• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-phase modulation via similariton solutions of the perturbed NLSE Modulation instability and induced self-steepening

    2022-09-08 07:37:58AbdelGawad
    Communications in Theoretical Physics 2022年8期

    H I Abdel-Gawad

    Department of Mathematics Faculty of Science Cairo University Egypt

    Abstract The perturbed nonlinear Schrodinger equation(PNLSE)describes the pulse propagation in optical fibers,which results from the interaction of the higher-order dispersion effect,self-steepening(SS)and self-phase modulation (SPM).The challenge between these aforementioned phenomena may lead to a dominant one among them.It is worth noticing that the study of modulation instability(MI) leads to the inspection of dominant phenomena (DPh).Indeed,the MI triggers when the coefficient of DPh exceeds a critical value and it may occur that the interaction leads to wave compression.The PNLSE is currently studied in the literature,mainly on finding traveling wave solutions.Here,we are concerned with analyzing the similarity solutions of the PNLSE.The exact solutions are obtained via introducing similarity transformations and by using the extended unified method.The solutions are evaluated numerically and they are shown graphically.It is observed that the intensity of the pulses exhibits self steepening which progresses to shock soliton in ultrashort time (or near t=0).Also,it is found that the real part of the solution exhibits self-phase modulation in time.The study of(MI)determines the critical value for the coefficients of SS,SPM,or high dispersivity to occur.

    Keywords: Perturbed NLSE,steepening,self–phase modulation,extended unified method

    1.Introduction

    NLSEs are the stem of various studies in the physics of nonlinear optics.These equations have the property that,in the presence of Kerr nonlinearity,they are integrable when the real and imaginary parts are linearly dependent.The PNLSE was remarkably analyzed in the literature.It describes the pulse propagation that results from self-steepening,selfphase modulation and third-order dispersion interaction.Also,it is used for investigating an ultra-short optical pulse propagating along the nonlinear fibers with the Raman effect and self-steepening.Single-mode propagation of ultrashort optical pulse is governed by a generalized NLSE.An extended version of a NLSE,including polarization effects,high-order dispersion,Kerr and Raman nonlinearities,self-steepening effects,as well as wavelength-dependent mode coupling and nonlinear coefficients,was studied in [1].In [2],the inverse scattering transform with one parameter was used to inspect the breather-like four-parameter soliton solutions.By using the extended sinh-Gordon expansion method,the space-time fractional PNLSE equation was considered in [3].In [4],the extension of the rational sine-cosine method and rational sinhcosh method was employed to construct the exact traveling wave solutions of PNLSE.In The two variables(G′/G,1/G)-expansion method,to obtain abundant closed-form wave solutions to the PNLSE,was implemented [5].Dark and singular solitons for the resonance PNLSE,with beta derivative,were investigated in [6].The conformable fractional derivative was used for constructing exact solitary wave solutions to the fractional PNLSE with quantic nonlinearity.Further,the effects of nonlinearity on the ultrashort optical solitons pulse propagation in non-Kerr media were investigated in [7].In [8],complex solitons in the PNLSE model,with the help of an analytical method,were obtained.By using the modified mapping method and the extended mapping method,some exact solutions of the PNLSE were obtained in[9,10].In [11],the PNLSE has been investigated using the sub-equation expansion method.Further relevant works were carried out in[12–15].In[16],the problems of the existence of quasi-periodic and almost-periodic solutions and diffusion for NLSEs with a random potential were analyzed.The chiral NLSE,with perturbation term and a coefficient of Bohm potential,was considered in [17,18].The variational iteration method for obtaining bright and dark optical solitons for(2+1)-dimensional NLSE,that appear in the anomalous dispersion regimes has been considered in [19].An analytic description of NLSE breather propagation in optical fibers,with strong temporal and spatial localization,was investigated in [20].The Kundu–Mukherjee–Naskar equation was studied,with the aid of the extended trial function method to recover optical soliton solutions in(2+1)–dimensions,in[21].In[22],a new coupled NLSE was proposed where it is proved that it is completely integrable.The improvedtan(φ(ξ))expansion method was employed to find the solutions of the PNLSE[23].The direct algebraic method and the first integral method were used in[24]and[25]respectively for finding exact solutions of the PNLSE.Here,the extended unified method is used to find similariton solutions of the PNLSE.Together with introducing complex amplitude transformations [26–32].Relevant works were also carried out in [33–39]

    The outlines of this paper are as in what it follows.In section 2,mathematical formulation and outlines of the extended unified method are presented.Section 3 is devoted to polynomial solutions,while rational solutions are found in section 4.Modulation instability is studied in section 4.Section 5 is devoted to conclusions.

    2.Mathematical formulation

    The study of the propagation of optical pulses in optical fibers,by taking into account third order dispersion,selfsteepening of pulse and self-phase modulation is of great interest.These effects are impeded in the PNLSE proposed in[31,32].This equation reads,

    where w=w(x,t) is a complex function,h1is the dispersion coefficient,h2is the coefficient of Kerr nonlinearity,and stands for self-focusing or self-defocusing according to when h2>0 or h2<0 respectively.In (1) α ,β and γ are the coefficients of the third order dispersion,self-steepening and self-phase modulation respectively.We use a transformation that depicts the waves produced by soliton-periodic wave collision into (1),and we get,

    To find similariton solutions of (1),we introduce the similarity transformations u(x,t)=U(z,t),v(x,t)=V(z,t),z=μ(t) x,t: = t and (3) becomes,

    To find the exact solutions of (4),we use the extended unified method which is outlined in what follows.

    2.1.Extended unified method

    Here,we present the outlines of the extended unified method.This method asserts that solutions of a nonlinear evolution equation are expressed in the polynomial or rational forms,in an auxiliary function that satisfies an appropriate auxiliary equation.

    2.1.1.Polynomial solutions.The polynomial solution of the equation(4)of degree n in an auxiliary function,namely g(z,t),which satisfies an auxiliary equation,is,

    (i) the number of equations obtained in the later step,say n2.

    (ii) the number of the arbitrary parameters ai(t),ciin (5)(say n1) and the highest order derivative in (4) ,say m.Then the consistency condition reads n2?n1≤m.In(1) (or (4)),m=3 is the highest order derivative and this condition reads k ≤3 or k=1,2,3.The case when p=2 is analyzed by the same way.We mention that,when p=1,the solution of the auxiliary equation gives rise to(explicit or implicit)elementary functions.When p=2 they give rise to periodic or elliptic solutions.

    It is worth mentioning that the extended unified method is considered as an alternative to the use of Lie symmetries of PDEs.We think that the present method prevails the technique of Lie symmetries as it is of low time cost in symbolic computation,while a long hierarchy of steps is needed in the second method.

    2.1.2.The rational function solutions.The rational function solution of (1) or (2) is taken,

    The balance and the consistency conditions in the case of rational function solution are treated in the same way as in section 2.1.For details see [19].

    The steps of computations are carried out in what follows [19]:

    Step 1.Implementing (5) or (6) into (4),the results give rise to a set of nonlinear algebraic equations.

    Step 2.Solving the auxiliary equations in(5)or in(6)to get the explicit form for g(z,t).

    Step 3.Finding the exact formal solution which is given by the equations (5) or (6).

    Step 4.Check that the solution obtained satisfies (4).

    3.Polynomial solutions of (4)

    Here,we consider (5),by bearing in mind that n=k ?1.

    3.1.Case when p=1 and k=2

    In this case,we write,

    In(7),for linearly dependent functions U and V,we take b0(t)=a0(t)b1(t)/a1(t).When substituting from (7) into (4)and by setting the coefficients ofg(z,t)j,j= 0,1,…equal to zero,we get,

    The auxiliary equation solves to,

    Finally,the solutions are,

    where μ(t) is arbitrary.

    The results in (10) are used to calculate |w(x,t)| and Re w(x,t) which are,

    where U(z,t) and V(z,t) are given in (10).

    By using(11)and(10)are used to calculate|w(x,t)|and Re w(x,t)and they are evaluated numerically.The results are shown in figures 1(i)–(iv).

    When β=?1.5,γ=0.8,k=4,h1=0.9,c2=3.7,α=1.9,k0=2.5,A0=1.5,

    μ(t) = sech (0 .6t)(3 +cos ( 8t)).Figure 1(i) shows a cascade of solitons towards steepening near t=0.Also,figure 1(ii) shows self steepening which progress to shock solitons near t=0.Figure 1(ii) shows,also,a cascade of solitons with quasi-self-modulation in time.Figure 1(iv)shows self-phase modulation with steepening near the origin.

    Figure 1.The 3D and contour plots of |w(x,t)| are displayed against x and t in figures 1(i) and (ii) respectively.The same is done for Re w(x,t) in figures 1(iii) and (iv) respectively.

    3.2.When p=2 and k=2

    Here,we consider (7) with the auxiliary equation,

    By inserting (7) and (15) into (4),we have,

    The auxiliary function is,

    Finally,the solutions are,

    The equations(10)and(15)are used to calculate|w(x,t)|and Re w(x,t)and they are evaluated numerically.The results are shown in figures 2(i)–(iv).

    When β=?1.5,γ=0.8,k=4.5,h1=0.9,c2=3.7,α=1.9,c1=2.5,A0=?1.5,

    μ(t) = sech ( 0 .06t)(3 sin ( 7t) +cos ( 8t)).Figure 2(i)shows oscillatory waves with cusps and self-steepening near t=0.Also,figure 2(ii)shows,also,self-steepening.Figure 2(iii)shows a rhombus pattern (diamond) with self-phase modulation solitons in time.Figure 2(iv)shows,also,self-phase modulation.

    Figure 2.The 3D and contour plots of|w(x,t)|are displayed against x and t in figures 2(i)and(ii)respectively.The same is done for Rew(x,t)in figures 2(iii) and (iv) respectively.

    3.3.When p=1 and k=3

    The solutions are written,

    For linearly dependent solutions,we take b0(t)=a0(t)b1(t)/a1(t),and b2(t)=a2(t)b1(t)/a1(t).By inserting (12)into (4),we have,

    The final solutions are,

    The equations(10)and(18)are used to calculate|w(x,t)|and Re w(x,t)and they are evaluated numerically.The results are shown in figures 3(i)–(iv).

    When β=?1.5,γ=0.8,k0:=0.5,k=4,h1=0.9,c2=1.7,c1=0.5,α=0.9,c3=0.5,A0=?1.5,μ(t) = 0.05 sech (0 .02t+ 0.5) ( sin ( 7t) +cos ( 8t)).

    Figure 3(i) shows hybrid waves with cusps,which are highly dispersed,and self-steepening near t=0.Also,figure 2(ii) shows,also,self- steepening.Figure 2(iii) shows wave complexity with quasi- self-steepening for x >0.Figure 2(iv) shows,also,self-phase modulation for moderate values of t.

    4.Rational solutions

    In this case,we write the solutions,

    In this case,for finding similarity solutions,the calculations are not straightforward.By inserting (19) into (4) and setting the coefficients ofg(z,t)i,i= 0,1,2,… ,equal to zero,we get a set of nonlinear equations.Which are,

    Figure 3.The 3D and contour plots of|w(x,t)|are displayed against x and t in figures 3(i)and(ii)respectively.The same is done for Rew(x,t)in figures 3(iii) and (iv) respectively.

    The final Solutions are,

    By using (11) and (18) |w(x,t)| and Re w(x,t) are evaluated and the numerical results are shown in figures 4(i)–(iv).

    When β=?1.5,γ=0.8,k=4,h1=0.9,α=1.9,c1=3.5,A0=1.5,s0=1.5,s1=2,

    μ(t) = sech ( 0 .06t+ 0.3) (3 sin ( 7t) +4 cos ( 8t)).

    Figure 4(i) shows solitons cascade in time with selfsteepening for small-time values.Figure 4(ii) shows significant self-steepening for small-time values.Figure 4(iii)shows quasi-self-modulation solitons in time.Figure 4 (iv)shows quasi-self modulation on x <0 and for small-time values.

    5.Discussion

    The results found here are shown in the figures.These figures show the relevant behavior of solutions which are interpreted as self-steepening,self-phase modulation and high dispersivity in agreement with the characteristics of the perturbed NLSE.

    Furthermore,different pattern formations are observed,solitons-cascade,complex waves,and rhombus shape.

    Figure 4.The 3D and contour plots of|w(x,t)|are displayed against x and t in figures 1(i)and(ii)respectively.The same is done for Rew(x,t)in figures 4(iii) and (iv) respectively.

    6.Modulation instability

    For analyzing the modulation instability (MI),an initial normal mode(NM)propagation is considered.Or also,when the NM is a possible pulse propagation in the system under study.Here,(1) admits a solution in the form,

    In (23) A0is the amplitude.We consider,

    By inserting (24) into (1),calculations give rise to,

    The eigenvalue problem is governed by the equation detH=0,which gives rise to,

    The eigenvalue problem in (26) is subjected to the boundary conditions U(±∞)=0 and V(±∞))=0.These conditions suggest to write,

    By substituting from (25) and (27) into(26),we find the eigenvalues,

    In (28),whatever the sign of G,we find that MI holds when,

    Thus (29) determines the critical value for the coefficient of self steepening (SS) (or the self-phase modulation (SPM)) to be dominant.This holds,provided thatm>Alternatively,MI riggers the outbreak of SS (or SPM).dominates whenm<high dispersivity occurs.

    7.Conclusions

    Here,similariton solutions of the perturbed nonlinear Shrodinger equation are found.To this issue,similarity transformations are introduced.Further,a transformation that inspects the kinds of waves produced by soliton–periodic wave collision is applied.Exact solutions are obtained by using the extended unified method.The numerical results of the solution are shown graphically.These figures reveal self-steepening which progresses to a shock soliton in space for the intensity of the pulses,while the real part of the solutions shows self-phase modulation in time.Further,there are different patterns among them including soliton-cascades,complexes,rhombuses,and superlattices are remarked.It is also found that modulation instability is launched when the coefficients of self-steepening (self-modulation) exceed a critical value,which induces self-steepening phenomena.In future work,the behavior of similariton solutions of the perturbed Chen–Lee–Liu equation will be considered.

    The author declares that there is no conflict of interest.

    婷婷色综合大香蕉| 少妇高潮的动态图| 婷婷色av中文字幕| 亚洲美女黄色视频免费看| 90打野战视频偷拍视频| 国产在线一区二区三区精| 亚洲高清免费不卡视频| 日本wwww免费看| 久久久久国产网址| 久久人人97超碰香蕉20202| 一区二区三区四区激情视频| 亚洲精品色激情综合| 亚洲经典国产精华液单| 午夜91福利影院| 最新中文字幕久久久久| 插逼视频在线观看| 老女人水多毛片| 在线观看www视频免费| 国产激情久久老熟女| 日本午夜av视频| 欧美日韩综合久久久久久| 亚洲三级黄色毛片| 一级黄片播放器| 欧美 亚洲 国产 日韩一| 久久久国产一区二区| 2022亚洲国产成人精品| 两个人免费观看高清视频| 日韩一区二区三区影片| 国产成人免费无遮挡视频| av免费在线看不卡| 国产高清不卡午夜福利| 亚洲精品一区蜜桃| 午夜老司机福利剧场| 欧美国产精品一级二级三级| 最黄视频免费看| 精品国产露脸久久av麻豆| 天天影视国产精品| 国产精品蜜桃在线观看| 9191精品国产免费久久| 亚洲国产欧美在线一区| 国产免费福利视频在线观看| 美女中出高潮动态图| 欧美xxxx性猛交bbbb| 国产精品秋霞免费鲁丝片| 国产在线免费精品| 天天影视国产精品| 中文字幕亚洲精品专区| 男女国产视频网站| 最新的欧美精品一区二区| 五月开心婷婷网| 久久精品国产鲁丝片午夜精品| 亚洲四区av| 高清av免费在线| av在线观看视频网站免费| 国产欧美亚洲国产| 在线亚洲精品国产二区图片欧美| 国精品久久久久久国模美| 成人午夜精彩视频在线观看| 丝袜脚勾引网站| 国产精品国产三级专区第一集| 日韩一本色道免费dvd| 日韩精品有码人妻一区| 777米奇影视久久| 国产精品久久久久久久电影| 青春草视频在线免费观看| 成年av动漫网址| 99热这里只有是精品在线观看| 一级毛片我不卡| 男女国产视频网站| 成人国语在线视频| 国产一区二区在线观看日韩| 日本欧美视频一区| 国产成人欧美| 亚洲国产色片| 人人妻人人添人人爽欧美一区卜| 一级a做视频免费观看| 精品国产一区二区久久| 色网站视频免费| 成人二区视频| 熟女人妻精品中文字幕| 美国免费a级毛片| 精品少妇久久久久久888优播| 国产精品秋霞免费鲁丝片| 精品福利永久在线观看| 不卡视频在线观看欧美| 丝袜喷水一区| 五月天丁香电影| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品专区欧美| 午夜日本视频在线| 欧美激情极品国产一区二区三区 | 在线观看人妻少妇| 91精品国产国语对白视频| 一级a做视频免费观看| 亚洲精品乱码久久久久久按摩| 少妇被粗大的猛进出69影院 | 80岁老熟妇乱子伦牲交| 高清毛片免费看| 乱人伦中国视频| 亚洲美女搞黄在线观看| 欧美日韩av久久| 老司机影院成人| 啦啦啦视频在线资源免费观看| 成人国产av品久久久| 美女中出高潮动态图| 涩涩av久久男人的天堂| 国产精品蜜桃在线观看| 欧美 日韩 精品 国产| 亚洲伊人色综图| 久久婷婷青草| 日韩成人伦理影院| 欧美人与善性xxx| 不卡视频在线观看欧美| 插逼视频在线观看| 大话2 男鬼变身卡| 91精品三级在线观看| 在线观看免费视频网站a站| 91成人精品电影| 国产精品久久久久久久久免| 国产片特级美女逼逼视频| 中文字幕最新亚洲高清| 免费观看a级毛片全部| 一区二区av电影网| 日本-黄色视频高清免费观看| 精品亚洲乱码少妇综合久久| 十八禁高潮呻吟视频| 国产探花极品一区二区| 日产精品乱码卡一卡2卡三| 精品午夜福利在线看| 美女福利国产在线| 亚洲欧美日韩另类电影网站| 极品少妇高潮喷水抽搐| 久久久久久久久久成人| 成人亚洲欧美一区二区av| 午夜日本视频在线| 精品一区二区免费观看| 啦啦啦视频在线资源免费观看| 超碰97精品在线观看| 国产又爽黄色视频| 永久网站在线| 国产一区亚洲一区在线观看| 久久韩国三级中文字幕| 999精品在线视频| 妹子高潮喷水视频| 久久久久久久亚洲中文字幕| 性高湖久久久久久久久免费观看| 天天躁夜夜躁狠狠久久av| 美女国产视频在线观看| 亚洲av男天堂| 国产亚洲欧美精品永久| 欧美国产精品一级二级三级| 9色porny在线观看| 亚洲欧美中文字幕日韩二区| 性色av一级| 欧美成人精品欧美一级黄| 欧美97在线视频| 日韩,欧美,国产一区二区三区| 亚洲第一区二区三区不卡| 日本色播在线视频| 高清av免费在线| 高清不卡的av网站| 一二三四在线观看免费中文在 | 成人免费观看视频高清| 丝袜喷水一区| 日韩一区二区三区影片| 欧美成人午夜精品| 亚洲精品第二区| 国产男女内射视频| 全区人妻精品视频| 亚洲经典国产精华液单| 欧美日本中文国产一区发布| 成人免费观看视频高清| 在线观看人妻少妇| 久久人人97超碰香蕉20202| 久久久久久人人人人人| 精品亚洲成国产av| 色94色欧美一区二区| av播播在线观看一区| www.熟女人妻精品国产 | 国产探花极品一区二区| 18在线观看网站| 欧美少妇被猛烈插入视频| 一级毛片我不卡| 天天躁夜夜躁狠狠躁躁| 久久婷婷青草| 黄色一级大片看看| 亚洲精品乱码久久久久久按摩| 国产熟女午夜一区二区三区| www.熟女人妻精品国产 | 日本免费在线观看一区| 只有这里有精品99| 久久精品久久久久久噜噜老黄| 中文精品一卡2卡3卡4更新| 国产精品久久久久久av不卡| 欧美3d第一页| 亚洲精品久久成人aⅴ小说| 国产精品久久久久久久电影| 五月伊人婷婷丁香| 国产综合精华液| 国产黄色视频一区二区在线观看| 国产精品麻豆人妻色哟哟久久| www.av在线官网国产| 蜜臀久久99精品久久宅男| 黑人猛操日本美女一级片| 免费黄色在线免费观看| 国产亚洲一区二区精品| 午夜福利视频在线观看免费| 精品少妇黑人巨大在线播放| 国产av精品麻豆| 看非洲黑人一级黄片| 精品久久国产蜜桃| 午夜老司机福利剧场| 女人被躁到高潮嗷嗷叫费观| av黄色大香蕉| 亚洲精品美女久久久久99蜜臀 | 亚洲精品久久午夜乱码| 日韩av在线免费看完整版不卡| 日韩熟女老妇一区二区性免费视频| 国产伦理片在线播放av一区| 久久精品熟女亚洲av麻豆精品| 欧美成人午夜精品| 国内精品宾馆在线| 精品久久久精品久久久| 日本av手机在线免费观看| 激情五月婷婷亚洲| 成人国产av品久久久| 搡老乐熟女国产| 成人国产av品久久久| 久久97久久精品| 国产亚洲最大av| 国产亚洲精品久久久com| 精品人妻一区二区三区麻豆| 日韩成人伦理影院| 18在线观看网站| 两性夫妻黄色片 | 欧美人与性动交α欧美精品济南到 | 亚洲婷婷狠狠爱综合网| 久久韩国三级中文字幕| 久久午夜福利片| 99久久人妻综合| 丰满饥渴人妻一区二区三| 9191精品国产免费久久| 国产高清国产精品国产三级| 欧美成人午夜精品| 韩国av在线不卡| 乱码一卡2卡4卡精品| 美女中出高潮动态图| 国产免费现黄频在线看| 亚洲激情五月婷婷啪啪| 亚洲国产精品专区欧美| 黑人猛操日本美女一级片| 曰老女人黄片| 精品一区二区三卡| 国产探花极品一区二区| 精品人妻偷拍中文字幕| 九色成人免费人妻av| 午夜福利影视在线免费观看| 三上悠亚av全集在线观看| 免费看不卡的av| 天堂中文最新版在线下载| 视频区图区小说| 青春草亚洲视频在线观看| 男人爽女人下面视频在线观看| 国产深夜福利视频在线观看| 欧美+日韩+精品| 大香蕉久久成人网| 少妇人妻 视频| 久久久久久久精品精品| 久久青草综合色| 亚洲成人一二三区av| 免费看不卡的av| 久久99一区二区三区| 一级毛片 在线播放| 一本大道久久a久久精品| 精品国产一区二区三区四区第35| 亚洲激情五月婷婷啪啪| 精品一区在线观看国产| 一本大道久久a久久精品| 在线观看一区二区三区激情| 看免费成人av毛片| 插逼视频在线观看| 只有这里有精品99| xxxhd国产人妻xxx| 亚洲精品456在线播放app| 免费看不卡的av| 满18在线观看网站| 又粗又硬又长又爽又黄的视频| 国产1区2区3区精品| 天堂俺去俺来也www色官网| 久久精品夜色国产| 国产亚洲一区二区精品| 中文乱码字字幕精品一区二区三区| 色视频在线一区二区三区| 免费久久久久久久精品成人欧美视频 | 免费看av在线观看网站| 少妇 在线观看| 日本欧美国产在线视频| 丝袜脚勾引网站| 亚洲精品国产av成人精品| 91精品国产国语对白视频| 国产精品熟女久久久久浪| www日本在线高清视频| 下体分泌物呈黄色| 一级爰片在线观看| 午夜福利网站1000一区二区三区| 国产男人的电影天堂91| 99久久综合免费| 国产亚洲精品久久久com| 亚洲国产看品久久| 男女免费视频国产| 校园人妻丝袜中文字幕| 亚洲图色成人| 成人毛片60女人毛片免费| 亚洲国产精品专区欧美| 亚洲综合色网址| 免费黄色在线免费观看| 亚洲国产精品999| 国产一区二区三区av在线| 男男h啪啪无遮挡| 亚洲伊人色综图| 国产一区二区激情短视频 | 国产在线一区二区三区精| 日韩熟女老妇一区二区性免费视频| 成人国语在线视频| 国产精品久久久久久精品电影小说| 亚洲欧美色中文字幕在线| 永久网站在线| 国产亚洲午夜精品一区二区久久| 又黄又粗又硬又大视频| av黄色大香蕉| av网站免费在线观看视频| 精品久久蜜臀av无| 9191精品国产免费久久| 中文字幕亚洲精品专区| 久久久久国产网址| 色婷婷av一区二区三区视频| 日韩欧美精品免费久久| 精品亚洲成国产av| 亚洲一码二码三码区别大吗| 久久ye,这里只有精品| 妹子高潮喷水视频| 九草在线视频观看| 日韩中字成人| 一区二区三区乱码不卡18| av在线app专区| 狠狠婷婷综合久久久久久88av| 日韩一本色道免费dvd| 少妇人妻久久综合中文| 91久久精品国产一区二区三区| 国产 精品1| 免费在线观看完整版高清| 成人国产麻豆网| 最后的刺客免费高清国语| 天天影视国产精品| 欧美精品人与动牲交sv欧美| 久久午夜综合久久蜜桃| 王馨瑶露胸无遮挡在线观看| 黄网站色视频无遮挡免费观看| 久久久a久久爽久久v久久| 一级片免费观看大全| 少妇人妻久久综合中文| 看免费av毛片| 中文字幕制服av| 99re6热这里在线精品视频| 亚洲精品日韩在线中文字幕| 国产精品三级大全| 韩国av在线不卡| 精品人妻熟女毛片av久久网站| 婷婷色麻豆天堂久久| 一级片'在线观看视频| 国产黄色视频一区二区在线观看| 国产成人一区二区在线| 亚洲天堂av无毛| 校园人妻丝袜中文字幕| 日韩一区二区三区影片| 国产精品久久久av美女十八| 久久人妻熟女aⅴ| 久久久久人妻精品一区果冻| 欧美亚洲日本最大视频资源| 午夜福利在线观看免费完整高清在| 国产精品三级大全| 建设人人有责人人尽责人人享有的| 精品人妻一区二区三区麻豆| 欧美老熟妇乱子伦牲交| 高清黄色对白视频在线免费看| 久久人人爽人人爽人人片va| 国产 精品1| 午夜免费观看性视频| 日韩一本色道免费dvd| 桃花免费在线播放| 建设人人有责人人尽责人人享有的| 成年美女黄网站色视频大全免费| 欧美日韩视频高清一区二区三区二| 99热6这里只有精品| 欧美老熟妇乱子伦牲交| 少妇被粗大猛烈的视频| 色婷婷久久久亚洲欧美| 两个人免费观看高清视频| 26uuu在线亚洲综合色| 美女内射精品一级片tv| 久久久精品免费免费高清| 欧美日韩精品成人综合77777| av国产久精品久网站免费入址| 国产成人精品一,二区| 狠狠婷婷综合久久久久久88av| 欧美国产精品一级二级三级| 熟妇人妻不卡中文字幕| a级毛片在线看网站| 国产免费一区二区三区四区乱码| 免费黄频网站在线观看国产| 美女脱内裤让男人舔精品视频| 国产国语露脸激情在线看| 男人爽女人下面视频在线观看| 亚洲三级黄色毛片| 欧美日韩视频精品一区| 欧美日韩国产mv在线观看视频| h视频一区二区三区| av免费观看日本| 久久 成人 亚洲| 午夜影院在线不卡| 天天躁夜夜躁狠狠久久av| 久久韩国三级中文字幕| 国产不卡av网站在线观看| av片东京热男人的天堂| 久久久精品区二区三区| 午夜福利在线观看免费完整高清在| 成人影院久久| 精品亚洲成国产av| 国产女主播在线喷水免费视频网站| 美女国产视频在线观看| 99久国产av精品国产电影| 色5月婷婷丁香| xxx大片免费视频| 激情视频va一区二区三区| 日本免费在线观看一区| 伦理电影免费视频| 亚洲图色成人| 18在线观看网站| 国产精品嫩草影院av在线观看| 国产男女超爽视频在线观看| 美女xxoo啪啪120秒动态图| 午夜免费观看性视频| 精品一区二区三区四区五区乱码 | 色视频在线一区二区三区| 在线亚洲精品国产二区图片欧美| 美女大奶头黄色视频| 日日摸夜夜添夜夜爱| 另类精品久久| 国产精品一区二区在线观看99| 高清av免费在线| 亚洲精品国产av蜜桃| 大话2 男鬼变身卡| 日本av手机在线免费观看| 在线观看一区二区三区激情| 亚洲美女黄色视频免费看| 免费日韩欧美在线观看| 插逼视频在线观看| 免费观看无遮挡的男女| 久久这里有精品视频免费| 最新中文字幕久久久久| 97精品久久久久久久久久精品| 99久久人妻综合| 久久精品国产a三级三级三级| 日本免费在线观看一区| 97在线视频观看| 成年av动漫网址| 母亲3免费完整高清在线观看 | 在线天堂最新版资源| 免费av中文字幕在线| 久久久久久久国产电影| 亚洲国产精品一区二区三区在线| 黑人猛操日本美女一级片| 午夜精品国产一区二区电影| 午夜福利网站1000一区二区三区| 国产视频首页在线观看| 美女视频免费永久观看网站| 久久久久久久久久人人人人人人| 日韩av免费高清视频| 亚洲精品成人av观看孕妇| av有码第一页| 丰满迷人的少妇在线观看| 亚洲丝袜综合中文字幕| 成人国语在线视频| 精品人妻一区二区三区麻豆| 2022亚洲国产成人精品| 国产精品久久久久成人av| 高清视频免费观看一区二区| 日韩制服骚丝袜av| 久久人人爽人人片av| 99国产综合亚洲精品| 久久影院123| 十八禁高潮呻吟视频| 这个男人来自地球电影免费观看 | 精品少妇黑人巨大在线播放| 色婷婷av一区二区三区视频| 建设人人有责人人尽责人人享有的| 你懂的网址亚洲精品在线观看| √禁漫天堂资源中文www| 18禁动态无遮挡网站| 国产免费福利视频在线观看| 久久午夜综合久久蜜桃| 精品亚洲成国产av| 欧美日韩视频精品一区| 国产精品久久久久成人av| 亚洲在久久综合| 一本色道久久久久久精品综合| 久久人人爽人人片av| 国产熟女欧美一区二区| 久久人人爽av亚洲精品天堂| 一个人免费看片子| 日韩伦理黄色片| 精品一区二区三区视频在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品酒店卫生间| 少妇人妻久久综合中文| 亚洲欧美日韩另类电影网站| 熟女电影av网| 久久韩国三级中文字幕| 日韩在线高清观看一区二区三区| 国产精品人妻久久久影院| 高清毛片免费看| 日本av免费视频播放| 少妇人妻精品综合一区二区| 国产av精品麻豆| 免费观看无遮挡的男女| 日韩精品免费视频一区二区三区 | 青青草视频在线视频观看| 一级爰片在线观看| 日韩中字成人| 99热这里只有是精品在线观看| 午夜福利网站1000一区二区三区| 国产成人a∨麻豆精品| 高清视频免费观看一区二区| 久久久久视频综合| 在线亚洲精品国产二区图片欧美| 亚洲av中文av极速乱| 高清欧美精品videossex| 欧美激情国产日韩精品一区| 亚洲欧洲日产国产| 午夜福利视频在线观看免费| 99热国产这里只有精品6| 国产精品久久久久久精品电影小说| 免费高清在线观看日韩| 国产成人av激情在线播放| 午夜福利乱码中文字幕| 各种免费的搞黄视频| 欧美亚洲日本最大视频资源| 国产精品无大码| 亚洲精品成人av观看孕妇| 国产熟女欧美一区二区| 中文字幕av电影在线播放| 国产毛片在线视频| 中文精品一卡2卡3卡4更新| 狠狠精品人妻久久久久久综合| 男女边摸边吃奶| 老司机影院成人| 国产av码专区亚洲av| av国产精品久久久久影院| 日韩精品免费视频一区二区三区 | 久久97久久精品| 久久毛片免费看一区二区三区| 大片电影免费在线观看免费| av线在线观看网站| 黄片无遮挡物在线观看| 水蜜桃什么品种好| 你懂的网址亚洲精品在线观看| 亚洲色图综合在线观看| 久久毛片免费看一区二区三区| 大片电影免费在线观看免费| av在线app专区| 草草在线视频免费看| 久久久久久久大尺度免费视频| 日韩av不卡免费在线播放| a级毛片黄视频| 天堂中文最新版在线下载| 欧美日韩国产mv在线观看视频| av有码第一页| 中文字幕av电影在线播放| 精品人妻熟女毛片av久久网站| 欧美性感艳星| 亚洲精品久久成人aⅴ小说| 又粗又硬又长又爽又黄的视频| 伊人久久国产一区二区| 成人黄色视频免费在线看| 9热在线视频观看99| 天天操日日干夜夜撸| 女性被躁到高潮视频| 日本-黄色视频高清免费观看| 亚洲精品日本国产第一区| 亚洲中文av在线| 亚洲色图综合在线观看| a级片在线免费高清观看视频| 有码 亚洲区| 久久精品aⅴ一区二区三区四区 | 老司机影院毛片| 91精品国产国语对白视频| 国产欧美亚洲国产| 黑人欧美特级aaaaaa片| 亚洲成av片中文字幕在线观看 | 交换朋友夫妻互换小说| 亚洲综合精品二区| 黑丝袜美女国产一区| 精品国产国语对白av| 精品国产露脸久久av麻豆| 91精品伊人久久大香线蕉| 成年人免费黄色播放视频| 黄色毛片三级朝国网站| 国产精品.久久久| 日本av手机在线免费观看| 国产伦理片在线播放av一区| 国产片内射在线| 国产伦理片在线播放av一区| 激情五月婷婷亚洲| 人妻 亚洲 视频| 精品久久国产蜜桃|