• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study of two new boron nitride structures:C12-BN and O16-BN

    2022-02-24 08:58:58HaoWang王皓YaruYin殷亞茹XiongYang楊雄YanruiGuo郭艷蕊YingZhang張穎HuiyuYan嚴慧羽YingWang王瑩andPingHuai懷平
    Chinese Physics B 2022年2期
    關(guān)鍵詞:楊雄張穎王皓

    Hao Wang(王皓) Yaru Yin(殷亞茹) Xiong Yang(楊雄) Yanrui Guo(郭艷蕊)Ying Zhang(張穎) Huiyu Yan(嚴慧羽) Ying Wang(王瑩) and Ping Huai(懷平)

    1College of Science,Civil Aviation University of China,Tianjin 300300,China2Center for Transformative Science,ShanghaiTech University,Shanghai 201210,China3Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China4Shanghai Synchrotron Radiation Facility,Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China

    Based on the first-principles method,we predict two new stable BN allotropes: C12-BN and O16-BN,which belong to cubic and orthorhombic crystal systems,respectively. It is confirmed that both the phases are thermally and dynamically stable. The results of molecular dynamics simulations suggest that both the BN phases are highly stable even at high temperatures of 1000 K. In the case of mechanical properties, C12-BN has a bulk modulus of 359 GPa and a hardness of 43.4 GPa, making it a novel superhard material with potential technological and industrial applications. Electronic band calculations reveal that both C12-BN and O16-BN are insulators with direct band gaps of 3.02 eV and 3.54 eV,respectively. The XRD spectra of C12-BN and O16-BN are also simulated to provide more information for possible experimental observation. Our findings enrich the BN allotrope family and are expected to stimulate further experimental interest.

    Keywords: new boron nitride phase,first-principles calculations,mechanical properties,electric properties

    1. Introduction

    As the chemical analogue of carbon, novel boron nitride (BN) allotropes have attracted extensive theoretical and experimental attentions for their fascinating properties. BN shares similar structures with carbon from zero-dimensional(0D) buckyball,[1,2]one-dimensional (1D) nanotubes and nanoribbons,[3,4]two-dimensional (2D) nanosheets,[5]to three-dimensional (3D) crystalline or amorphous BN.[6]For the 3D crystalline structures,BN allotropes can be mainly divided into two groups. One group includes diamond-like c-BN and w-BN constituting the sp3bonding network,[7]while the other one is graphite-like h-BN and r-BN containing only sp2bonds. It is generally recognized that c-BN is a thermodynamically stable phase under ambient conditions and h-BN becomes stable at much higher temperature over 1200 K. In spite of the structural similarity between BN and carbon,their physical and chemical properties are thoroughly different because of the ionic character in B—N bonding.Due to the difference in electronegativity,N and B atoms form strongly polarized covalent bonds,leading their BN compounds to fascinating mechanical[8]and thermal[9]properties and excellent tolerance under extremely harsh environment such as high temperature and high pressures.

    The similarity in structure with diverse properties compared to carbon materials has attracted intensive experimental and theoretical attentions to explore more novel BN structures.Recently, based on the concept that all the carbon allotropes predicted previously may have one-to-one counterparts in BN allotropes, a lot of novel BN structures have been proposed and studied, such as bct-BN, Z-BN, M-BN, P-BN, H18-BN,Rh6-BN,O-BN,T-B3N3,and HCBN,[10—16]corresponding to Bct-C4,Z-carbon,M-carbon,P-carbon,H18carbon,Rh6 carbon,oC32 carbon,T6 carbon,and CHC,[17—25]respectively.In addition,there are some other novel carbon and BN structures,such astP40carbon, C48 carbon and B4N4.[26—28]Among those BN allotropes, Z-BN and O-BN are confirmed to be novel superhard materials owing to the high bulk modulus and Vickers hardness, based on the first-principles calculations.One of these materials, i.e., T-B3N3, proposed by Zhanget al., is the first reported 3D BN structure with intrinsic metallicity. It is a tetragonal phase consisting of a mixed sp2and sp3bonding network. Another BN structure, i.e., HCBN, a hexagonal phase containing only sp2bonds, is also predicted to exhibit intriguingly intrinsic metallicity in succession. In addition, Xionget al.proposed an sp2and sp3-hybridized metallic monoclinic 3D BN structure, which is confirmed to be the most energetically favorable structure among the previously predicted metallic BN structures.[29]However, to the best of our knowledge,most of the BN allotropes and their carbon counterparts have not been synthesized experimentally.

    Recent shock compression experiments of polycrystalline graphite produced obvious evidence of a new carbon phase.Liet al.have theoretically confirmed it to be a body-centeredcubic carbon phase termed BC12.[30]Wanget al.identified a novel topological semimetal carbon phase termed bco-C16in all sp2bonding networks byab initiocalculations.[31]The simulated x-ray diffraction spectrum matches well with the measured XRD spectra of detonation and chimney soot, indicating the presence of bco-C16in the specimen. Under the inspiration of BC12 and bco-C16carbon,we propose two new BN allotropes termed C12-BN and O16-BN, which are analogous to the recently reported BC12 and bco-C16carbon, respectively. In this paper, first-principles calculations are conducted to illustrate the physical properties of C12-BN and O16-BN.Firstly,the energetic and dynamical stability are confirmed with respect to the volume-dependence of total energy per atom, cohesive energy and phonon dispersion. Secondly,the mechanical properties are studied based on the calculations of the elastic constants. The Vickers hardness of C12-BN is obtained to be 43.4 GPa, indicating that it is a superhard material. The mechanical properties of O16-BN are relatively poor. However,O16-BN has low density and porous structure,which leads to potential applications in adsorption materials,e.g., hydrogen storage. In addition, the analysis of electronic properties reveals that both C12-BN and O16-BN are insulators with direct band gaps of 3.02 and 3.54 eV, respectively.Their XRD spectra are also provided for further experimental identification.

    2. Computational methods

    The structural optimization and properties of two new BN allotropes are calculated using the density functional theory(DFT)as implemented in the Viennaab initiosimulation package (VASP),[32]with projector augmented wave (PAW)potentials.[33]The exchange—correlation of electrons is treated within the generalized gradient approximation (GGA) in the form of Perdew—Burke—Enzelhof (PBE) functional.[34]Plane waves with kinetic energy cutoff of 600 eV are adopted to expand the wave function of valence electrons(2s22p1for B and 2s22p3for N). The crystal structures are optimized using the conjugate gradient method, in which the convergence criteria for the electronic and the ionic relaxation are set to 10?7eV and 10?5eV/for energy and force, respectively. These choices ensure that all the enthalpy calculations are well converged to less than 1 meV/atom. The Brillouin zone sample meshes for all mentioned systems are set to be dense enough(9×9×9 for c-BN, 19×19×9 for h-BN, 11×11×11 for BC8-BN,9×9×9 for C12-BN,and 7×11×17 for O16-BN).The energetic and thermodynamic stabilities of these BN allotropes can be evaluated by comparing their total energies and cohesive energies. Based on these optimized structures, we calculate their elastic constants using the strain-stress method.The bulk modulus, shear modulus and Vickers hardness are then derived from the Voigt—Reuss—Hill averaging scheme.[35]The phonon frequencies for C12-BN and O16-BN are calculated using the direct supercell method,which uses the forces obtained by the Hellmann—Feynman theorem implemented in the supercell. Phonon spectra calculations are then carried out by diagonalizing the dynamical matrix using the Phonopy package.[36]Electronic band structures are calculated using the Heyd—Scuseria—Ernzerhof hybrid functional(HSE06).[37]

    3. Results and discussion

    As shown in Table 1,we first present the structural characters of the two new BN phases.The crystal structure of C12-BN belongs to theIˉ43dspace group.

    Table 1. The calculated lattice parameters a,b,and c,density(ρ),cohesive energies(Ecoh),bulk modulus(B),shear modulus(G)and Vickers hardness(Hv)for C12-BN,O16-BN,BC8-BN,c-BN and h-BN.

    In cubic representation depicted in Fig. 1(a), its equilibrium lattice constant derived from GGA isa=5.238with N atoms occupying 12b(0.5, 0.25, 0.125) and B atoms occupying 12a(0.75, 0.125, 0) Wyckoff positions. Figure 1(b)shows the primitive unit cell of C12-BN, in which there are 12 atoms with lattice parameters optimized to bea=4.536,α=β=γ=109.47°. All the B—N bonds in C12-BN are sp3bonded and have equal length of 1.604, which is slightly larger than that of diamond-like c-BN (1.570). However,there are two kinds of bond angels, i.e., 131.81°and 99.59°in C12-BN, which are also found in a body centered cubic phase BC8-BN as 115.74°and 102.09°, respectively. The new orthorhombic phase O16-BN belongs to theIma2 space group. At zero pressure, its equilibrium lattice constants area= 4.939,b= 3.256andc= 8.040. There are 16 atoms in the orthorhombic unit cell of O16-BN,in which two nonequivalent N atoms occupy the 4a(0.0, 0.0,?0.4096)and 4b(0.25,?0.6259,?0.1757), and two nonequivalent B atoms occupy the 4a(0.0,0.0,?0.5882)and 4b(0.25,0.1256,?0.3265)Wyckoff positions. As shown in Fig.1(d),only sp2configuration exists in the O16-BN structure, which is different from the all sp3B—N bonding characters in C12-BN.There are four inequivalent bonds in O16-BN,with their bond lengths of 1.457, 1.463, 1.480, and 1.436, respectively. The average bond length is 1.459,which is comparable with the sp2bond length in h-BN(1.45).

    Fig.1.(a)The cubic crystal structure of C12-BN in Iˉ43d symmetry.(b)The primitive cell of C12-BN containing twelve atoms.(c)A hexagonal representation of C12-BN.(d)The orthorhombic unit cell of O16-BN.

    To understand the energetic stabilities of C12-BN and O16-BN, we calculated their total energies as a function of volume using the GGA scheme. Figure 2 shows the calculated total energy per atom versus its volume for C12-BN and O16-BN, together with those of other reported BN allotropes. It is interesting to see that theE—Vcurve of C12-BN is very close to that of BC8-BN,and the equilibrium volume per atom is comparable with that of sp3bonded c-BN and BC8-BN.Further,we can see that C12-BN is more stable than M-BN.Therefore,the C12-BN phase is almost as stable as BC8-BN. However, it can be obviously found that O16-BN is less stable than the most three stable phases of c-BN,h-BN and Z-BN, but more stable than other BN structures.The equilibrium volume is larger than that of c-BN and closer to that of h-BN, which is reasonable due to the sp2bonding characters in O16-BN. To further investigate the thermodynamic stabilities of C12-BN and O16-BN, we calculate their cohesive energies, which are the main parameters to measure thermodynamic stability. The cohesive energy is defined asEcoh=[E(BN)?nBE(B)?nNE(N)]/nTotal, whereE(BN) is the total energy of the unit cell of BN structure,n(B/N)is the number of B/N atoms in the unit cell, andE(B/N) is the energy of a single pure B/N atom. The results are summarized in Table 1,with those of c-BN,h-BN and BC8-BN also provided for comparison. The cohesive energy of C12-BN is obtained to be 6.23 eV,being only 0.08 eV slightly less than BC8-BN.For O16-BN,the cohesive energy is 0.47 eV larger than BC8-BN and 0.15 eV less than c-BN.Therefore,both the results of total energy and the cohesive energy indicate that C12-BN and O16-BN have similar stabilities as other stable BN allotropes reported before.

    Fig.2. Total energies as a function of volume per atom for C12-BN and O16-BN in comparison with other reported BN structures.

    The phonon dispersion plays an important role in examining the dynamical stability of a structure. The appearance of imaginary frequencies in the phonon dispersion spectra leads to unstable structures. Therefore,we examined the dynamical stability of C12-BN and O16-BN by calculating their phonon dispersion curves at zero pressure. As shown in Fig. 3, no imaginary frequencies were observed throughout the whole Brillouin zone, confirming the dynamical stabilities of both C12-BN and O16-BN.

    Fig.3. Calculated phonon band structures of C12-BN(a)and O16-BN(b)at zero pressure.

    In order to investigate the mechanical stabilities and properties of C12-BN and O16-BN,we calculate their elastic constantsCij. To ensure mechanical stability, all elastic constants should satisfy the well-known Born—Huang stabilitycriteria. As a cubic crystal, the three independent elastic constants (C11= 725.4 GPa,C12= 176.7 GPa andC44=322.8 GPa) of C12-BN satisfy the stability criteria (C11>0,C44>0,C11> |C12|andC11+2C12>0), suggesting that the C12-BN phase is mechanically stable. For orthorhombic phase structures, the mechanical stability criteria is given byC11>0,C22>0,C33>0,C44>0,C55>0,C66>0,C11+C22+C33+2(C12+C13+C23)>0,C11+C22?2C12>0,C11+C33?2C13>0,C22+C33?2C23>0. In our results,the calculated nine independent elastic constants for O16-BN are given asC11=624.7 GPa,C22=789.4 GPa,C33=107.0 GPa,C44=71.5 GPa,C55=73.1 GPa,C66=277.7 GPa,C12=231.6 GPa,C13= 131.2 GPa, andC23= 61.9 GPa. Obviously, they satisfy the mechanical stability criteria. Based on the elastic constants, we can also evaluate the bulk modulus(B),shear modulus(G)and Vickers hardness(Hv),whereHv=2(G3/B2)0.585?3. As for the C12-BN phase, it is obtained thatB=359 GPa,which is slightly lower than that of c-BN(376 GPa)and higher than that of BC8-BN and h-BN.The value of Vickers hardness is 43.4 GPa, indicating that C12-BN is a potential superhard material(Hv>40 GPa). Although the bulk modulus and Vickers hardness of O16-BN are lower than those BN allotropes consisting of sp3bonds,they are still higher than that of h-BN. Due to the low density and porous structure,O16-BN may have potential applications in adsorption materials.

    Fig.4. MD simulations on the potential energy fluctuations of(a)C12-BN and (b) O16-BN at 1000 K. Insets show the crystal structures at certain time steps.

    The thermal stabilities of C12-BN and O16-BN are examined by means of MD(molecular dynamics)simulations with the NVT ensemble. The temperature is set as 1000 K. The simulated system is 2×2×2 supercell and the time step is chosen to be 1 fs. The MD simulations are carried out on the supercell of both C12-BN and O16-BN for 3000 time steps,which is long enough to reach steady state.As shown in Fig.4,the structures of C12-BN and O16-BN are still kept intact at 1000 K with 3000 time steps. There is also no drastic transformation in the potential energy fluctuation curves,indicating that no structure transformation happens. The results suggesting that both C12-BN and O16-BN are highly stable even at high temperatures of 1000 K.Therefore,the thermal stabilities of C12-BN and O16-BN are confirmed.

    Fig. 5. Calculated electronic band structures and density of states(DOS) in arbitrary units for C12-BN (a) and O16-BN (b). The Fermi level is set to zero and denoted by the dashed line. The valence band maximum and conduction band minimum of C12-BN and O16-BN are both located at the Γ point with a direct band gap of 3.02 and 3.54 eV,respectively.

    In addition, to explore the electronic properties of C12-BN and O16-BN,we calculate their electronic band structures and densities of states. As shown in Fig. 5, the calculated energy gaps for C12-BN and O16-BN are 3.02 and 3.54 eV,respectively,indicating that both C12-BN and O16-BN are insulators. Interestingly, the insulating character of C12-BN is different from the semiconducting property of BC12 carbon,which has the structure similar to C12-BN.Also,O16-BN andbco-C16 carbon, with similar crystal structures, show different electronic properties. The bco-C16 has been reported to be a topological node-line semimetal before. Moreover,from the DOSs of C12-BN and O16-BN, it is seen that the conduction band minimum(CBM)is mainly originated from the B atoms, while the valence band maximum(VBM)is mostly contributed by the N atoms.

    To provide more characterization and information for further experimental observation in future, the x-ray diffraction(XRD) spectra are calculated for C12-BN and O16-BN with a wavelength of 1.54,together with those of existing c-BN,h-BN and BC8-BN phases. As shown in Fig. 6, each phase has its own characteristic peaks. Specifically,the characteristic peaks of c-BN are located at 2θ=43.4°and 74.3°,consistent with both experimental values and other simulated results.The strongest peak of h-BN is located at 2θ=26.7°.For BC8-BN, four main XRD peaks are located at 39.7°, 44.6°, 49.0°and 78.8°, respectively. The most intense peak of C12-BN is located at 2θ=42.3°,together with other characteristic peaks at 49.3°, 66.8°and 82.5°, respectively. However, there are much more peaks for O16-BN,i.e.,29.6°,32.9°,40.1°,42.9°,43.7°,45.1°and 47.6°. The simulated XRD spectra predicted here are expected to be helpful in distinguishing C12-BN and O16-BN phases in future experiments.

    Fig.6. Simulated XRD spectra of c-BN,h-BN,BC8-BN,C12-BN and O16-BN.The x-ray wavelength is set as 1.54 .

    To synthesize this new phase of C12-BN experimentally,it is interesting to note that C12-BN can be viewed as a polymerized form of BN nanotubes, as shown in Fig.1(c), which is similar to the case of BC12 carbon that can be viewed as a polymerized form of(3,0)carbon nanotube. The structural relations suggest that C12-BN may be synthesized by the polymerization of selected BN nanotubes. For the synthesis of O16-BN, it is worth referring to a recently reported Cco-C8carbon,[41]which can be obtained by (4,4) carbon nanotube under nonhydrostatic pressure. Since borazine(B3N3H6)has been recently used in the synthesis of BN nanotubes and BN nanosheets,[42]we anticipate that borazine will be a potential starting material to synthesize both C12-BN and O16-BN.Moreover,the synthetic procedure for molecular structures has been recently reported by Aymeet al.[43]

    4. Conclusion

    In summary, we have predicted two new BN allotropes C12-BN and O16-BN by means of first-principles calculations. C12-BN is a cubic BN structure inIˉ43dsymmetry containing purely sp3hybridized six-membered rings. O16-BN,belonging toIma2 space group,is an orthorhombic phase containing only sp2bonds. Based on the results of total energy and cohesive energies,the energetic stabilities of both C12-BN and O16-BN are confirmed as well as their dynamical stabilities,since no imaginary phonon frequencies appear throughout the whole Brillouin zone.Molecular dynamics simulations are carried out to verify the thermal stabilities of C12-BN and O16-BN.Further electronic band structure calculations reveal that C12-BN and O16-BN are insulators with direct band gaps of 3.02 and 3.54 eV,respectively. The C12-BN structure possesses excellent bulk modulus and Vickers hardness, making it a potential incompressible and superhard material. The mechanical properties of O16-BN are relatively poor. However,O16-BN has low density and porous structure, which leads to potential applications in adsorption materials, e.g., hydrogen storage. The XRD spectra of C12-BN and O16-BN are also provided for possible experimental observation. Therefore,our findings not only enrich the existing allotropes family of BN-based material,but also stimulate further experimental research.

    Acknowledgement

    Project supported by PhD research startup foundation of Civil Aviation University of China(Grant No.2020KYQD94).

    猜你喜歡
    楊雄張穎王皓
    張穎
    大江南北(2023年2期)2023-02-11 05:45:56
    張穎
    大江南北(2022年11期)2022-11-08 12:04:18
    張穎
    大江南北(2022年3期)2022-03-12 01:19:16
    我是小小繪畫家
    Limit Cycles by Perturbing a Piecewise Near-Hamiltonian System with 4 Switching Lines
    楊雄國畫作品欣賞
    金沙江文藝(2018年3期)2018-04-20 01:53:38
    百步穿“楊”
    On the Notion of Equivalence in Translation
    百步穿“楊”
    王皓國畫作品
    長江叢刊(2015年20期)2015-12-13 06:59:05
    国国产精品蜜臀av免费| 国产在线精品亚洲第一网站| 日本黄色片子视频| 国产午夜精品一二区理论片| 欧美又色又爽又黄视频| 日韩欧美一区二区三区在线观看| 插阴视频在线观看视频| 欧美另类亚洲清纯唯美| 夫妻性生交免费视频一级片| 不卡一级毛片| 日韩成人伦理影院| or卡值多少钱| 午夜福利在线在线| 亚洲精品乱码久久久久久按摩| 夫妻性生交免费视频一级片| 中文资源天堂在线| 成人高潮视频无遮挡免费网站| 亚洲无线观看免费| 99视频精品全部免费 在线| 成人午夜精彩视频在线观看| 麻豆精品久久久久久蜜桃| 国产真实乱freesex| 国产视频首页在线观看| 少妇的逼好多水| 97超视频在线观看视频| 国产成人福利小说| 亚洲精品国产成人久久av| 国国产精品蜜臀av免费| 国产高清视频在线观看网站| 99久久精品热视频| 男女那种视频在线观看| 久久人人爽人人爽人人片va| 国产一区亚洲一区在线观看| 久久人人爽人人爽人人片va| 狠狠狠狠99中文字幕| 亚洲经典国产精华液单| 少妇熟女aⅴ在线视频| 成人亚洲欧美一区二区av| 日韩人妻高清精品专区| 久久这里只有精品中国| 深夜精品福利| 久久精品国产亚洲av香蕉五月| 久久精品久久久久久噜噜老黄 | 欧美日韩国产亚洲二区| 欧美激情国产日韩精品一区| 91精品一卡2卡3卡4卡| 我的老师免费观看完整版| av免费观看日本| 99热这里只有精品一区| 欧美三级亚洲精品| 人人妻人人澡人人爽人人夜夜 | 91aial.com中文字幕在线观看| 免费看a级黄色片| 97人妻精品一区二区三区麻豆| 久久99热这里只有精品18| 看非洲黑人一级黄片| 乱人视频在线观看| 青春草国产在线视频 | 在线免费观看的www视频| 中国国产av一级| 日韩av在线大香蕉| 色播亚洲综合网| 岛国在线免费视频观看| 两个人视频免费观看高清| 午夜亚洲福利在线播放| 性色avwww在线观看| 日本黄色片子视频| 日韩视频在线欧美| 性欧美人与动物交配| 精品免费久久久久久久清纯| 高清毛片免费观看视频网站| 麻豆av噜噜一区二区三区| 亚洲欧美日韩高清在线视频| 国产毛片a区久久久久| 国产精品乱码一区二三区的特点| 全区人妻精品视频| 深夜a级毛片| 日韩欧美精品v在线| 国产精品福利在线免费观看| 在线观看一区二区三区| 久久亚洲精品不卡| 天堂√8在线中文| 91久久精品国产一区二区成人| 麻豆精品久久久久久蜜桃| 青春草视频在线免费观看| 免费av不卡在线播放| 伊人久久精品亚洲午夜| 寂寞人妻少妇视频99o| 久久精品国产亚洲av香蕉五月| 欧美性猛交╳xxx乱大交人| 国产精华一区二区三区| 成人鲁丝片一二三区免费| 国产成人精品一,二区 | 黑人高潮一二区| 亚洲aⅴ乱码一区二区在线播放| 婷婷色av中文字幕| 黄色欧美视频在线观看| 久久这里有精品视频免费| 日韩,欧美,国产一区二区三区 | 欧美精品一区二区大全| 村上凉子中文字幕在线| av免费观看日本| 爱豆传媒免费全集在线观看| 欧美性感艳星| 丝袜美腿在线中文| 一级毛片我不卡| 在线国产一区二区在线| 久久热精品热| or卡值多少钱| 成人特级av手机在线观看| 性色avwww在线观看| 国产91av在线免费观看| 亚洲成av人片在线播放无| 人妻夜夜爽99麻豆av| 日日撸夜夜添| 亚洲av熟女| 干丝袜人妻中文字幕| 午夜免费男女啪啪视频观看| 不卡一级毛片| 色吧在线观看| 性插视频无遮挡在线免费观看| 性欧美人与动物交配| 在线国产一区二区在线| 大型黄色视频在线免费观看| 五月玫瑰六月丁香| 在线观看午夜福利视频| 人妻少妇偷人精品九色| 亚洲精品乱码久久久v下载方式| 亚洲欧美日韩东京热| 男女啪啪激烈高潮av片| 亚洲成人精品中文字幕电影| 99久久久亚洲精品蜜臀av| 色噜噜av男人的天堂激情| 日韩三级伦理在线观看| 搡女人真爽免费视频火全软件| 99国产极品粉嫩在线观看| 日韩成人av中文字幕在线观看| 亚洲久久久久久中文字幕| 全区人妻精品视频| 成人漫画全彩无遮挡| 老司机福利观看| 插逼视频在线观看| 噜噜噜噜噜久久久久久91| 91精品国产九色| 小说图片视频综合网站| 国产精品爽爽va在线观看网站| 国产精品久久久久久久久免| 日本黄大片高清| 九九热线精品视视频播放| 成人二区视频| 国产老妇女一区| 国产一区二区激情短视频| 免费看av在线观看网站| 美女脱内裤让男人舔精品视频 | 精品欧美国产一区二区三| 亚洲成av人片在线播放无| 在线观看一区二区三区| 少妇人妻精品综合一区二区 | 噜噜噜噜噜久久久久久91| 久久久久久久久大av| 亚洲欧美日韩高清专用| 久久久久免费精品人妻一区二区| 美女黄网站色视频| 欧美成人精品欧美一级黄| 欧美区成人在线视频| 国产黄a三级三级三级人| 亚洲精品456在线播放app| av天堂中文字幕网| 99九九线精品视频在线观看视频| 熟女人妻精品中文字幕| 午夜激情欧美在线| eeuss影院久久| 嫩草影院精品99| 成人性生交大片免费视频hd| 一级毛片aaaaaa免费看小| 中文资源天堂在线| 国产午夜精品一二区理论片| 我的老师免费观看完整版| 亚洲成人精品中文字幕电影| 麻豆国产97在线/欧美| 91久久精品国产一区二区成人| 国产久久久一区二区三区| 免费无遮挡裸体视频| 欧美最新免费一区二区三区| 26uuu在线亚洲综合色| 有码 亚洲区| 国产精华一区二区三区| 久99久视频精品免费| 亚洲中文字幕日韩| ponron亚洲| 少妇丰满av| 男女边吃奶边做爰视频| 乱系列少妇在线播放| 女的被弄到高潮叫床怎么办| 久久久久久久久久成人| 国产午夜精品久久久久久一区二区三区| 久久久久久久午夜电影| 中国美女看黄片| 亚洲成人久久爱视频| 日本一本二区三区精品| 色综合色国产| 男女做爰动态图高潮gif福利片| АⅤ资源中文在线天堂| 国产美女午夜福利| 99热这里只有是精品50| 国产成人一区二区在线| 永久网站在线| 久久99蜜桃精品久久| 国产精品人妻久久久影院| 午夜福利视频1000在线观看| 亚洲成a人片在线一区二区| 一个人看视频在线观看www免费| 亚洲精品亚洲一区二区| 国产黄a三级三级三级人| videossex国产| 久久午夜亚洲精品久久| 99久国产av精品| www.av在线官网国产| 亚洲乱码一区二区免费版| 国产一区二区激情短视频| 六月丁香七月| 高清在线视频一区二区三区 | 久久中文看片网| 午夜亚洲福利在线播放| 国产麻豆成人av免费视频| 欧美一级a爱片免费观看看| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品乱码久久久久久按摩| 久久亚洲精品不卡| 日韩高清综合在线| 久99久视频精品免费| 小蜜桃在线观看免费完整版高清| 国产亚洲精品久久久久久毛片| 草草在线视频免费看| 久久午夜亚洲精品久久| 午夜精品一区二区三区免费看| 亚洲精品亚洲一区二区| 综合色av麻豆| 少妇熟女欧美另类| 中文资源天堂在线| av在线观看视频网站免费| 成年女人永久免费观看视频| 午夜爱爱视频在线播放| 亚洲人成网站高清观看| 亚洲人成网站在线播放欧美日韩| 哪里可以看免费的av片| 人妻系列 视频| 老熟妇乱子伦视频在线观看| 久久精品综合一区二区三区| 亚洲在线自拍视频| 国产私拍福利视频在线观看| 内地一区二区视频在线| av国产免费在线观看| 人妻少妇偷人精品九色| 日本成人三级电影网站| 亚洲国产精品成人综合色| 久久久久久久久中文| 99热只有精品国产| 特大巨黑吊av在线直播| 欧美日本亚洲视频在线播放| 在线免费观看不下载黄p国产| 亚洲中文字幕日韩| 一边摸一边抽搐一进一小说| 精品少妇黑人巨大在线播放 | 春色校园在线视频观看| 黄色日韩在线| 两个人视频免费观看高清| 亚洲人成网站在线观看播放| 欧美精品国产亚洲| 日本一本二区三区精品| 色吧在线观看| 精品人妻一区二区三区麻豆| 搡女人真爽免费视频火全软件| 国产亚洲欧美98| 成人毛片a级毛片在线播放| av卡一久久| 欧美+日韩+精品| 国产精品一区二区三区四区久久| 午夜激情欧美在线| 日韩国内少妇激情av| 欧美日本亚洲视频在线播放| 一区二区三区四区激情视频 | 亚洲成人精品中文字幕电影| 变态另类丝袜制服| 久久久久性生活片| 日韩在线高清观看一区二区三区| 18禁黄网站禁片免费观看直播| 美女黄网站色视频| 97热精品久久久久久| 免费黄网站久久成人精品| 国产精品福利在线免费观看| 国产日本99.免费观看| 边亲边吃奶的免费视频| 国产精品嫩草影院av在线观看| 网址你懂的国产日韩在线| 美女xxoo啪啪120秒动态图| 联通29元200g的流量卡| 日韩三级伦理在线观看| 国产色爽女视频免费观看| 亚洲欧美成人综合另类久久久 | 欧美激情国产日韩精品一区| 一级毛片久久久久久久久女| 亚洲av中文字字幕乱码综合| 国产一区二区激情短视频| 男女那种视频在线观看| 99热只有精品国产| 日本一本二区三区精品| 日韩三级伦理在线观看| 亚洲人成网站高清观看| 国产一区亚洲一区在线观看| 国产成人a区在线观看| 久久精品国产亚洲av香蕉五月| 极品教师在线视频| www日本黄色视频网| 国产日本99.免费观看| 久久久久久九九精品二区国产| 午夜免费激情av| 国产白丝娇喘喷水9色精品| 嫩草影院新地址| 免费av观看视频| 少妇的逼好多水| 亚洲在线观看片| 色综合亚洲欧美另类图片| 成熟少妇高潮喷水视频| 欧美日韩精品成人综合77777| a级毛色黄片| 欧美+亚洲+日韩+国产| 99久国产av精品国产电影| 小说图片视频综合网站| 插阴视频在线观看视频| 成人特级黄色片久久久久久久| 99久久无色码亚洲精品果冻| 免费看光身美女| 我要搜黄色片| 一级毛片aaaaaa免费看小| 国内揄拍国产精品人妻在线| 久久精品国产亚洲av香蕉五月| 在线a可以看的网站| 久久久成人免费电影| 亚洲精品色激情综合| 好男人在线观看高清免费视频| 国产av麻豆久久久久久久| 国产三级在线视频| 精品欧美国产一区二区三| 一级毛片aaaaaa免费看小| av国产免费在线观看| 亚洲最大成人手机在线| 成人一区二区视频在线观看| 1000部很黄的大片| 色综合站精品国产| 日本在线视频免费播放| 亚洲激情五月婷婷啪啪| 国产成人a∨麻豆精品| 色视频www国产| 天美传媒精品一区二区| 男女那种视频在线观看| 黄片无遮挡物在线观看| 一边摸一边抽搐一进一小说| 欧美日本视频| 国产国拍精品亚洲av在线观看| 人妻久久中文字幕网| 波野结衣二区三区在线| 亚洲欧美成人综合另类久久久 | 久久精品影院6| 少妇的逼好多水| 亚洲av电影不卡..在线观看| 亚洲精品自拍成人| 免费搜索国产男女视频| 日韩欧美在线乱码| 欧美一区二区亚洲| 九草在线视频观看| 六月丁香七月| 成人特级黄色片久久久久久久| 亚洲精品国产av成人精品| 高清午夜精品一区二区三区 | 蜜臀久久99精品久久宅男| 午夜激情欧美在线| 91aial.com中文字幕在线观看| 性欧美人与动物交配| 精品人妻视频免费看| 国产精品久久久久久久久免| 搡女人真爽免费视频火全软件| 亚洲图色成人| 色吧在线观看| 国产精品电影一区二区三区| 狂野欧美激情性xxxx在线观看| 欧美高清成人免费视频www| 亚洲无线在线观看| 色5月婷婷丁香| 免费大片18禁| 婷婷亚洲欧美| 一本久久精品| 一区二区三区高清视频在线| 日韩一区二区三区影片| 精品久久久久久久久亚洲| 99热这里只有精品一区| 国产精品,欧美在线| 国产成人a区在线观看| 国产国拍精品亚洲av在线观看| 日韩一区二区视频免费看| 久久久久久久午夜电影| 欧美+日韩+精品| 久久6这里有精品| 看十八女毛片水多多多| 国产精华一区二区三区| 日本免费一区二区三区高清不卡| 久久精品久久久久久久性| 亚洲国产精品sss在线观看| 欧美极品一区二区三区四区| 久久精品国产清高在天天线| 国产色婷婷99| 最近视频中文字幕2019在线8| 欧美人与善性xxx| 狠狠狠狠99中文字幕| 亚洲经典国产精华液单| 久久午夜亚洲精品久久| 神马国产精品三级电影在线观看| 免费看av在线观看网站| 国产伦精品一区二区三区视频9| 国产在视频线在精品| 国产精品人妻久久久影院| av专区在线播放| 国产一区二区三区在线臀色熟女| 久久久久国产网址| 午夜免费激情av| 成人毛片60女人毛片免费| 美女 人体艺术 gogo| 国产午夜精品久久久久久一区二区三区| 欧美成人免费av一区二区三区| 久久99热这里只有精品18| 国产高清三级在线| 久久久精品94久久精品| 亚洲最大成人中文| 最近手机中文字幕大全| 日韩av不卡免费在线播放| 麻豆av噜噜一区二区三区| 国产一区二区在线观看日韩| 日韩欧美国产在线观看| 精品久久久久久久久av| 国产免费男女视频| 亚洲精品久久国产高清桃花| 午夜福利高清视频| 男人狂女人下面高潮的视频| 99久久精品热视频| 成人一区二区视频在线观看| 少妇裸体淫交视频免费看高清| 久久鲁丝午夜福利片| 97热精品久久久久久| 两个人的视频大全免费| 亚洲一区高清亚洲精品| 久久这里只有精品中国| 国产探花在线观看一区二区| 国产精品精品国产色婷婷| 大香蕉久久网| 日韩欧美精品免费久久| 一个人看的www免费观看视频| 成人高潮视频无遮挡免费网站| 狂野欧美激情性xxxx在线观看| 免费观看精品视频网站| 国产私拍福利视频在线观看| 特大巨黑吊av在线直播| 日韩av不卡免费在线播放| 日韩欧美精品免费久久| 老熟妇乱子伦视频在线观看| 乱人视频在线观看| 大又大粗又爽又黄少妇毛片口| 国产三级中文精品| 国产精品综合久久久久久久免费| 嫩草影院新地址| 欧美最黄视频在线播放免费| 国内揄拍国产精品人妻在线| 特大巨黑吊av在线直播| 18禁黄网站禁片免费观看直播| 免费看日本二区| 26uuu在线亚洲综合色| 久久精品久久久久久久性| 亚洲精品自拍成人| 一级黄片播放器| 亚洲精品亚洲一区二区| 少妇熟女欧美另类| 欧美一区二区精品小视频在线| 日韩欧美精品免费久久| 夫妻性生交免费视频一级片| 丝袜美腿在线中文| 精品少妇黑人巨大在线播放 | 久久久久久久久久黄片| 久久国内精品自在自线图片| 老熟妇乱子伦视频在线观看| 国产黄片视频在线免费观看| 免费人成在线观看视频色| 国产高清视频在线观看网站| 久久人妻av系列| 久久精品国产亚洲av香蕉五月| 蜜桃亚洲精品一区二区三区| 蜜臀久久99精品久久宅男| 国产人妻一区二区三区在| ponron亚洲| 69av精品久久久久久| 男人和女人高潮做爰伦理| 亚洲人成网站高清观看| 亚洲国产精品sss在线观看| 人妻少妇偷人精品九色| 国产熟女欧美一区二区| 美女内射精品一级片tv| www.av在线官网国产| 国产精品精品国产色婷婷| 人人妻人人看人人澡| 哪里可以看免费的av片| 99久久精品一区二区三区| 91在线精品国自产拍蜜月| 亚洲欧美精品自产自拍| 国产一级毛片在线| 中文精品一卡2卡3卡4更新| 欧美激情国产日韩精品一区| 久久国内精品自在自线图片| 国产真实伦视频高清在线观看| 老女人水多毛片| 激情 狠狠 欧美| .国产精品久久| 少妇人妻精品综合一区二区 | 美女cb高潮喷水在线观看| 蜜臀久久99精品久久宅男| 久久精品国产鲁丝片午夜精品| 床上黄色一级片| 国产精品国产高清国产av| 日韩亚洲欧美综合| 精华霜和精华液先用哪个| 又黄又爽又刺激的免费视频.| 深爱激情五月婷婷| 精品熟女少妇av免费看| 国产一级毛片在线| 国产av不卡久久| 亚洲国产精品合色在线| 日本欧美国产在线视频| 深夜a级毛片| 亚洲在线观看片| 一夜夜www| 我的老师免费观看完整版| 女的被弄到高潮叫床怎么办| 麻豆国产97在线/欧美| 白带黄色成豆腐渣| 中文字幕精品亚洲无线码一区| 久久婷婷人人爽人人干人人爱| 中文字幕av在线有码专区| 亚洲高清免费不卡视频| 日产精品乱码卡一卡2卡三| 亚洲国产精品国产精品| 狂野欧美激情性xxxx在线观看| 在线观看免费视频日本深夜| 日韩一区二区三区影片| 日韩欧美三级三区| 亚洲欧美日韩东京热| av女优亚洲男人天堂| 少妇被粗大猛烈的视频| 一级毛片aaaaaa免费看小| 夜夜爽天天搞| 国产三级中文精品| 国产亚洲av片在线观看秒播厂 | 哪个播放器可以免费观看大片| 免费观看精品视频网站| 国产成人a∨麻豆精品| 久久欧美精品欧美久久欧美| 观看免费一级毛片| 日日干狠狠操夜夜爽| 12—13女人毛片做爰片一| 九九爱精品视频在线观看| 国产视频首页在线观看| 高清午夜精品一区二区三区 | 亚洲av免费在线观看| 搞女人的毛片| 国产真实乱freesex| 婷婷六月久久综合丁香| 久久久久免费精品人妻一区二区| 高清毛片免费观看视频网站| ponron亚洲| 久久久国产成人精品二区| 99久久九九国产精品国产免费| www.色视频.com| 十八禁国产超污无遮挡网站| 成年女人永久免费观看视频| 亚洲无线观看免费| 久久6这里有精品| 变态另类成人亚洲欧美熟女| 久久午夜亚洲精品久久| 免费观看在线日韩| 给我免费播放毛片高清在线观看| av在线蜜桃| 精品人妻熟女av久视频| 91aial.com中文字幕在线观看| 欧美成人免费av一区二区三区| 精品国产三级普通话版| 精品久久久久久成人av| 国产精品,欧美在线| 国产激情偷乱视频一区二区| 综合色丁香网| 日本成人三级电影网站| 亚洲国产精品成人久久小说 | 18禁在线无遮挡免费观看视频| 在线天堂最新版资源| 亚洲成人久久爱视频| 男人舔女人下体高潮全视频| 亚洲欧美成人精品一区二区| 国产精品嫩草影院av在线观看| 亚洲美女视频黄频| 欧美人与善性xxx| 国产美女午夜福利| 99热只有精品国产| 免费无遮挡裸体视频| 国产69精品久久久久777片| 国产成人福利小说| 熟女电影av网| 一卡2卡三卡四卡精品乱码亚洲| 最近视频中文字幕2019在线8| 国产免费一级a男人的天堂| 99久久成人亚洲精品观看|