear of the wheel is about 2 mm, and the cumulative fatigue damage density of the wheel is close to 1, indicating that the fatigue damage of the train wheel may occur, and the normal operation of the train cannot be guaranteed at this time.

    Table Wear condition monitoring data of EMU wheelset

    In accordance with the maximum likelihood estimation and Newton-Raphson algorithm[21], the parameters in Eq.(7) are obtained asβ=4.44,η=323.49, andα=0.139 3. Volatilityσ=0.003 is selected. In accordance with reliability theory, the reliability function of the EMU components can be obtained as

    (11)

    In accordance with Eq.(9), the degradation model of the EMU wheelset components can be obtained as

    y(t)=1-x(t)=

    (12)

    The reliability function Eq.(11) is simulated using Matlab, as shown in Fig.2.

    Fig.2 Reliability function curve of train components

    In Fig.2, as the train operating mileage increases, the reliability function value gradually decreases, which indicates that component wear increases during the train operation, thereby further increasing component fatigue damage and wheelset failure. In addition, at pointAin Fig.2, the reliability value is 0.9, and the safe operation mileage of the high-speed train is approximately 1.9×105km. However, at pointB, the reliability value is 0.8, and the safe operation mileage of the high-speed train is approximately 2.25×105km, which is consistent with the onsite actual reprofiling cycle of 2×105km of the high-speed train wheelset, thereby indicating the effectiveness of the model.

    The state degradation function Eq.(12) of the train components is simulated using Matlab, as shown in Fig.3, in which the curve indicates that the degradation process of the EMU components state rises with the increase in operating mileage. However, the curve is not smooth but fluctuates up and down, thereby reflecting the influence of the external random disturbance on the degradation process of the component state, and the influence is with respect to the fluctuation intensityσ.

    (a) σ=0.003

    (b) σ=0.01Fig.3 Degradation function curve diagram of train component state

    In Fig.3(a), the fluctuation intensityσ=0.003, and the external random disturbance has little effect on the degradation function. When it is increased 10 times, as shown in Fig.3(b), the influence of the external random disturbance on the degenerate function intensifies. In addition, Fig.3 indicates that when the operating mileagetis close to 2×105km,y(t) rises sharply, thereby showing that the components are deteriorating rapidly and thus preventive maintenance is necessary, which is consistent with the reprofiling cycle of 2×105km of the train wheelset.

    4 Conclusions

    Focusing on the failure of repairable components in operation, a condition-based preventive maintenance model based on SDEs is established. The model can predict the actual degradation and preventive maintenance time and considers the degradation of the components and external random interference, which can effectively reflect the actual state change process. Furthermore, the preventive maintenance time is proven to be the stopping time of the stochastic degradation process with the simplex property and stopping time theory. Based on martingale theory, the stochastic degradation process of the repairable components under different preventive maintenance opportunities is proven to belong under submartingale and local martingale. Finally, the effectiveness of the model is verified through the analysis of the example. It provides a scientific basis for the formulation of preventive maintenance strategies for repairable components.

    性插视频无遮挡在线免费观看| 级片在线观看| 国产亚洲精品久久久久久毛片| 丝袜美腿在线中文| 亚洲,欧美,日韩| 国产精品爽爽va在线观看网站| 真人做人爱边吃奶动态| 国产精品一及| 亚洲精品乱码久久久v下载方式| 国产一区二区三区av在线 | 1024手机看黄色片| 国产精品国产三级国产av玫瑰| 亚洲第一区二区三区不卡| 麻豆国产97在线/欧美| 成人精品一区二区免费| 国产精品爽爽va在线观看网站| 伦精品一区二区三区| 91久久精品国产一区二区三区| 成人一区二区视频在线观看| 哪里可以看免费的av片| 啦啦啦观看免费观看视频高清| 深夜精品福利| 免费人成在线观看视频色| 有码 亚洲区| 欧美高清成人免费视频www| 噜噜噜噜噜久久久久久91| 中文资源天堂在线| 观看美女的网站| 黄色一级大片看看| 最近最新免费中文字幕在线| 国产精品1区2区在线观看.| 日韩高清综合在线| 999久久久精品免费观看国产| 美女cb高潮喷水在线观看| 不卡一级毛片| 久99久视频精品免费| 欧美又色又爽又黄视频| 成人鲁丝片一二三区免费| 天堂动漫精品| 精品午夜福利视频在线观看一区| 国产午夜精品久久久久久一区二区三区 | 国产精品一区www在线观看 | 国产主播在线观看一区二区| 久久午夜亚洲精品久久| 亚洲电影在线观看av| 99在线视频只有这里精品首页| 亚洲专区中文字幕在线| 国产视频内射| 精品久久久久久久久亚洲 | 免费在线观看影片大全网站| 18禁黄网站禁片午夜丰满| 日韩一本色道免费dvd| 婷婷精品国产亚洲av在线| 在线观看舔阴道视频| 亚洲欧美精品综合久久99| 毛片女人毛片| 一个人观看的视频www高清免费观看| 亚洲人成网站在线播放欧美日韩| 午夜爱爱视频在线播放| 乱系列少妇在线播放| 午夜精品久久久久久毛片777| 久9热在线精品视频| 国产精品福利在线免费观看| 99热这里只有精品一区| 亚洲精品色激情综合| 午夜日韩欧美国产| 色精品久久人妻99蜜桃| 成人毛片a级毛片在线播放| 免费看av在线观看网站| 中文字幕免费在线视频6| 99精品久久久久人妻精品| 亚洲欧美日韩卡通动漫| 国产成人福利小说| 久久久成人免费电影| 人人妻,人人澡人人爽秒播| 十八禁国产超污无遮挡网站| 18禁在线播放成人免费| 亚洲成人免费电影在线观看| 国产中年淑女户外野战色| 一区福利在线观看| 免费观看精品视频网站| 我要搜黄色片| 日韩中文字幕欧美一区二区| 非洲黑人性xxxx精品又粗又长| 国产一区二区在线观看日韩| 国产高潮美女av| 麻豆成人午夜福利视频| 色噜噜av男人的天堂激情| 成人欧美大片| 亚洲黑人精品在线| 成人毛片a级毛片在线播放| 亚洲avbb在线观看| 男女视频在线观看网站免费| 国产人妻一区二区三区在| 婷婷色综合大香蕉| 可以在线观看毛片的网站| 99国产精品一区二区蜜桃av| 亚洲成人久久性| 女人被狂操c到高潮| 免费不卡的大黄色大毛片视频在线观看 | 干丝袜人妻中文字幕| 亚洲精品色激情综合| 黄色视频,在线免费观看| 欧美成人a在线观看| 此物有八面人人有两片| 乱码一卡2卡4卡精品| 观看美女的网站| 老熟妇仑乱视频hdxx| 一区二区三区高清视频在线| 亚洲av二区三区四区| 网址你懂的国产日韩在线| 久久精品91蜜桃| 精品国内亚洲2022精品成人| 日日摸夜夜添夜夜添av毛片 | 国内精品久久久久精免费| 日韩欧美在线二视频| 欧美极品一区二区三区四区| 九九热线精品视视频播放| 九九在线视频观看精品| 国产亚洲欧美98| 午夜福利成人在线免费观看| 嫩草影院入口| 午夜福利18| 成人一区二区视频在线观看| 久久久久国内视频| 黄片wwwwww| 91在线观看av| 少妇高潮的动态图| 免费观看在线日韩| 国产大屁股一区二区在线视频| 日本免费a在线| 久久精品人妻少妇| 精品久久久久久久久久免费视频| 女人十人毛片免费观看3o分钟| 国产三级中文精品| 99精品在免费线老司机午夜| 欧美成人一区二区免费高清观看| 最近在线观看免费完整版| 热99在线观看视频| 国产伦一二天堂av在线观看| 51国产日韩欧美| 日韩欧美三级三区| 亚洲av五月六月丁香网| 两个人的视频大全免费| 日日啪夜夜撸| 精品国内亚洲2022精品成人| 给我免费播放毛片高清在线观看| 久久久久久国产a免费观看| 最近中文字幕高清免费大全6 | 亚洲熟妇熟女久久| 国产亚洲精品久久久久久毛片| 亚洲不卡免费看| 成人午夜高清在线视频| 亚洲美女黄片视频| 在线观看舔阴道视频| 少妇人妻精品综合一区二区 | 天天躁日日操中文字幕| 在线免费十八禁| 亚洲男人的天堂狠狠| 精品国内亚洲2022精品成人| 男插女下体视频免费在线播放| 国产精品av视频在线免费观看| 国产视频一区二区在线看| 日本欧美国产在线视频| 国产成年人精品一区二区| 一级黄色大片毛片| 内地一区二区视频在线| 亚洲美女搞黄在线观看 | 中文在线观看免费www的网站| 亚洲av一区综合| 国产精品无大码| 两性午夜刺激爽爽歪歪视频在线观看| 又爽又黄无遮挡网站| 亚洲欧美日韩高清在线视频| 中出人妻视频一区二区| 少妇裸体淫交视频免费看高清| 午夜影院日韩av| 国产一区二区三区视频了| 亚洲 国产 在线| 久久久成人免费电影| 97超视频在线观看视频| 美女黄网站色视频| 国产精品免费一区二区三区在线| 99热网站在线观看| 我的女老师完整版在线观看| 国产高清有码在线观看视频| 男人和女人高潮做爰伦理| 国产美女午夜福利| 国产精品女同一区二区软件 | 男插女下体视频免费在线播放| 国产亚洲91精品色在线| 日韩av在线大香蕉| 午夜精品久久久久久毛片777| 亚洲av电影不卡..在线观看| 欧美成人a在线观看| 99热只有精品国产| 我的老师免费观看完整版| 精品午夜福利视频在线观看一区| 麻豆国产97在线/欧美| 搞女人的毛片| 免费黄网站久久成人精品| 在线播放国产精品三级| 日韩大尺度精品在线看网址| 天堂av国产一区二区熟女人妻| 身体一侧抽搐| 国产精品免费一区二区三区在线| 波多野结衣高清作品| 欧美精品国产亚洲| 国产一区二区亚洲精品在线观看| 我要搜黄色片| 国产高清视频在线观看网站| 日本五十路高清| 婷婷精品国产亚洲av| 亚洲在线观看片| 99热这里只有是精品在线观看| 啪啪无遮挡十八禁网站| 国产成年人精品一区二区| 久久欧美精品欧美久久欧美| 国产精品乱码一区二三区的特点| 久久久久精品国产欧美久久久| 国产精品一区www在线观看 | 最好的美女福利视频网| www.色视频.com| av.在线天堂| 日日摸夜夜添夜夜添av毛片 | 大型黄色视频在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲天堂国产精品一区在线| 精品人妻熟女av久视频| 观看美女的网站| 亚洲精品色激情综合| av在线观看视频网站免费| 国产精品1区2区在线观看.| 成人一区二区视频在线观看| 一级av片app| 最后的刺客免费高清国语| 成年女人永久免费观看视频| 欧美日韩精品成人综合77777| 国产一级毛片七仙女欲春2| 可以在线观看毛片的网站| 一卡2卡三卡四卡精品乱码亚洲| 亚洲四区av| 观看美女的网站| 亚洲精品色激情综合| 午夜影院日韩av| 亚洲熟妇中文字幕五十中出| 亚洲aⅴ乱码一区二区在线播放| 99久久无色码亚洲精品果冻| 麻豆国产97在线/欧美| avwww免费| 成人国产一区最新在线观看| 亚洲av二区三区四区| 18+在线观看网站| 久久亚洲真实| 欧美性猛交黑人性爽| 免费av毛片视频| 国产av在哪里看| 国产精品日韩av在线免费观看| 国产亚洲精品久久久com| 亚洲第一电影网av| .国产精品久久| 色哟哟哟哟哟哟| 老熟妇乱子伦视频在线观看| 波多野结衣巨乳人妻| 中文在线观看免费www的网站| 亚洲成a人片在线一区二区| 午夜福利视频1000在线观看| 日韩欧美免费精品| x7x7x7水蜜桃| 日韩欧美在线乱码| 男女那种视频在线观看| 精品午夜福利视频在线观看一区| 亚洲成人久久爱视频| 国产精品久久视频播放| 99九九线精品视频在线观看视频| 99热只有精品国产| 日本 av在线| 国产真实伦视频高清在线观看 | 一夜夜www| 男女边吃奶边做爰视频| 久久久久久伊人网av| 日韩中字成人| av天堂在线播放| 身体一侧抽搐| 欧美区成人在线视频| 人妻制服诱惑在线中文字幕| 一进一出抽搐gif免费好疼| 99热只有精品国产| 亚洲五月天丁香| 精品免费久久久久久久清纯| 亚洲av日韩精品久久久久久密| 我的女老师完整版在线观看| 成年人黄色毛片网站| 天堂网av新在线| 国产aⅴ精品一区二区三区波| 欧美日韩亚洲国产一区二区在线观看| 免费在线观看成人毛片| 能在线免费观看的黄片| 日韩高清综合在线| 国产精品久久久久久av不卡| 中文字幕熟女人妻在线| 亚洲内射少妇av| 丰满人妻一区二区三区视频av| 免费搜索国产男女视频| 黄色丝袜av网址大全| 国产一级毛片七仙女欲春2| 1000部很黄的大片| av.在线天堂| 亚洲成人免费电影在线观看| 波野结衣二区三区在线| 天天一区二区日本电影三级| 国产亚洲精品综合一区在线观看| 国产极品精品免费视频能看的| 色综合婷婷激情| 99久久精品一区二区三区| 啦啦啦观看免费观看视频高清| 99热这里只有是精品50| 日本三级黄在线观看| 国产一区二区三区av在线 | 精品不卡国产一区二区三区| 欧美三级亚洲精品| 3wmmmm亚洲av在线观看| 动漫黄色视频在线观看| 丰满的人妻完整版| 国内毛片毛片毛片毛片毛片| 一个人观看的视频www高清免费观看| 99在线视频只有这里精品首页| 最新在线观看一区二区三区| 真人做人爱边吃奶动态| av.在线天堂| 国产主播在线观看一区二区| 国产精品爽爽va在线观看网站| 亚洲最大成人手机在线| 久久精品国产亚洲av天美| 中文资源天堂在线| 国产精品久久久久久亚洲av鲁大| 亚洲av成人av| 国产成人av教育| 日日摸夜夜添夜夜添av毛片 | 在线看三级毛片| 久久久久免费精品人妻一区二区| 国产三级中文精品| 国产一区二区在线av高清观看| 国产蜜桃级精品一区二区三区| 久久6这里有精品| 欧美潮喷喷水| 亚洲人成网站在线播放欧美日韩| 久久婷婷人人爽人人干人人爱| 男插女下体视频免费在线播放| 亚洲不卡免费看| 免费av不卡在线播放| 国产成年人精品一区二区| videossex国产| 亚洲国产精品久久男人天堂| 国产老妇女一区| 日韩欧美三级三区| 别揉我奶头~嗯~啊~动态视频| 国产精品不卡视频一区二区| 亚洲精品成人久久久久久| 嫩草影院入口| 直男gayav资源| 国产免费一级a男人的天堂| 十八禁网站免费在线| 99久久精品国产国产毛片| 国产 一区 欧美 日韩| 日本免费一区二区三区高清不卡| 听说在线观看完整版免费高清| 最新在线观看一区二区三区| 欧美最新免费一区二区三区| 国产91精品成人一区二区三区| 午夜老司机福利剧场| 中文字幕人妻熟人妻熟丝袜美| 日本成人三级电影网站| 国产蜜桃级精品一区二区三区| 男人的好看免费观看在线视频| 国产 一区 欧美 日韩| 12—13女人毛片做爰片一| 中国美女看黄片| 老司机深夜福利视频在线观看| 日韩强制内射视频| 国产av麻豆久久久久久久| 我的女老师完整版在线观看| 内地一区二区视频在线| 国产不卡一卡二| 干丝袜人妻中文字幕| 精品人妻1区二区| 午夜精品久久久久久毛片777| 亚洲人成网站在线播放欧美日韩| 毛片女人毛片| 亚洲一区二区三区色噜噜| 亚洲最大成人手机在线| 国产极品精品免费视频能看的| 日韩高清综合在线| 国产精品久久久久久久电影| 日本一二三区视频观看| 国产一区二区三区视频了| 99久久精品国产国产毛片| 动漫黄色视频在线观看| 午夜精品久久久久久毛片777| 国产女主播在线喷水免费视频网站 | 人妻夜夜爽99麻豆av| 亚洲五月天丁香| 白带黄色成豆腐渣| 日本 欧美在线| 波野结衣二区三区在线| 男人的好看免费观看在线视频| 欧美日韩黄片免| 国产高清视频在线观看网站| 欧美国产日韩亚洲一区| 美女黄网站色视频| 日韩大尺度精品在线看网址| 国产成人福利小说| 精品久久久久久久人妻蜜臀av| 床上黄色一级片| 联通29元200g的流量卡| 欧美一区二区国产精品久久精品| 亚洲国产日韩欧美精品在线观看| 欧美一区二区亚洲| 国产精品国产高清国产av| 一区二区三区四区激情视频 | 美女被艹到高潮喷水动态| 女生性感内裤真人,穿戴方法视频| 国产探花在线观看一区二区| 久久久久久大精品| 日日摸夜夜添夜夜添av毛片 | 永久网站在线| 亚洲人与动物交配视频| 人人妻人人澡欧美一区二区| 国产精品久久电影中文字幕| 国产蜜桃级精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 免费不卡的大黄色大毛片视频在线观看 | 亚洲成a人片在线一区二区| 永久网站在线| 午夜爱爱视频在线播放| 又粗又爽又猛毛片免费看| 亚洲成人精品中文字幕电影| 久久99热6这里只有精品| 亚洲成人精品中文字幕电影| 亚洲美女搞黄在线观看 | 高清毛片免费观看视频网站| 成人特级黄色片久久久久久久| 国模一区二区三区四区视频| av.在线天堂| 午夜免费激情av| 中文亚洲av片在线观看爽| 亚洲av免费高清在线观看| 我的老师免费观看完整版| 国产欧美日韩一区二区精品| 久久久久久九九精品二区国产| 别揉我奶头~嗯~啊~动态视频| 国产爱豆传媒在线观看| 51国产日韩欧美| 91午夜精品亚洲一区二区三区 | 一区福利在线观看| 日本在线视频免费播放| 亚洲av免费在线观看| 国产又黄又爽又无遮挡在线| 日本精品一区二区三区蜜桃| 免费在线观看日本一区| 91久久精品国产一区二区三区| 少妇的逼水好多| 我要搜黄色片| av天堂中文字幕网| 亚洲av免费高清在线观看| 成人av一区二区三区在线看| 无人区码免费观看不卡| 日本色播在线视频| 免费黄网站久久成人精品| 国产伦精品一区二区三区视频9| 老师上课跳d突然被开到最大视频| 国产成年人精品一区二区| 看黄色毛片网站| 久久6这里有精品| 日本黄色视频三级网站网址| 真人一进一出gif抽搐免费| 亚洲成人久久性| 国产成人aa在线观看| 日本五十路高清| 国产精品久久久久久久久免| 一区福利在线观看| 国产av一区在线观看免费| 亚洲成人中文字幕在线播放| 成人性生交大片免费视频hd| 婷婷亚洲欧美| 国产一区二区在线av高清观看| 一卡2卡三卡四卡精品乱码亚洲| 少妇的逼水好多| 热99在线观看视频| 国产美女午夜福利| 又黄又爽又免费观看的视频| 有码 亚洲区| 直男gayav资源| 人人妻,人人澡人人爽秒播| 日本 欧美在线| 伦精品一区二区三区| 国产欧美日韩精品亚洲av| 精品99又大又爽又粗少妇毛片 | 禁无遮挡网站| 日韩国内少妇激情av| 欧美性猛交黑人性爽| 精品久久久久久久久久免费视频| 久久精品国产自在天天线| 一进一出抽搐动态| 国产精品亚洲一级av第二区| a级毛片免费高清观看在线播放| 免费av观看视频| 天美传媒精品一区二区| 国产高清不卡午夜福利| 日本欧美国产在线视频| 日本五十路高清| 中文字幕免费在线视频6| 久久中文看片网| 99精品在免费线老司机午夜| 一级毛片久久久久久久久女| 亚洲av五月六月丁香网| 男插女下体视频免费在线播放| 22中文网久久字幕| 成人鲁丝片一二三区免费| 男女做爰动态图高潮gif福利片| 精品久久久久久久久久免费视频| 午夜亚洲福利在线播放| 午夜福利在线观看免费完整高清在 | 丰满人妻一区二区三区视频av| 啦啦啦韩国在线观看视频| 俄罗斯特黄特色一大片| 三级男女做爰猛烈吃奶摸视频| 1024手机看黄色片| 亚洲精品在线观看二区| 老司机福利观看| 少妇的逼好多水| 少妇熟女aⅴ在线视频| 午夜福利在线观看吧| 大型黄色视频在线免费观看| 亚洲avbb在线观看| 亚洲内射少妇av| 天天一区二区日本电影三级| 给我免费播放毛片高清在线观看| av在线观看视频网站免费| 乱码一卡2卡4卡精品| a级毛片a级免费在线| 少妇高潮的动态图| bbb黄色大片| 99久久精品热视频| 少妇的逼水好多| 午夜福利在线观看吧| 99国产极品粉嫩在线观看| 午夜久久久久精精品| 亚洲最大成人av| 波野结衣二区三区在线| 麻豆精品久久久久久蜜桃| 亚洲综合色惰| 亚洲国产日韩欧美精品在线观看| a在线观看视频网站| 男人舔奶头视频| 级片在线观看| 免费观看人在逋| 色哟哟哟哟哟哟| 成熟少妇高潮喷水视频| 国产国拍精品亚洲av在线观看| 日本熟妇午夜| 国产精华一区二区三区| 亚洲精品成人久久久久久| 窝窝影院91人妻| 日本 欧美在线| 国产av在哪里看| 99久久成人亚洲精品观看| a级毛片a级免费在线| 在线天堂最新版资源| 桃色一区二区三区在线观看| 国产私拍福利视频在线观看| 搡老熟女国产l中国老女人| 一本久久中文字幕| 国产午夜精品久久久久久一区二区三区 | 老司机福利观看| 国产精品日韩av在线免费观看| 国产高清不卡午夜福利| 干丝袜人妻中文字幕| 99在线人妻在线中文字幕| 成人国产综合亚洲| 一进一出抽搐动态| 国产91精品成人一区二区三区| 欧美绝顶高潮抽搐喷水| 亚洲va在线va天堂va国产| 亚洲乱码一区二区免费版| 国产在线精品亚洲第一网站| 制服丝袜大香蕉在线| av在线蜜桃| 日本三级黄在线观看| 国产精品女同一区二区软件 | 亚洲人成伊人成综合网2020| 亚洲av.av天堂| 不卡视频在线观看欧美| av女优亚洲男人天堂| 日韩欧美一区二区三区在线观看| av专区在线播放| 色精品久久人妻99蜜桃| 亚洲成人精品中文字幕电影| 国产精品电影一区二区三区| 欧美成人一区二区免费高清观看| 最好的美女福利视频网| 成人美女网站在线观看视频| 亚洲av熟女| 婷婷精品国产亚洲av在线| 观看免费一级毛片| 99国产精品一区二区蜜桃av| 成人国产一区最新在线观看| 中文字幕人妻熟人妻熟丝袜美| 日本a在线网址| 国产爱豆传媒在线观看| 国产aⅴ精品一区二区三区波| 成人午夜高清在线视频| 婷婷精品国产亚洲av在线| 亚洲三级黄色毛片| 午夜老司机福利剧场|