• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ground-state and dynamical properties of a spin-S Heisenberg star

    2022-09-08 07:38:30JiaxiuLiandNingWu
    Communications in Theoretical Physics 2022年8期

    Jiaxiu Li and Ning Wu

    1 Center for Quantum Technology Research,School of Physics,Beijing Institute of Technology,Beijing 100081,China

    2 Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements(MOE),School of Physics,Beijing Institute of Technology,Beijing 100081,China

    Abstract We generalize the Heisenberg star consisting of a spin-1/2 central spin and a homogeneously coupled spin bath modeled by the XXX ring[Richter J and Voigt A 1994 J.Phys.A:Math.Gen.27 1139-1149]to the case of arbitrary central-spin size S <N/2,where N is the number of bath spins.We describe how to block-diagonalize the model based on the Bethe ansatz solution of the XXX ring,with the dimension of each block Hamiltonian ≤2S+1.We obtain all the eigenenergies and explicit expressions of the sub-ground states in each l-subspace with l being the total angular momentum of the bath.Both the eigenenergies and the sub-ground states have distinct structures depending whether S ≤l or l <S.The absolute ground-state energy and the corresponding l as functions of the intrabath coupling are numerically calculated for N=16 and S=1,2,…,7 and their behaviors are quantitatively explained in the weak and strong intrabath coupling limits.We then study the dynamics of the antiferromagnetic order within an XXX bath prepared in the Néel state.Effects of the initial state of the central spin,the value of S,and the system-bath coupling strength on the staggered magnetization dynamics are investigated.By including a Zeeman term for the central spin and the anisotropy in the intrabath coupling,we also study the polarization dynamics of the central spin for a bath prepared in the spin coherent state.Under the resonant condition and at the isotropic point of the bath,the polarization dynamics for S >1/2 exhibit collapse-revival behaviors with fine structures.However,the collapserevival phenomena are found to be fragile with respect to the anisotropy of the intrabath coupling.

    Keywords: central spin model,Heisenberg XXX chain,ground state,antiferromagnetic order relaxation,polarization dynamics

    1.Introduction

    Quantum spin systems are important physical systems that can exhibit many-body effects and strong correlations.They are ubiquitous in quantum magnetism,statistical physics,and more recently,quantum information and quantum simulations.It is generally challenging to theoretically study many-body spin systems due to the exponential growth of the dimension of the relevant Hilbert space with the system size.In this context,exactly soluble spin models play an important role in understanding the groundstate and dynamical properties of general large-scale spin systems.

    Two important classes of soluble spin models are spin chains[1]and central spin models[2,3],which can be solved by using free-fermion techniques or the Bethe ansatz.Currently,typical quantum spin chains such as the quantum Ising model and the XXZ chain have been realized on different experimental platforms [4,5] and continue to attract the attention of theorists[6,7].Central spin models are highly relevant to solid-state setups that are promising candidates for performing quantum information processing,including electrons trapped in quantum dots [8] and nitrogen vacancy centers in diamond [9],etc.

    In an early theoretical work,Richter and Voigt proposed a spin model that combines the above two types of soluble models,i.e.a spin-1/2 central spin model and an antiferromagnetic XXX periodic chain [10],with the intention of investigating the effect of central-spin induced frustration on the ground-state properties of the latter.Such a composite spin system,named a Heisenberg star,is originally considered as an antiferromagnetic chain with a perturbation and has several conserved quantities that ensure the solvability of the model.Alternatively,the Heisenberg star can also be viewed as a central spin system in the presence of nearest-neighbor intrabath interactions.Recently,the solvability and real-time dynamics of higher-spin central spin models with/without intrabath interaction are studied and a richer variety of physical properties are observed compared to the spin-1/2 counterpart [11,12].

    In this work,we extend the spin-1/2 Heisenberg star to the case of a higher central spin of size S ≤N/2,where N is the number of sites in the XXX ring.Following [13],in which the coherence dynamics of a spin-1/2 Heisenberg star in the presence of an external magnetic was studied,we first describe how to block-diagonalize a spin-S Heisenberg star based on the Bethe ansatz solutions of the XXX ring.The dimensions of the resultant block Hamiltonians are at most 2S+1.With the help of the conserved quantities of the system,we then obtain all the eigenenergies of the model in terms of the quantum numbers l and j,where l and j are the total angular momenta of the XXX bath and the whole system,respectively.Similar to the case of S=1/2,the sub-ground state energy in the l-subspace depends only on l.However,we find that these sub-ground state energies have different structures depending whether S ≤l or l <S.Based on these results,we numerically calculate the absolute ground state energy and the corresponding bath angular momentum as functions of the intrabath coupling for an XXX bath of N=16 sites.The dependence of these quantities on varying S is analytically analyzed in the weak intrabath coupling.We derive closedform expressions of the 2j+1 degenerate sub-ground states in the l-subspace,which can be written as a sum of tensor products of the central-spin state and the degenerate sub-ground states of the XXX bath,with the coefficients being determined analytically.

    We are also interested in the real-time dynamics of the Heisenberg star.As observed in[13],for a star prepared in a pure state,the dynamics of any observable belonging to the central spin do not depend on the intrabath coupling,and hence are equivalent to the result for a noninteracting bath.Rather than focusing on the central spin dynamics,we study the staggered magnetization dynamics within the XXX bath when it is prepared in the Néel state.This is motivated by a theoretical investigation of the relaxation of antiferromagnetic order in a spin-1/2 XXZ chain following a quantum quench [14].We reveal the influence of central-spin size,the central-spin initial state,and the system-bath coupling strength on the staggered magnetization dynamics.Some of the observed dynamical behaviors are consistent with those obtained in an inhomogeneous Heisenberg star [12].For example,increasing the size of the central spin and adopting a superposed central-spin initial state can both accelerate the initial decay of the antiferromagnetic order,while these effects become less prominent in the strong intrabath coupling regime.It is intriguing that although the central spin dynamics are independent of the intrabath coupling,the magnetic order within the bath exhibits rich and robust dynamical behaviors even for homogeneous system-bath coupling.

    We finally study the central-spin polarization dynamics for a slighted modified spin-S Heisenberg star in the presence of an external magnetic field and with anisotropic intrabath coupling.Following [15–17],we choose the spin coherent state as the bath initial state.We demonstrate that at the isotropic point of the bath the central spin dynamics from the spin coherent state are the same as that for a noninteracting bath.For an XXX bath with S=1/2,we recover the prior results presented in[16].For S >1/2,we find that the polarization dynamics exhibit collapse-revival behaviors with fine structures under the resonant condition.However,the collapse-revival phenomena are destroyed once the anisotropic intrabath coupling is introduced.

    The rest of the paper is organized as follows.In section 2,we introduce the spin-S Heisenberg star and its conserved quantities.In section 3,we study the eigenenergies of the model in detail and obtain expressions of the sub-ground state energies in each l-subspace.In section 4,we describe the block diagonalization procedure using the Bethe ansatz solution of the XXX bath and derive explicit expressions for the degenerate sub-ground states in each l-subspace.In section 5,we study in detail the dynamics of the Heisenberg star for baths prepared in the Néel state and the spin coherent state.Conclusions are drawn in section 6.

    Figure 1.A spin-S Heisenberg star consists of a central spin of size S and a homogeneously coupled XXX ring.The system-bath(intrabath) coupling is of XXX-type with strength g (J).

    2.Model and conserved quantities

    The Heisenberg star was first introduced in [10] and is described by the Hamiltonian (see figure 1)

    Here,HBdescribes a spin-1/2 periodic Heisenberg XXX spin chain with antiferromagnetic nearest-neighbor coupling strength J >0.The interaction between the central spinwith size S and the XXX spin bath is of isotropic Heisenberg type and the coupling strength is measured by g >0.The static properties of H for S=1/2 were studied in detail in[10],but here we allow for arbitrary values of S with S <N/2.

    We define the total spin of the whole system as

    where

    is the total spin of the XXX bath.We can rewrite HSBin terms ofandas

    It is easy to check the following commutation relations

    3.Eigenenergies

    All the eigenenergies of the spin-S Heisenberg star can be determined from equation (6) once the spectrum of the bath Hamiltonian Hbis solved.We first review the eigenenergy structure of an isolated XXX ring,based on which we construct all the eigenenergies of the Heisenberg star.

    3.1.Energy levels of an isolated XXX ring

    For completeness,let us first review some known results about the pure XXX ring described by Hb.It is well known that the eigenenergies and eigenstates of the XXZ chain can be solved by using the coordinate Bethe ansatz within individual sectors possessing fixed magnetization [1].For the isotropic XXX chain,the total angular momentumL→is further conserved,yielding simpler state structures and increasing degrees of the degeneracy of the energy levels.

    leading to a consistency.

    3.2.Eigenenergies of the spin-S Heisenberg star

    Let us now turn back to the spin-S Heisenberg star.Depending on whether S ≤l or S >l,the total angular momentum j of the star is accordingly determined by:

    The eigenenergy for fixed l and j is

    Similarly,the sub-ground state in the l-subspace with 0 ≤l <S is achieved for s=?l:

    which is [2(S ?l)+1]-fold degenerate.There exists a certain l=l<that minimizes E(gs)(l) for 0 ≤l <S.

    Once E(gs)(l<) and E(gs)(l>) are obtained,the absolute ground state energy of H is simply

    where l(G)is the total angular momentum of the bath in the global ground state.

    The main panel of figure 2 shows the ground-state energy E(G)(l(G))as a function offor N=16 and S=1,2,…,7.We observe that:

    (i) For fixedthe ground-state energy E(G)decreases with increasing S.In the largelimit,E(G)converges to the result of S=0 (or of a pure XXX chain) for different values of S.

    (ii) For fixed S,E(G)is a nonmonotonic function ofindicating that there might exist level crossings at certain values of

    (iii) In the smalllimit,E(G)increases linearly with increasingand the energy difference for adjacent S's is a constant.

    The above behaviors of E(G)can be understood by inspecting equations (12) and (15).In the largelimit,the systembath coupling can be viewed as a perturbation for the XXX ring and the first terms in equations (12) and (15) are dominated,which explains the convergence of E(G)to the result for S=0.

    Figure 2.Main panel: the ground-state energyas a function of for a spin-S Heisenberg star with N=16 bath spins.Results for S=1,2,…,7 are shown.The dashed black line represents the result for a pure XXX chain or a Heisenberg star with S=0.Inset:the evolution of total angular momentum of the bath,l(G),asincreases.

    3.3.Analytical results in the small J =~g limit

    yielding the transition coupling strength

    which is actually a linear function of S(inset of figure 2,the top horizontal lines).

    4.Eigenstates

    Let us now turn to study the eigenstates of the spin-S Heisenberg star.We first briefly describe how to obtain all the eigenstates of the Heisenberg star with the help the Bethe ansatz solution of the XXX chain,which divides the full Hilbert space into invariant subspaces of at most 2S+1 dimensions.We then focus on the sub-ground states within the sector with fixed l and derive closed-from expressions of these states in terms of the sub-ground states of the XXX chain in the l-sector.

    4.1.General eigenstates: the Bethe ansatz method

    We closely follow[13,22] to construct invariant subspaces of H based on the Bethe ansatz solution of the XXX bath HB.The Bethe states of HBwith M ≤N/2 spin flips are of the form

    where{λj}are the Bethe roots determined by the Bethe ansatz equations,B(λi) is the spin-flipping operator appearing in the so-called monodromy matrix [22],and |F〉=|↑…↑〉 is the fully polarized reference state.

    It is known that the Bethe state given by equation(22)is the highest weight state of the su(2)Lie algebra generated by the bath operators (L±,Lz).By successively applying the lowering operator L?to the Bethe states,we can obtain the (N ?2M+1)-fold degenerate manifold corresponding to the eigenenergy EB(λ1,…,λM),which satisfies the Schr?dinger equation HB|λ1,…,λM〉=EB(λ1,…,λM)|λ1,…,λM〉.Explicitly,we define [13]

    Unlike the case of S=1/2 where |1/2〉|λ1,…,λM;n〉 and|?1/2〉|λ1,…,λM;n+1〉already form a closed subspace [13],for a general S ≤N/2 we need to further apply H to the newly generated states |Sm+1〉|λ1,…,λM;n ?1〉 and |Sm?1〉|λ1,…,λM;n+1〉 to obtain a multi-dimensional invariant subspace.

    For S ≤N/2,these invariant subspaces can be classified into three categories:

    (I) For ?S ?N/2 ≤m ≤S ?N/2 with m=Sm+n the total magnetization of the star,the configurations of(Sm,n)that conserve m are(?S,m+S),…,(m+N/2,?N/2).The dimension of the corresponding invariant subspace is therefore m+N/2+S+1 ≤2S+1.

    (II) For S ?N/2+1 ≤m ≤?S+N/2 ?1,the configurations of(Sm,n)that conserve the total magnetization are(?S,m+S),…,(S,m ?S).The dimension of the corresponding invariant subspace is 2S+1.

    (III) For ?S+N/2 ≤m ≤S+N/2,the configurations of(Sm,n) that conserve the total magnetization are(m ?N/2,N/2),…,(S,m ?S).The dimension of the corresponding invariant subspace is S ?m+N/2+1 ≤2S+1.

    In this way,the whole Hilbert space of the spin-S Heisenberg star is divided into invariant subspaces whose dimensions are at most 2S+1.In principle,we can numerically diagonalize the block Hamiltonians to obtain all the eigenstates and eigenenergies of the system.

    It can be checked that N is identical to the total dimension of the Hilbert space (2S+1)2N.Below we focus on the subground states for fixed l's.As we will see,these sub-ground states admit closed-form expressions in terms of the subground states of the pure XXX ring.

    4.2.Sub-ground states for S ≤l ≤

    After a tedious but straightforward calculation,we arrive at the following unnormalized sub-ground state (see the appendix for the derivation)

    In particular,the highest-weight statecan be normalized as (see appendix)Note that the sub-ground states do not depend on the coupling strengths J and g but are determined by the quantum number l.

    4.3.Sub-ground states for 0 ≤l

    It can be similarly shown that [by making the substitutions S →l,l →S,Sm→lmin equation (29)]

    5.Real-time dynamics

    The spin-S Heisenberg star given by equation (1) is so special that it cannot generate any intrabath coupling-induced centralspin dynamics.Suppose χSis an arbitrary observable belonging to the central spin,its time evolution from an initial state|ψ(0)〉is given by

    It is easy to see that including any central-spin term(such as a Zeeman term or a single-ion anisotropy,etc.) does not change the foregoing property,as has already been observed in the investigation of the central spin coherence from a pure state[13].Thus,to obtain nontrivial dynamics of the central spin induced by the intrabath coupling,one has to either include the thermal effect [13] or to go beyond the homogeneous systembath coupling or isotropic intrabath coupling [12].In spite of these facts,the dynamics of any bath operator ηBdepends on both J and g since generally[Hb,ηB]≠0 and

    In this work,we first study the dynamics of the antiferromagnetic order in the XXX bath governed by the spin-S Heisenberg star H,with the XXX bath prepared in a Néel state.We then study the central spin dynamics in a slighted generalized Heisenberg star with intrabath anisotropy.To be specific,in this case,we choose the bath initial state as a spin coherent state.

    5.1.Dynamics of antiferromagnetic order in the spin-S Heisenberg star

    The dynamics of antiferromagnetic order in an XXZ bath with inhomogeneous system-bath coupling and anisotropic intrabath coupling have been thoroughly studied in a related work by the authors [12].Compare with the case of an isolated XXZ chain[14],it is found that both the system-bath coupling and the size of the central spin have significant influence on the relaxation of the antiferromagntic order.We show that some of the dynamical behaviors of the antiferromagnetic order observed in [12] for inhomogeneous system-bath couplings are still robust in the homogeneous Heisenberg star described by H.

    We assume that the star is initially prepared in a product state

    where |φ(S)〉 is the initial state of the central spin and the bath initial state is chosen as the Néel state |AF〉=|↓↑…↓↑〉.For arbitrary S <N/2,the dynamics of the spin-S Heisenberg star H are simulated by using an equations-of-motion method based on analytical expressions of spin-operator matrix elements for the XX chain [24],see [12] for details of the method.

    which is a measure of the antiferromagnetic order within the XXX bath.Figure 3 shows the staggered magnetization dynamics〈ms(t)〉for an XXX bath with N=12 sites and for a central spin of size S=3/2.For both types of the central-spin initial states|φ(S)〉1and|φ(S)〉2,we see that〈ms(t)〉decays more rapidly as the intrabath coupling J increases,which is consistent with the case of inhomogeneous system-bath couplings.Qualitatively,it is the nearest-neighbor intrabath coupling that mainly controls the shorttime dynamics of the staggered magnetization.

    In figure 4 we plot 〈ms(t)〉 for different values of S and intrabath coupling J.Generally,a larger S induces a faster initial decay of〈ms(t)〉since there are 2S+1 channels for the central spin to interact with the XXX bath.This behavior is similar to that obtained for inhomogeneous system-bath couplings[12].As expected,the deviation in the dynamics for different S's becomes smaller when the intrabath coupling is large enough (lower panels of figure 4).

    Figure 4.Dynamics of the staggered magnetization〈ms(t)〉in a spin-S Heisenberg star with N=12 bath spins.Results for S=1/2,1,and 3/2 are shown for fixed .The initial state of the central spin is chosen as|φ(S)〉1=|S〉and the bath is initially prepared in the Néel state |AF〉=|↓↑…↓↑〉.

    5.2.Central spin dynamics in a modified Heisenberg star

    The polarization dynamics of a qubit coupled to a noninteracting spin bath prepared in the spin coherent state have been studied in several previous works[15–17].However,the case of a larger central spin coupled to an interacting spin bath is less studied.In this subsection,we will study the polarization dynamics of the central spin when the bath is prepared in a spin coherent state.As mentioned above,to get nontrivial intrabath coupling-induced central spin dynamics,we have to slightly modify the Heisenberg star given by equation (1):

    where ω is an external magnetic field,J andJ′are the in-plane and Ising parts of the intrabath coupling strength,respectively.Note that the bath angular momentumis no longer conserved forJ≠J′.ForJ=J′ and S=1/2,H?is reduced to the model studied in [13],which conservesIf one further sets J=0,thenis reduced to a qubit?big-spin model [16],whose dynamics can be analytically solved by using either a recurrence method [16,23] or an interactionpicture method [17].

    The initial state of the whole system reads

    Let us first look at the case of an XXX bath withJ=J′.We have demonstrated that in this case,the central spin dynamics is independent of the value of J,which can be seen more straightforwardly by noting that the spin coherent stateis an eigenstate of JHbwith eigenvalue NJ/4:

    It is thus necessary to go beyond the isotropic pointJ=J′in order to observe nontrivial polarization dynamics induced by the intrabath coupling.Nevertheless,let us first study the effect of the value of S on the central spin polarization dynamics forJ=J′.

    The top panel of figure 5 shows the polarization dynamics 〈Sz(t)〉/S of an S=1/2 central spin forJ=J′ and under the resonant condition ω=g [16].It can be seen that the polarization exhibits the so-called collapse-revival behavior and the revival peaks occur atgt≈mNπ(m∈ Z),recovering the analytical results presented in[16].The middle and bottom panels of figure 5 show 〈Sz(t)〉/S for S=1 and S=3/2,respectively.The polarization still shows collapses and revivals during the evolution,but with rich fine structures.For example,the initial revival region seems to show 2S discrete sub-peaks before the first collapse occurs.These structures reappear after the regular revival region consisting of 2S+1 packets.We note that similar polarization dynamics are observed in [23] for a spin-1 central spin homogeneously coupled to a noninteracting spin bath.

    To see the effect of the anisotropy of the intrabath coupling on the polarization dynamics,we plot in figure 6〈Sz(t)〉/S for S=1/2 and several pairs of(Jg,J′g).It can be seen that the collapse-revival behaviors are generally destroyed,although for(J,J′)g= (1 ,0.8)and(1,1.2)there is some evidence of collapse (middle column of figure 6) at short time since they are close to the isotropic pointJ′J=1 .If we separate the termout of,it is easy to check that this term does not commute with the remaining part ofH?.As a result,the dynamics depends not only onJ′ -Jbut also on J (right column of figure 6).Actually,since the termbreaks the conservation ofthe time-evolved state will run out of the l=N/2 subspace,making the collapse-revival phenomena fragile with respect to anisotropic intrabath coupling.

    6.Conclusions

    In this work,we generalize the spin-1/2 Heisenberg proposed by Richter and Voigt [10] to the case of arbitrary S <N/2.Compared with the spin-1/2 counterpart,both the groundstate and the dynamical behaviors are found to have richer structures.In principle,the eigenenergies and eigenstates of the system can be obtained by block diagonalizing the Hamiltonian using the Bethe ansatz solution of the XXX bath,yielding invariant subspaces whose dimensions do not exceed 2S+1.Based on the four conserved quantities of the model,we obtain all the eigenenergies of the model.The expressions of these eigenenergies differ depending on whether S is larger or smaller than the bath angular momentum l.The sub-ground state energies for fixed l depend only on the quantum number l.The evolutions of the ground-state energy and the associated bath angular momentum are numerically analyzed when the intrabath coupling J and the central-spin size S are varied.We explain the observed behaviors of these quantities in the weak and strong intrabath coupling limits.We also derive closed-form expressions for the degenerate sub-ground states in each l-subspace.

    We then study the real-time dynamics of the spin-S Heisenberg star.Since the bath Hamiltonian commutes with the whole Hamiltonian,the intrabath coupling has no effect on the central spin dynamics if the system is prepared in a pure state.We thus turn to study the antiferromagnetic order dynamics within the XXX bath.Following [12],we set the bath initial state to be a Néel state and investigate how the staggered magnetization evolves under the combined influence of the intrabath coupling and the system-bath coupling.We study the effects of the central spin initial state,the central spin size,and the system-bath coupling strength on the staggered magnetization dynamics and find similar behaviors to the inhomogeneous coupling case[12].

    We finally study the central-spin polarization for a bath prepared in a spin coherent state.This is motivated by several recent works in which the polarization dynamics of a spin-1/2 coupled to a noninteracting spin bath are thoroughly studied[15–17].To observe nontrivial polarization dynamics that depend on the intrabath coupling,we extend the spin-S Heisenberg star by including a Zeeman term of the central spin and the anisotropy in the intrabath coupling.At the isotropic point of the bath,we find that the polarization dynamics for S >1/2 exhibit collapse-revival behaviors with fine structures.However,for a spin bath with anisotropic coupling,the collapserevival phenomena are generally found to be destroyed.

    As an exactly soluble model,there are some other aspects of the spin-S Heisenberg star that deserve further investigation.For example,it would be interesting to study the dynamics of entanglement and quantum Fisher information and to understand quantum metrology in the present model.The analytical calculation of spin correlations in the weak intrabath coupling limit should be appealing.These studies will be left for future work.

    Acknowledgments

    This work was supported by the National Key R&D Program of China under Grant No.2021YFA1400803 and by the Natural Science Foundation of China (NSFC) under Grant No.11 705 007.

    Appendix.Derivation of equation (29)

    By comparing the coefficients on both sides,we get

    Combining equations (47) with (48) gives

    The forms of equations (47) and (49) suggest the following ansatz:

    It is straightforward to verify that the above ansatz indeed solves equation (45) for all ?S <Sm<S.

    Starting with AS,we find after iteration

    By inserting equation (51) into the wave function,we obtain the unnormalized sub-ground state given by equation (29) in the main text.

    If we choose m=l ?S,then

    whose squared norm is

    大码成人一级视频| 亚洲色图av天堂| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品美女久久av网站| 男女下面插进去视频免费观看| 欧美日韩视频精品一区| xxxhd国产人妻xxx| 午夜视频精品福利| 亚洲av美国av| 在线观看午夜福利视频| 校园春色视频在线观看| 成年版毛片免费区| 亚洲av第一区精品v没综合| 99香蕉大伊视频| √禁漫天堂资源中文www| 欧美乱色亚洲激情| 欧美+亚洲+日韩+国产| 免费av毛片视频| 51午夜福利影视在线观看| e午夜精品久久久久久久| 一级毛片女人18水好多| 成人国产一区最新在线观看| 久久香蕉国产精品| 精品久久久久久电影网| 亚洲中文日韩欧美视频| 亚洲少妇的诱惑av| 天天添夜夜摸| 女警被强在线播放| 91在线观看av| 午夜影院日韩av| 午夜福利在线免费观看网站| 欧美黄色淫秽网站| 日韩精品中文字幕看吧| 久久精品国产亚洲av香蕉五月| 国产伦人伦偷精品视频| 狂野欧美激情性xxxx| 亚洲国产欧美网| 韩国精品一区二区三区| 亚洲人成77777在线视频| 国产国语露脸激情在线看| 欧美最黄视频在线播放免费 | 亚洲av成人不卡在线观看播放网| 国产免费现黄频在线看| 操美女的视频在线观看| 99精品在免费线老司机午夜| 欧美+亚洲+日韩+国产| 久久精品人人爽人人爽视色| 精品久久久久久电影网| 欧美日韩瑟瑟在线播放| 80岁老熟妇乱子伦牲交| 午夜免费激情av| 最新美女视频免费是黄的| 精品少妇一区二区三区视频日本电影| 精品国产美女av久久久久小说| 免费人成视频x8x8入口观看| 正在播放国产对白刺激| 免费在线观看影片大全网站| 啦啦啦 在线观看视频| 精品熟女少妇八av免费久了| 午夜福利影视在线免费观看| 啦啦啦免费观看视频1| 欧美日韩乱码在线| 国产精品永久免费网站| 亚洲成人免费电影在线观看| 国产欧美日韩精品亚洲av| 欧美色视频一区免费| 人妻丰满熟妇av一区二区三区| 热re99久久精品国产66热6| 欧美黄色片欧美黄色片| 国产欧美日韩一区二区精品| 色播在线永久视频| 涩涩av久久男人的天堂| 夜夜爽天天搞| 9色porny在线观看| 超碰97精品在线观看| 99国产精品免费福利视频| 一区在线观看完整版| 免费在线观看日本一区| 精品国产亚洲在线| videosex国产| 夜夜夜夜夜久久久久| 久久精品国产综合久久久| 日本五十路高清| av在线天堂中文字幕 | 精品国产超薄肉色丝袜足j| a级片在线免费高清观看视频| 麻豆av在线久日| 欧美大码av| 热re99久久精品国产66热6| 久久久水蜜桃国产精品网| 成人黄色视频免费在线看| 欧美最黄视频在线播放免费 | 久久久久国内视频| 国产精品电影一区二区三区| 亚洲 国产 在线| 午夜福利免费观看在线| 精品欧美一区二区三区在线| 久久精品亚洲熟妇少妇任你| 国产精品久久久人人做人人爽| 国产精品久久视频播放| 久久国产精品人妻蜜桃| 国产深夜福利视频在线观看| 久久99一区二区三区| 久久伊人香网站| 亚洲成人免费电影在线观看| 国产午夜精品久久久久久| 美女 人体艺术 gogo| 久久久久久久久中文| 国产男靠女视频免费网站| 一夜夜www| 免费久久久久久久精品成人欧美视频| av免费在线观看网站| 免费在线观看完整版高清| 后天国语完整版免费观看| 真人做人爱边吃奶动态| 在线观看免费视频网站a站| 国产黄色免费在线视频| 国产成人av激情在线播放| 久久久久久人人人人人| 亚洲七黄色美女视频| 国产精品永久免费网站| 亚洲精品中文字幕在线视频| 中文字幕另类日韩欧美亚洲嫩草| 成人18禁在线播放| 成人国产一区最新在线观看| 一级片免费观看大全| 日本三级黄在线观看| a级毛片黄视频| 动漫黄色视频在线观看| 高清在线国产一区| 久久精品国产综合久久久| 99久久久亚洲精品蜜臀av| 欧美日本亚洲视频在线播放| 日韩欧美三级三区| 久久久国产精品麻豆| 一个人观看的视频www高清免费观看 | 啦啦啦免费观看视频1| 91麻豆精品激情在线观看国产 | 高潮久久久久久久久久久不卡| 久久99一区二区三区| 麻豆国产av国片精品| 色播在线永久视频| 国产一卡二卡三卡精品| 免费在线观看亚洲国产| 亚洲五月色婷婷综合| 91精品三级在线观看| 国产麻豆69| 一边摸一边抽搐一进一出视频| 午夜福利一区二区在线看| 香蕉国产在线看| 热re99久久国产66热| 国产在线观看jvid| 波多野结衣一区麻豆| 亚洲av成人一区二区三| 久久精品国产清高在天天线| 色婷婷av一区二区三区视频| 777久久人妻少妇嫩草av网站| 深夜精品福利| 老司机福利观看| 国产视频一区二区在线看| 亚洲精品粉嫩美女一区| 国产精品久久电影中文字幕| 韩国精品一区二区三区| 亚洲一码二码三码区别大吗| 久久人妻av系列| 亚洲 国产 在线| 亚洲av熟女| 人人澡人人妻人| 涩涩av久久男人的天堂| 真人一进一出gif抽搐免费| 亚洲国产欧美网| 在线观看免费视频网站a站| 欧美精品一区二区免费开放| 女性被躁到高潮视频| 欧美黑人欧美精品刺激| 成人亚洲精品av一区二区 | 视频区图区小说| 又黄又爽又免费观看的视频| 91成年电影在线观看| 成熟少妇高潮喷水视频| 日韩欧美国产一区二区入口| 久久性视频一级片| 好看av亚洲va欧美ⅴa在| 国产高清激情床上av| 在线观看日韩欧美| 久久久久国产精品人妻aⅴ院| 99精品欧美一区二区三区四区| 亚洲欧美激情综合另类| 侵犯人妻中文字幕一二三四区| 99在线人妻在线中文字幕| 久久久久国产一级毛片高清牌| 亚洲中文字幕日韩| 91av网站免费观看| 丰满人妻熟妇乱又伦精品不卡| 女人被躁到高潮嗷嗷叫费观| 啪啪无遮挡十八禁网站| svipshipincom国产片| 一进一出抽搐gif免费好疼 | 99久久久亚洲精品蜜臀av| 精品免费久久久久久久清纯| 麻豆一二三区av精品| 在线观看免费视频网站a站| 欧美日韩福利视频一区二区| 免费在线观看视频国产中文字幕亚洲| 亚洲成人国产一区在线观看| 久久久国产一区二区| 老司机靠b影院| 亚洲av第一区精品v没综合| 人人妻人人添人人爽欧美一区卜| 啦啦啦免费观看视频1| 久9热在线精品视频| 久久精品亚洲熟妇少妇任你| 久久香蕉国产精品| 亚洲情色 制服丝袜| 最好的美女福利视频网| 一级作爱视频免费观看| 国产精品国产高清国产av| 亚洲精品美女久久av网站| 久久久国产一区二区| 三上悠亚av全集在线观看| 99国产精品一区二区蜜桃av| 亚洲欧美一区二区三区久久| 欧美日本中文国产一区发布| 久久久久精品国产欧美久久久| 久久人人97超碰香蕉20202| 啪啪无遮挡十八禁网站| 国产免费男女视频| 国产一区二区三区综合在线观看| 国产激情久久老熟女| 亚洲精品国产区一区二| 一级片免费观看大全| 黄网站色视频无遮挡免费观看| 欧美日韩亚洲综合一区二区三区_| 一个人免费在线观看的高清视频| 在线视频色国产色| 国产真人三级小视频在线观看| 色在线成人网| 在线观看免费视频网站a站| 中文字幕人妻丝袜一区二区| 天天添夜夜摸| 精品福利永久在线观看| 99久久国产精品久久久| 亚洲精品国产色婷婷电影| 成人18禁高潮啪啪吃奶动态图| netflix在线观看网站| 麻豆成人av在线观看| 国产av在哪里看| 国产av一区二区精品久久| 日本精品一区二区三区蜜桃| 黄色视频,在线免费观看| 亚洲黑人精品在线| 操出白浆在线播放| www国产在线视频色| 男女高潮啪啪啪动态图| 色综合婷婷激情| 妹子高潮喷水视频| 国产真人三级小视频在线观看| 国产欧美日韩一区二区三| 亚洲七黄色美女视频| 男人的好看免费观看在线视频 | 18禁观看日本| 国产三级在线视频| 亚洲久久久国产精品| 精品免费久久久久久久清纯| 青草久久国产| 中出人妻视频一区二区| 91精品国产国语对白视频| 久久精品91蜜桃| 国产真人三级小视频在线观看| 久久精品影院6| 日韩大码丰满熟妇| 国产区一区二久久| 久久青草综合色| 天堂俺去俺来也www色官网| 精品一区二区三卡| 少妇裸体淫交视频免费看高清 | 亚洲av成人不卡在线观看播放网| 国产精品国产av在线观看| 黄频高清免费视频| 久久精品亚洲av国产电影网| 色综合欧美亚洲国产小说| 精品国产乱子伦一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品国产区一区二| 亚洲国产精品999在线| 亚洲精品美女久久久久99蜜臀| 狠狠狠狠99中文字幕| 69精品国产乱码久久久| 校园春色视频在线观看| 99精品在免费线老司机午夜| 一边摸一边抽搐一进一出视频| 欧美+亚洲+日韩+国产| 亚洲视频免费观看视频| 丝袜美腿诱惑在线| 后天国语完整版免费观看| 午夜久久久在线观看| 黑人操中国人逼视频| 激情视频va一区二区三区| 日韩 欧美 亚洲 中文字幕| av有码第一页| 中国美女看黄片| 精品欧美一区二区三区在线| 9191精品国产免费久久| 精品国产超薄肉色丝袜足j| 91麻豆精品激情在线观看国产 | 伦理电影免费视频| 变态另类成人亚洲欧美熟女 | 午夜激情av网站| 亚洲成人精品中文字幕电影 | 亚洲七黄色美女视频| aaaaa片日本免费| 日韩大尺度精品在线看网址 | 好看av亚洲va欧美ⅴa在| 精品国产超薄肉色丝袜足j| 欧美午夜高清在线| 人成视频在线观看免费观看| 18禁黄网站禁片午夜丰满| 怎么达到女性高潮| 午夜视频精品福利| 美女高潮喷水抽搐中文字幕| 亚洲黑人精品在线| 人妻久久中文字幕网| 欧美 亚洲 国产 日韩一| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品一区二区三区四区久久 | bbb黄色大片| 淫妇啪啪啪对白视频| 久热爱精品视频在线9| av在线播放免费不卡| 午夜福利免费观看在线| 99riav亚洲国产免费| 国内久久婷婷六月综合欲色啪| 国产亚洲精品一区二区www| 日本五十路高清| 国产黄a三级三级三级人| 91国产中文字幕| 日本三级黄在线观看| 亚洲一区中文字幕在线| 男女下面进入的视频免费午夜 | tocl精华| 中文字幕最新亚洲高清| 九色亚洲精品在线播放| 久久狼人影院| 免费搜索国产男女视频| 色综合欧美亚洲国产小说| 欧美日韩瑟瑟在线播放| avwww免费| 久久人妻熟女aⅴ| 国产成人欧美在线观看| 一边摸一边抽搐一进一出视频| 99re在线观看精品视频| 日韩人妻精品一区2区三区| 高清av免费在线| 老司机亚洲免费影院| 精品久久久久久,| 99精国产麻豆久久婷婷| 亚洲欧美激情综合另类| 久久国产亚洲av麻豆专区| 纯流量卡能插随身wifi吗| 亚洲精品美女久久久久99蜜臀| 国产成人影院久久av| 午夜成年电影在线免费观看| 欧美日韩av久久| av在线播放免费不卡| 精品福利永久在线观看| 国产精品久久电影中文字幕| 老司机亚洲免费影院| 亚洲国产精品sss在线观看 | 久久九九热精品免费| 久久午夜综合久久蜜桃| 欧美日本亚洲视频在线播放| 在线免费观看的www视频| 电影成人av| 丰满人妻熟妇乱又伦精品不卡| 9热在线视频观看99| 久久精品国产亚洲av香蕉五月| 欧美成人性av电影在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 搡老熟女国产l中国老女人| 亚洲美女黄片视频| 欧美日韩亚洲综合一区二区三区_| 两人在一起打扑克的视频| 韩国av一区二区三区四区| 日韩成人在线观看一区二区三区| 51午夜福利影视在线观看| 婷婷丁香在线五月| 在线观看66精品国产| 1024香蕉在线观看| 制服诱惑二区| 在线国产一区二区在线| 波多野结衣av一区二区av| 天堂中文最新版在线下载| 高清av免费在线| 麻豆成人av在线观看| 国产亚洲欧美在线一区二区| 人人妻人人澡人人看| 亚洲色图综合在线观看| 自线自在国产av| 18禁美女被吸乳视频| 国产精品 欧美亚洲| 国产一区二区三区视频了| videosex国产| 精品午夜福利视频在线观看一区| 一本综合久久免费| 两个人免费观看高清视频| 久久性视频一级片| 看黄色毛片网站| 国产在线观看jvid| 最近最新免费中文字幕在线| 最新美女视频免费是黄的| 每晚都被弄得嗷嗷叫到高潮| 视频区欧美日本亚洲| 成人亚洲精品av一区二区 | 久久久水蜜桃国产精品网| 女警被强在线播放| a级毛片黄视频| 人人妻人人爽人人添夜夜欢视频| 国产熟女午夜一区二区三区| 在线国产一区二区在线| 亚洲国产看品久久| 国产色视频综合| 真人做人爱边吃奶动态| 巨乳人妻的诱惑在线观看| 18禁裸乳无遮挡免费网站照片 | 精品久久久精品久久久| 男人舔女人下体高潮全视频| 色精品久久人妻99蜜桃| 人人澡人人妻人| 91字幕亚洲| 日日干狠狠操夜夜爽| 国内久久婷婷六月综合欲色啪| 日韩中文字幕欧美一区二区| 天堂√8在线中文| 欧美黄色淫秽网站| 少妇 在线观看| 在线天堂中文资源库| 极品人妻少妇av视频| 热99国产精品久久久久久7| 日韩欧美一区二区三区在线观看| 亚洲色图 男人天堂 中文字幕| 国产激情欧美一区二区| 最好的美女福利视频网| 中亚洲国语对白在线视频| 国产av一区在线观看免费| 久久久久亚洲av毛片大全| 亚洲av熟女| 看免费av毛片| 精品人妻1区二区| 老鸭窝网址在线观看| xxxhd国产人妻xxx| 国产亚洲精品第一综合不卡| 老鸭窝网址在线观看| 啦啦啦在线免费观看视频4| 国产精品久久久av美女十八| 午夜免费激情av| netflix在线观看网站| 亚洲激情在线av| 精品无人区乱码1区二区| 在线观看一区二区三区| 精品免费久久久久久久清纯| 国产高清videossex| 三上悠亚av全集在线观看| 男女之事视频高清在线观看| 最新美女视频免费是黄的| 波多野结衣高清无吗| 久久亚洲真实| 亚洲精品av麻豆狂野| 美女午夜性视频免费| tocl精华| 欧美国产精品va在线观看不卡| 午夜福利一区二区在线看| 欧美日韩福利视频一区二区| 欧美日韩瑟瑟在线播放| 亚洲精品美女久久av网站| 亚洲成国产人片在线观看| 国产亚洲精品久久久久久毛片| 淫秽高清视频在线观看| √禁漫天堂资源中文www| 好男人电影高清在线观看| 一个人观看的视频www高清免费观看 | 亚洲少妇的诱惑av| 亚洲精华国产精华精| 国产1区2区3区精品| 久久狼人影院| 黄色片一级片一级黄色片| 午夜激情av网站| 亚洲av日韩精品久久久久久密| 久久久久精品国产欧美久久久| 嫩草影视91久久| 一级,二级,三级黄色视频| 一本综合久久免费| 十八禁网站免费在线| 午夜成年电影在线免费观看| 婷婷精品国产亚洲av在线| 亚洲色图 男人天堂 中文字幕| 欧美国产精品va在线观看不卡| 十八禁网站免费在线| 久久久精品欧美日韩精品| 多毛熟女@视频| 乱人伦中国视频| 欧美精品一区二区免费开放| a级毛片黄视频| 天天添夜夜摸| 夜夜躁狠狠躁天天躁| 国产又色又爽无遮挡免费看| 黄色片一级片一级黄色片| 成人特级黄色片久久久久久久| 国内毛片毛片毛片毛片毛片| 免费观看精品视频网站| 巨乳人妻的诱惑在线观看| 国产成人一区二区三区免费视频网站| 一边摸一边抽搐一进一出视频| 亚洲av日韩精品久久久久久密| 亚洲欧洲精品一区二区精品久久久| 在线观看一区二区三区激情| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机在亚洲福利影院| 国产精品自产拍在线观看55亚洲| 制服人妻中文乱码| 久久国产精品男人的天堂亚洲| 国产成人一区二区三区免费视频网站| 黑人巨大精品欧美一区二区mp4| 亚洲人成77777在线视频| 久久人人爽av亚洲精品天堂| 在线观看一区二区三区| 国产单亲对白刺激| 人人妻,人人澡人人爽秒播| 精品无人区乱码1区二区| www.自偷自拍.com| 久久精品91无色码中文字幕| 欧美乱色亚洲激情| videosex国产| xxxhd国产人妻xxx| 91麻豆精品激情在线观看国产 | 麻豆成人av在线观看| 在线看a的网站| 亚洲欧美一区二区三区久久| 91精品三级在线观看| 级片在线观看| 精品一区二区三卡| 亚洲免费av在线视频| 伊人久久大香线蕉亚洲五| 成年人黄色毛片网站| 亚洲精品一卡2卡三卡4卡5卡| 精品国产乱码久久久久久男人| 中文字幕av电影在线播放| 久久中文看片网| 色尼玛亚洲综合影院| 免费少妇av软件| 亚洲免费av在线视频| 成人国产一区最新在线观看| 男人操女人黄网站| 亚洲三区欧美一区| a级毛片在线看网站| 女性被躁到高潮视频| 免费观看人在逋| 亚洲欧美一区二区三区久久| 欧美日韩中文字幕国产精品一区二区三区 | 国产视频一区二区在线看| 国产成人精品久久二区二区91| 咕卡用的链子| 色综合站精品国产| 久久 成人 亚洲| 国产三级黄色录像| 亚洲精品av麻豆狂野| 19禁男女啪啪无遮挡网站| 日日夜夜操网爽| 亚洲精品粉嫩美女一区| 日日夜夜操网爽| 亚洲成av片中文字幕在线观看| 亚洲精品国产色婷婷电影| 精品人妻在线不人妻| 老司机福利观看| 无遮挡黄片免费观看| 国产单亲对白刺激| 成人三级黄色视频| 久久久久国产一级毛片高清牌| 亚洲自拍偷在线| www国产在线视频色| 亚洲国产精品999在线| 少妇的丰满在线观看| 亚洲欧美日韩无卡精品| 亚洲免费av在线视频| 91成人精品电影| 夜夜夜夜夜久久久久| 久久人人精品亚洲av| 国产亚洲欧美98| 男女午夜视频在线观看| 99久久精品国产亚洲精品| 精品人妻1区二区| 两人在一起打扑克的视频| 最好的美女福利视频网| 欧美黄色淫秽网站| 天天躁狠狠躁夜夜躁狠狠躁| 夜夜夜夜夜久久久久| 亚洲成人精品中文字幕电影 | 黄色丝袜av网址大全| 久久精品国产亚洲av香蕉五月| www.精华液| av视频免费观看在线观看| 国产高清videossex| 亚洲av美国av| 亚洲欧美日韩高清在线视频| 99在线人妻在线中文字幕| 看片在线看免费视频| 久久精品人人爽人人爽视色| 亚洲中文日韩欧美视频| 黑丝袜美女国产一区| 成人永久免费在线观看视频| 亚洲av第一区精品v没综合| 亚洲午夜精品一区,二区,三区| 免费人成视频x8x8入口观看| 一二三四在线观看免费中文在| 久久亚洲真实| 亚洲熟女毛片儿|