• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum corrections to the thermodynamics and phase transition of a black hole surrounded by a cavity in the extended phase space

    2022-09-08 07:38:24ZhongwenFengXiaZhouShiqiZhouandShuzhengYang
    Communications in Theoretical Physics 2022年8期

    Zhongwen Feng ,Xia Zhou,Shiqi Zhou and Shuzheng Yang

    1 Physics and Space Science College,China West Normal University,Nanchong 637009,China

    2 School of Physics and Astronomy,Sun Yat-sen University,Zhuhai 519082,China

    Abstract In the extended phase space,we investigate the rainbow gravity-corrected thermodynamic phenomena and phase structure of the Schwarzschild black hole surrounded by a spherical cavity.The results show that rainbow gravity has a very significant effect on the thermodynamic phenomena and phase structure of the black hole.It prevents the black hole from total evaporation and leads to a remnant with a limited temperature but no mass.Additionally,we restore the P-V criticality and obtain the critical quantities of the canonical ensemble.When the temperature or pressure is smaller than the critical quantities,the system undergoes two Hawking-Page-like phase transitions and one first-order phase transition,which never occurs in the original case.Remarkably,our findings demonstrate that the thermodynamic behavior and phase transition of the rainbow SC black hole surrounded by a cavity in the extended phase space are analogous to those of the Reissner–Nordstr?m anti-de Sitter black hole.Therefore,rainbow gravity activates the effect of electric charge and cutoff factor in the evolution of the black hole.

    Keywords: rainbow gravity,phase transitions,extended phase space

    1.lntroduction

    In the past fifty years,the Hawking radiation of black holes has been amongst the hottest topics in theoretical physics,which has helped researchers research the relationship between gravity,quantum mechanics,and thermodynamics[1,2].In addition,a variety of research works show that black holes not only have temperature and entropy but also have rich phase structures and critical phenomena.In 1983,Hawking and Page [3] demonstrated that there is a phase transition between pure thermal radiation and a stable anti-de Sitter(AdS)space.This seminal work is so important because it can be used to explain the deeper-seated relation between confinement and deconfinement phase transition of the gauge field in the AdS/CFT correspondence [4,5].Since then,studying the phase transitions of AdS black holes has become a fascinating topic [6–10].More interestingly,by assuming the cosmological constant Λ of AdS spacetime as a thermodynamic pressure P [11–13],Kubizňńak and Mann analyzed the critical behavior of the Reissner–Nordstr?m (R–N) AdS black hole in an extended phase space.Their results showed that the phase behavior and P-V criticality of the R–N AdS black hole coincide with those of Van der Waals gas [14].Subsequently,the thermodynamic properties and phase transition of various AdS black holes in the extended phase space were discussed [15–26].

    Generally,the essential reason the AdS spacetimes have such intriguing phase structures is based upon the fact that the AdS boundary condition plays the role of a reflecting surface,which allows the AdS black holes in a quasilocal thermally stable structure and makes the study of their phase behavior possible.In addition,York proposed another popular method to discuss the phase structures and critical phenomena of non-AdS spacetimes,namely,enclosing the classical black hole inside a cavity.In this way,the cavity acts as the spacetime in the same way as the AdS space.According to this approach,York found that the Schwarzschild(SC)black hole in a cavity exists the Hawking-Page-like transition,which is similar to that of the SC AdS black hole [27].In [28–31],the authors confirmed that in the canonical ensemble and grand canonical ensemble,the R–N black hole in a cavity has the same phase transition behavior as the AdS case.Along the line,similar investigations have been extended to a variety of complicated spacetimes [32–37].

    Although the aforementioned works have led to many insights into the properties of black holes,there remain some defects.On the one hand,the former scenario is not suitable for asymptotically flat black holes without the AdS term since the lack of the reflecting wall would cause the thermodynamic instability of systems.On the other hand,the latter scenario is always used to investigate the black holes in the normal phase space,in which the spacetimes background is fixed (i.e.the radius of the cavity is regarded as a constant),which leads to the P-V criticality and the corresponding thermodynamic phenomena of the black hole systems in the extended space are absent.To address these issues,many new research schemes have been proposed in recent years.In[38],Simovic and Mann investigated the thermodynamic behavior of SC de Sitter and R–N de Sitter black holes enclosed in an isothermal cavity by treating the cosmological constant as thermodynamic pressure and found a novel pressure-dependent phase transition that never occurs in the asymptotically AdS spacetime.Promsiri et al [39] proposed the Rényi extended phase space approach in which the nonextended parameter λ is regarded as the thermodynamic pressure.In this way,they discussed the solid/liquid phase transition and heat engine of SC black holes [40].Almost at the same time,Wang et al proposed a third scheme,which can be realized by redefining the effective volume asV=and its conjugate pressure aswhere rcandE are the radius and the thermal energy of a black hole system in a cavity,respectively.In[41–44],they extended the phase space of SC,R–N,and Gauss–Bonnet black holes in the cavity,and then investigated the thermodynamic properties and P-V criticality of those black holes.The results showed that the black hole systems have the Hawking-Page-like phase transition.More importantly,in the extended phase spaces,it is found that the thermodynamic behavior of black holes in a cavity is similar to those of the AdS counterparts.

    Nevertheless,one also notes that previous works cannot reveal the evolution and phase structure of real black holes since the everyday thermodynamics of black holes obtained from the original methods will lead to the loss of information and naked singularity problems.An effective way to prevent these problems is to use quantum gravity (QG) [45–47].In particular,by considering rainbow gravity (RG),which is an important model of QG,the catastrophic behavior of Hawking radiation and the information paradox of black holes can be effectively avoided [48–51].Furthermore,in [52–62],the authors found that the RG changes the picture of phase structures and critical phenomena.Consequently,due to the effect of RG,we showed that the thermodynamics and the phase transition of the SC black hole in a cavity are similar to those of the R–N AdS black hole,which is quite different from the conclusion in[63–65].According to the discussions above,a question arises: what are the thermodynamics and the phase structures of the SC black hole (i.e.the SC black hole in the framework of rainbow gravity) surrounded by a cavity in the extended phase space? However,this question has never been examined.To this end,in this present paper,we extend the phase space of the rainbow SC black hole enclosed by a cavity and investigate its Hawking temperature,entropy,heat capacity,thermodynamic stability,critical behavior and phase transition.In particular,this allows us to determine the AdS counterpart of the rainbow black hole in a cavity in the extended phase space.

    This paper is arranged as follows.In section 2,we review the rainbow SC black hole and its basic thermodynamic quantities.In section 3,we investigate the thermodynamic properties and stability of the rainbow SC black hole enclosed by a cavity in extended phase space.In section 4,the critical behavior and phase transition of the rainbow SC black hole in a cavity is discussed in extended phase space.We summarize our results in section 5.

    2.Thermodynamics of the rainbow SC black hole

    In this section,we briefly introduce the rainbow functions and the thermodynamics of the rainbow SC black hole.According to the viewpoints of QG,the standard dispersion relation m2=E2-p2is no longer held near the Planck scale[45,46].It should be modified to the so-called modified dispersion relation (MDR).In the ultraviolet limit,a general form of MDR is given by

    In the high-energy regime,Amelino-Camelia et al[45,46] constructed one of the most studied MDRs as follows:

    Comparing the equation (1) with equation (2),the specific rainbow functions reads

    where η is the rainbow parameter.Notably,the abovementioned functions are compatible with results from loop QG and κ-Minkowski noncommutative spacetime.Now,according to the viewpoint of [67],the time coordinates dt and all spatial coordinates dxishould be replaced byandrespectively.In this sense,the line element of the rainbow SC black hole can be described as follows:

    where F(r)= 1 -is the metric function with the event horizon rH.

    By utilizing the rainbow functions (3),the RG corrected Hawking temperature of the SC black hole gives

    where TH=1/4πrHis the Hawking temperature of the original SC black hole.Obviously,the modified Hawking temperature is energy-dependent.To eliminate the dependence of the particle energy in equation(5),one can follow the findings in [68,69],the Heisenberg uncertainty principle ΔxΔp ≥1 holds in the framework of RG.Therefore,the momentum between the energy and the uncertainty position can be expressed as p=Δp=1/Δx ~1/rH.By substituting the momentum uncertainty into MDR (2),the energy for the massless particle is [70]

    where we used the natural units G=c=?=kB=1,which lead to Ep=1.Plugging equation (6) into equation (5),the rainbow Hawking temperature can be rewritten as

    It is clear that the modified Hawking temperature returns to the original case THwhen η=0.In addition,in the limit rH→0,the rainbow Hawking temperature becomes finite asindicating that the effect of RG plays the role of cutoff and regularizes the standard divergent Hawking temperature.Then,according to the first law of black hole thermodynamics,the modified entropy reads

    It is worth noting that the effect of RG gives a logarithmic correction to the modified entropy,which satisfies the requirements of QG theory [71–73].However,equation (8)reduces the entropy of the original SC black holeS=in the limit of η=0.This result implies that the effect of RG dose contributes to the quantum corrected metric.

    3.Thermodynamics of the rainbow SC black hole surrounded by a cavity in the extended phase space

    In this section,we study the thermodynamics of the rainbow SC black hole surrounded by a cavity in the extended phase space.According to the method of York,one can enclose the rainbow SC black hole in a spherical cavity to maintain thermal stability[27].Therefore,the black hole system can be considered as a canonical ensemble in the following discussion.Now,suppose the radius of the cavity as rc,the temperature of the rainbow SC black hole in a cavity can be expressed as follows:

    in which the above equation is implemented by the blueshifted factor of the metric of the SC black hole.Next,on the basis of the Euclidean action method[30],the thermal energy of the rainbow SC black hole in a cavity is given by [74]

    Notably,in order to ensure that the wall of the cavity can effectively reflect the radiation from the rainbow SC black hole,the radius of the cavity is required to be larger than the radius of the black hole,that is rc≥rH(or 0 ≤rH/rc≤1).Therefore,for rc→∞,the cavity is no longer able to reflect Hawking radiation,leading to the thermal instability of the rainbow SC black hole,as the temperature in the cavity decreases the original rainbow SC black hole case and the thermal energy becomes zero,which makes it impossible to study the phase behavior of the rainbow SC black hole in the cavity.In previous works [28–38],the radius of the cavity rchas been considered as an invariable quantity,which leads to the absence of thermodynamic volume V and pressure P.To overcome this situation,Wang et al [41–43] regarded rcas a thermodynamic variable and defines a new thermodynamic volume for the black hole in a cavity as follows

    which gives the corresponding conjugate thermodynamic pressure

    From equation (11) and equation (12),we restore the ‘P-V conjugate pair’ in a new extended phase space,which is similar to the properties of AdS spacetime.Consequently,these thermodynamic quantities obtained above satisfy the first law of black hole thermodynamics dE =TdS-PdV.In the extended phase space,it is interesting to investigate the equation of the state of the canonical ensemble.To this aim,one should solve rcin terms of T according to equation (9),then yields

    This result indicates that the equation of state (12) depends not only on the temperature T and the radius of the cavity rc,but also on the rainbow parameter η.Next,to obtain the critical points of this canonical ensemble system,it is necessary to solve the following equations:

    In principle,one can obtain two relations for obtaining critical points of the canonical ensemble system by substituting the equation of state (14) into equation (15).However,it is difficult to derive the critical quantities analytically,hence,we have to use a numerical method.For later convenience,we consider η=1,in which case the effect of RG becomes strong when the energy approaches Ep.The critical quantities become

    Figure 1.The pressure of the rainbow black hole versus the radius of the cavity for different temperatures with η=1.

    To check whether the obtained values are the ones in which phase transition takes place,we need to depict the P-rc,T-rcand C-rcdiagrams.

    According to equation (14),the corresponding ‘P-rc’diagram is plotted in figure 1.One can see that the temperature T decreases from top to bottom.The isotherm (blue dotted curve) of the black hole system decreases monotonically with increasing rcfor T >Tcritical,which looks like that of the ideal gas.The black solid curve corresponds to the critical isotherm T=Tcritical.When T <Tcritical,the red dashed isotherm has a significant oscillating part,which is reminiscent of the ‘pressure-temperature,relation of the Van der Waals gas or the‘pressure-specific volume’relation of the R–N AdS black hole [14].Therefore,according to the P-rcplane,one can find that the black hole system exhibits a phase transition when the temperature is less than Tcritical.

    Figure 2.(a)The temperature of the rainbow SC black hole surrounded by a cavity in the extended phase space for fixed rainbow parameter(η=1)and varying pressure.(b)The original rainbow SC black hole surrounded by a cavity in the extended phase space as a function of rc with P=0.5Pcritcal.

    Figure 3.(a)The heat capacity of the rainbow SC black hole surrounded by a cavity in the extended phase space for fixed rainbow parameter(η=1) and varying pressure.(b) The rainbow heat capacity of the SC black hole surrounded by a cavity in the extended phase space as a function of rc with P=0.5Pcritcal.

    Clearly,the temperature of the rainbow SC black hole surrounded by a cavity in the extended phase space is dependent on rc,P and η.According to equation(17),the temperature T as a function rcis depicted in figure 2.Figure 2(a)shows that for η ≠0,the curves have an obvious undulating behavior when P <Pcritical,indicating that the system undergoes a phase transition in this case.As shown in figure 2(b),the red dashed curve for η=1 represents the original case at a large scale,which indicates that the effect of QG is negligible at that scale.However,as the radius decreases,the behavior of the modified temperature gradually deviates from the original case due to the effect of RG.One can see that the temperature reduces to T2at r2and then increases to the peak T1at r1.Interestingly,the temperature drops to a limited value T0as the radius becomes r0=0 at the end of evolution.This turns out to be a ‘massless remnant’ [75] corresponding to a finite temperatureTrem=T0=1 4Moreover,this result can be interpreted as the black hole dissolving into particles of temperature following the argument in [76].

    Now,to study the thermodynamic stability and the phase structure of the black hole system,one should calculate the heat capacity,whose expression presents:

    By substituting equation (8) and equation (17) into equation(18),one can obtain the heat capacity.However,the expression is too long to express here,but we can plot C-rcplanes to illustrate the heat capacity of the rainbow SC black hole versus the radius rc.

    Table 1.Stability,radius,state and heat capacity of the rainbow SC black hole surrounded by a cavity in the extended phase space.

    As shown in figure 3(a),the pressure decreases from top to bottom.It is obvious that the rainbow heat capacity remains positive (black solid curve and blue dotted curve) for P ≥Pcritical,whereas the red dashed line for P <Pcriticalis distributed on both sides of the horizontal curve.Additionally,it is interesting to analyze how the rainbow effect changes the heat capacity of the SC black hole surrounded by a cavity in the extended phase space.From figure 3(b),one can see the red dashed curve for the rainbow SC black hole case diverges at r1and r2.It is well known that the positive and negative heat capacities determine the stability of black holes.Therefore,there exist two stable regions(r0<r <r1and r >r2)and one unstable region (r1<r <r2).

    According to the above discussions,when P or T is less than the values obtained in equation (16),the system undergoes the phase transition.Besides,as shown in figure 2(b)and figure 3(b),the rainbow SC black hole surrounded by a cavity in the extended phase space can be divided into three branches depending on their scales of rc.To gain an intuitive understanding,the range,state,heat capacity,and stability of the branches of the rainbow SC black hole surrounded by a cavity in the extended phase space are listed in table 1.

    From table 1,due to the effect of RG,the SC case has three branches;it not only has a stable SBH and a stable LBH,but also has an additional unstable intermediate black hole(IBH)which never appears in the original SC black hole case.In addition,one may find that there is a remnant in the final stages of black hole evolution since the SBH of the rainbow case is stable.

    4.Phase transition of rainbow SC black hole enclosed by a cavity in extended phase space

    Finally,it is interesting to investigate the thermodynamic phase transition of the rainbow SC black hole surrounded by a cavity in the extended phase space.In the extended phase space,the Gibbs free energy of the SC black hole surrounded in a cavity can be expressed as follows [77]

    Substituting equation (8),equation (9) into equation (19),yields

    Now,using the equation (20)together with temperature (17),the ‘G-T diagrams’ for the SC black hole surrounded by a cavity in the extended phase space are displayed in figure 4.

    In figure 4(a),by setting η=1,the G of the rainbow SC black hole surrounded by a cavity in the extended phase is depicted as a function of T with various pressures P=1.5Pcritical,P=Pcriticaland P=0.5Pcritical.Obviously,the phase structure of the rainbow SC black hole surrounded by a cavity in the extended phase space is similar to that of the R–N AdS black hole.The black solid curve for P <Pcriticalshows that a swallow tail structure corresponds to a two-phase coexistence state phase transition in the canonical ensemble,whereas the system only has one thermally stable phase with P ≥Pcritical.These results are consistent with the profiles of‘T-rc’ in figure 2 and ‘C-rc’ in figure 3.

    Next,to reveal the influence of the rainbow's effect on the phase transition,we display figure 4(b).As shown in figure 4(b),the horizontal dashed line is the free energy of thermal flat spacetime (TFS),which is a classical solution of the canonical ensemble.One can see that the system only has SBH for(T0,T2)or LBH for T >T1,while the three branches of the rainbow SC black hole coexist for(T2,T1) .The swallow tail leads to one first-order phase transition at the inflection point Tfirst-orderthat occurs at the Van der Waals fluid/AdS charged black hole system in the extended phase space,and never at the original SC black hole case [14].However,one may see that the Gibbs free energies of the SBH and the LBH at the two ends of the first-order phase transition are both less than zero,which also appears in the high-dimensional AdS black hole in massive gravity[78].Those imply that the effect of RG plays a role of charge in the evolution of black holes,and can effectively reduce the free energy of the black hole thermodynamic ensemble.In addition,by comparing the Gibbs free energies of different phases,it can be observed that GLBHis lower than GIBH,GTFSand GSBHfor T >Tfirst-order,which implies that the IBH,TFS and IBH would decay into a stable LBH.However,as the temperature decreases,the relationship of the Gibbs free energy changes to GSBH<GLBH<GTFS<GIBHfor<T<Tfirst-order,and GSBH<GTFS<GLBH<GIBHforT<Hence,the other three phases would decay into the stable SBH in this region.Even more interesting is that the black solid line for the IBH and blue dotted line for the LBH intersect with the horizontal l ine at pointsndwhich implies that the rainbow SC black hole system contains two Hawking-Page-like phase transitions.From figure 4(b) and figure 3(b),it can be seen that the unstable IBH cannot exist for a long time.Therefore,theis in a process of unstable phase transition andexist as a metastable phase transition.

    Figure 4.(a)Gibbs free energy of the rainbow SC black hole versus temperature for different pressures.(b)Gibbs free energy of the rainbow SC black hole as a function of temperature.

    5.Conclusion and discussion

    In this paper,by defining a new thermodynamic volumeand its conjugate thermodynamic pressurewe investigated the thermodynamic properties,critical behavior and phase structure of the rainbow SC black hole enclosed by a cavity in extended phase space.We summarize our results as follows:

    1.We restored the P-V term and calculated the critical quantities of the rainbow SC black hole surrounded by a cavity in the extended phase space.The critical pressure Pcriticaland critical temperature Tcriticaldecrease with η,while the critical radius rcriticaland critical ratio decrease with η.

    2.When T <Tcritical,the behavior of P-rccriticality from figure 1 is reminiscent of Van der Waals gas,which indicates that the system undergoes a phase transition.For P <Pcritical,the T-rcplane and C-rcplane also confirm that the canonical ensemble has a phase transition.

    3.RG leads to a massless remnant with limited temperaturein the final stages of black hole evolution.This result can be interpreted as a black hole that dissolves at a finite temperature into a particle that can store information,thereby avoiding the black hole information paradox.

    4.In the extended phase space,due to the effect of RG,the SC black hole in a cavity has two stable regions and one unstable region.Therefore,the black hole system is naturally divided into three branches,that is,a stable LBH,a stable SBH,and an unstable IBH that never appears in the original case and AdS counterpart case.On the phase transition side,the system exhibits two Hawking-Page-like phase transitions and one first-order phase transition,which is very different from the original case.

    5.It is worth noting that,in order to ensure that the wall of the cavity can effectively reflect the radiation of rainbow SC black hole,the radius of the cavity and the event horizon of SC black hole satisfy the relationship 0 ≤rH/rc≤1,hence,when rc→∞,the rainbow SC black hole would lose the reflecting surface,which makes it impossible to study the phase behavior of the system.On this basis,if one further considers that η →0,the thermodynamic quantities of rainbow SC black hole (i.e,the Hawking temperature,entropy and heat capacity)would reduce the case of the original SC black hole.

    In [41,42],the authors demonstrated that the thermodynamic properties,critical behavior and phase structure of black holes surrounded by a cavity in the extended phase space are almost the same as their AdS counterparts.However,due to the effect of RG,we found that the thermodynamic behavior and phase transition of the rainbow SC black hole surrounded by a cavity in the extended phase space is quite similar to that of the R–N AdS black hole.This indicates that the effect of QG can significantly change the thermodynamic properties and phase transition of black holes.In addition,Garattini and Saridakis[79]have pointed out that the RG corresponds to the Hoˇrava-Lifshitz gravity,hence,the investigation of the thermodynamic properties of the rainbow SC black hole could open a new window for further understanding of Hoˇrava-Lifshitz gravity.It is believed that the relevant research would be very interesting,and we will discuss it in detail in future works.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant No.12 105 231),the Guiding Local Science and Technology Development Projects by the Central Government of China(Grant No.2021ZYD0031)and the Sichuan Youth Science and Technology Innovation Research Team (Grant No.21CXTD0038).

    ORClD iDs

    国产久久久一区二区三区| 国产一级毛片七仙女欲春2 | 一本精品99久久精品77| 欧美日韩瑟瑟在线播放| 2021天堂中文幕一二区在线观 | 搡老熟女国产l中国老女人| 老汉色∧v一级毛片| 久久国产精品男人的天堂亚洲| 国产精品爽爽va在线观看网站 | 国产精品98久久久久久宅男小说| 两个人免费观看高清视频| 久久久精品欧美日韩精品| 高清毛片免费观看视频网站| 国产人伦9x9x在线观看| 午夜激情av网站| 精华霜和精华液先用哪个| 久久久水蜜桃国产精品网| 久久天躁狠狠躁夜夜2o2o| 狂野欧美激情性xxxx| 精品卡一卡二卡四卡免费| 老汉色∧v一级毛片| 日韩欧美三级三区| tocl精华| 久久国产亚洲av麻豆专区| 黄网站色视频无遮挡免费观看| 一区二区日韩欧美中文字幕| 中亚洲国语对白在线视频| 特大巨黑吊av在线直播 | 狠狠狠狠99中文字幕| 美女 人体艺术 gogo| 精品国产乱子伦一区二区三区| 老司机在亚洲福利影院| 国产精品久久久久久精品电影 | 夜夜看夜夜爽夜夜摸| 一区二区日韩欧美中文字幕| 午夜免费激情av| 日本三级黄在线观看| 欧美日韩瑟瑟在线播放| 一a级毛片在线观看| а√天堂www在线а√下载| 欧美黄色淫秽网站| 熟妇人妻久久中文字幕3abv| 午夜影院日韩av| 久久久久久久午夜电影| 禁无遮挡网站| 黄色a级毛片大全视频| 亚洲成人免费电影在线观看| 长腿黑丝高跟| 在线观看日韩欧美| 国产1区2区3区精品| 久久婷婷成人综合色麻豆| 亚洲第一青青草原| 99riav亚洲国产免费| www.熟女人妻精品国产| 亚洲电影在线观看av| 他把我摸到了高潮在线观看| 91国产中文字幕| 最新美女视频免费是黄的| 一二三四在线观看免费中文在| 亚洲自拍偷在线| 精品国产乱码久久久久久男人| 国产日本99.免费观看| netflix在线观看网站| 日韩精品青青久久久久久| 国产黄a三级三级三级人| 自线自在国产av| 亚洲成人国产一区在线观看| 一区二区三区精品91| 最近最新中文字幕大全电影3 | 制服丝袜大香蕉在线| 欧美中文日本在线观看视频| 国产乱人伦免费视频| 一区二区日韩欧美中文字幕| tocl精华| 搡老熟女国产l中国老女人| 91成人精品电影| 久久人妻福利社区极品人妻图片| 精品午夜福利视频在线观看一区| 久久香蕉精品热| 岛国视频午夜一区免费看| 嫁个100分男人电影在线观看| 欧美中文综合在线视频| 亚洲成人免费电影在线观看| 久久久国产精品麻豆| 国产日本99.免费观看| 国产伦一二天堂av在线观看| 久久亚洲精品不卡| 禁无遮挡网站| 久久精品国产综合久久久| 精品人妻1区二区| 黄色视频,在线免费观看| 成人国语在线视频| 在线十欧美十亚洲十日本专区| 美女午夜性视频免费| 免费人成视频x8x8入口观看| 黄片播放在线免费| 成人av一区二区三区在线看| 午夜福利免费观看在线| 91麻豆av在线| 日本成人三级电影网站| 日韩欧美三级三区| 在线观看免费午夜福利视频| 亚洲一区二区三区不卡视频| 在线视频色国产色| 18禁裸乳无遮挡免费网站照片 | 久久亚洲精品不卡| 日韩高清综合在线| 脱女人内裤的视频| 欧美在线黄色| 亚洲五月婷婷丁香| 在线国产一区二区在线| 成人三级黄色视频| 一边摸一边抽搐一进一小说| 看片在线看免费视频| 99国产极品粉嫩在线观看| 免费女性裸体啪啪无遮挡网站| 精品久久蜜臀av无| 一级黄色大片毛片| 亚洲精品国产精品久久久不卡| 99热6这里只有精品| 女人爽到高潮嗷嗷叫在线视频| 美女大奶头视频| 久久亚洲真实| 久久青草综合色| 久久欧美精品欧美久久欧美| 夜夜爽天天搞| 成人欧美大片| 精品国产一区二区三区四区第35| 欧美成狂野欧美在线观看| 中文字幕av电影在线播放| 国产亚洲精品第一综合不卡| 在线观看午夜福利视频| 99国产精品99久久久久| 男人舔女人下体高潮全视频| 在线观看午夜福利视频| 91在线观看av| 美女午夜性视频免费| 国产精品久久视频播放| 中文字幕久久专区| 久久狼人影院| 女警被强在线播放| 免费在线观看视频国产中文字幕亚洲| 欧美激情 高清一区二区三区| 免费在线观看黄色视频的| 亚洲午夜理论影院| 一级a爱片免费观看的视频| 一级片免费观看大全| 国产在线精品亚洲第一网站| 国产精品影院久久| 成人午夜高清在线视频 | 亚洲成av片中文字幕在线观看| 后天国语完整版免费观看| 色播在线永久视频| 精品国产美女av久久久久小说| 青草久久国产| av电影中文网址| 午夜福利一区二区在线看| 精品欧美国产一区二区三| 久久久久久久久中文| 精品国产一区二区三区四区第35| 亚洲人成电影免费在线| 亚洲精品一卡2卡三卡4卡5卡| АⅤ资源中文在线天堂| 校园春色视频在线观看| 色哟哟哟哟哟哟| 精品久久久久久久毛片微露脸| 亚洲欧美精品综合久久99| 侵犯人妻中文字幕一二三四区| 一二三四社区在线视频社区8| 99久久国产精品久久久| 黄色成人免费大全| 99国产综合亚洲精品| 欧美中文综合在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产伦人伦偷精品视频| 国产aⅴ精品一区二区三区波| 亚洲全国av大片| 18禁美女被吸乳视频| 国产人伦9x9x在线观看| 波多野结衣av一区二区av| 18美女黄网站色大片免费观看| 啦啦啦观看免费观看视频高清| 日本五十路高清| 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产欧美日韩在线播放| 亚洲av熟女| 精品久久久久久久久久免费视频| 亚洲第一av免费看| 人人妻人人澡人人看| 欧美精品啪啪一区二区三区| 女性生殖器流出的白浆| 最近最新中文字幕大全电影3 | 欧美成狂野欧美在线观看| 国产亚洲精品av在线| 国产主播在线观看一区二区| 在线观看日韩欧美| 亚洲五月色婷婷综合| 国产精品九九99| 国产v大片淫在线免费观看| 精品国产亚洲在线| 制服丝袜大香蕉在线| xxx96com| av欧美777| 欧美人与性动交α欧美精品济南到| 美国免费a级毛片| 他把我摸到了高潮在线观看| 欧美一级毛片孕妇| 好男人电影高清在线观看| 国产成人精品无人区| 欧美一级a爱片免费观看看 | 狂野欧美激情性xxxx| 久久香蕉精品热| 俄罗斯特黄特色一大片| 国产精品电影一区二区三区| 亚洲片人在线观看| 成年免费大片在线观看| 国产爱豆传媒在线观看 | 日韩欧美在线二视频| 12—13女人毛片做爰片一| 亚洲一码二码三码区别大吗| 黑人操中国人逼视频| 男女做爰动态图高潮gif福利片| 国产成人av教育| 国产黄片美女视频| 精品免费久久久久久久清纯| 在线国产一区二区在线| 亚洲熟妇中文字幕五十中出| 伦理电影免费视频| 国产精品影院久久| 两性夫妻黄色片| 亚洲va日本ⅴa欧美va伊人久久| 香蕉av资源在线| 很黄的视频免费| 亚洲三区欧美一区| 91av网站免费观看| 久久 成人 亚洲| 久久精品夜夜夜夜夜久久蜜豆 | 国产激情久久老熟女| 久久久久久人人人人人| 一区二区三区精品91| 亚洲va日本ⅴa欧美va伊人久久| 长腿黑丝高跟| 最近最新中文字幕大全电影3 | 免费在线观看亚洲国产| 免费在线观看影片大全网站| 久久精品成人免费网站| 中文资源天堂在线| 日韩欧美三级三区| 亚洲avbb在线观看| 亚洲欧美日韩无卡精品| 精品一区二区三区四区五区乱码| 老司机靠b影院| cao死你这个sao货| 日韩国内少妇激情av| 久久久水蜜桃国产精品网| √禁漫天堂资源中文www| 嫩草影视91久久| 国产精品久久视频播放| 欧美不卡视频在线免费观看 | 99久久精品国产亚洲精品| 精品国产超薄肉色丝袜足j| 黄频高清免费视频| 怎么达到女性高潮| 久久久久久久久久黄片| 日本三级黄在线观看| 久久久国产欧美日韩av| 99精品久久久久人妻精品| 白带黄色成豆腐渣| 搡老妇女老女人老熟妇| 国产成+人综合+亚洲专区| 久久精品影院6| www.熟女人妻精品国产| 在线观看一区二区三区| 性欧美人与动物交配| 国产高清视频在线播放一区| 在线观看午夜福利视频| 亚洲专区国产一区二区| 99久久无色码亚洲精品果冻| 亚洲最大成人中文| 日韩欧美免费精品| 99精品在免费线老司机午夜| 亚洲av美国av| 伦理电影免费视频| 午夜福利一区二区在线看| 久久久国产成人精品二区| 国产爱豆传媒在线观看 | 91老司机精品| 他把我摸到了高潮在线观看| 色尼玛亚洲综合影院| 免费看a级黄色片| 一级作爱视频免费观看| 精品国产超薄肉色丝袜足j| 母亲3免费完整高清在线观看| 欧美乱码精品一区二区三区| 亚洲精品粉嫩美女一区| 欧美一级a爱片免费观看看 | 国产熟女午夜一区二区三区| 又紧又爽又黄一区二区| 1024视频免费在线观看| 老熟妇乱子伦视频在线观看| 狠狠狠狠99中文字幕| netflix在线观看网站| 日韩三级视频一区二区三区| 黄色a级毛片大全视频| 日韩欧美一区二区三区在线观看| 国产久久久一区二区三区| 国产成人系列免费观看| 性欧美人与动物交配| 97碰自拍视频| x7x7x7水蜜桃| 国产精品影院久久| 免费在线观看成人毛片| 波多野结衣高清无吗| 一级作爱视频免费观看| 一进一出抽搐gif免费好疼| 黄片大片在线免费观看| 欧美成人午夜精品| 夜夜爽天天搞| 亚洲色图av天堂| 亚洲七黄色美女视频| 美国免费a级毛片| 露出奶头的视频| 看免费av毛片| 久久久水蜜桃国产精品网| 国产在线精品亚洲第一网站| 99精品欧美一区二区三区四区| 级片在线观看| 日韩欧美一区二区三区在线观看| 国产高清videossex| 丁香欧美五月| 热99re8久久精品国产| 国产99白浆流出| 精品久久久久久久末码| 搞女人的毛片| 久久精品国产亚洲av高清一级| 国产精品亚洲美女久久久| 免费高清在线观看日韩| 精品卡一卡二卡四卡免费| 国产精品日韩av在线免费观看| 我的亚洲天堂| 亚洲久久久国产精品| 成人18禁高潮啪啪吃奶动态图| 男人舔女人下体高潮全视频| 亚洲国产精品久久男人天堂| 精品国产美女av久久久久小说| 色综合欧美亚洲国产小说| 91成人精品电影| 日本撒尿小便嘘嘘汇集6| 天天躁夜夜躁狠狠躁躁| 黄色片一级片一级黄色片| 丝袜在线中文字幕| 日本一区二区免费在线视频| 国内少妇人妻偷人精品xxx网站 | 成年人黄色毛片网站| 亚洲熟女毛片儿| 精品久久久久久久末码| 亚洲中文字幕日韩| 真人一进一出gif抽搐免费| 国产一区二区三区视频了| 久久九九热精品免费| 欧美成人午夜精品| 成年人黄色毛片网站| 亚洲精品在线美女| 成年人黄色毛片网站| 国产午夜福利久久久久久| 青草久久国产| 久久久久久人人人人人| 非洲黑人性xxxx精品又粗又长| 久久精品人妻少妇| 国产亚洲欧美98| 人人妻,人人澡人人爽秒播| 亚洲人成伊人成综合网2020| 久久人人精品亚洲av| 在线av久久热| 搡老岳熟女国产| 首页视频小说图片口味搜索| 午夜福利欧美成人| 国产精品永久免费网站| 欧美黄色片欧美黄色片| 久久国产精品人妻蜜桃| 久久久水蜜桃国产精品网| 国产激情欧美一区二区| 成人亚洲精品一区在线观看| 91在线观看av| 狠狠狠狠99中文字幕| 又黄又爽又免费观看的视频| 母亲3免费完整高清在线观看| 亚洲一区中文字幕在线| 老鸭窝网址在线观看| 国产精品1区2区在线观看.| 久久精品91无色码中文字幕| 欧美成人午夜精品| 99在线视频只有这里精品首页| 12—13女人毛片做爰片一| 亚洲人成电影免费在线| 国产男靠女视频免费网站| 99精品久久久久人妻精品| 好男人电影高清在线观看| 久久这里只有精品19| 精品人妻1区二区| 最新在线观看一区二区三区| 搡老岳熟女国产| 亚洲男人的天堂狠狠| 亚洲精品久久成人aⅴ小说| 亚洲第一电影网av| 亚洲男人天堂网一区| 免费观看精品视频网站| 91成年电影在线观看| 国产亚洲精品综合一区在线观看 | 亚洲成人久久爱视频| 国产精品久久久久久亚洲av鲁大| av片东京热男人的天堂| 亚洲第一av免费看| 高清在线国产一区| 亚洲av成人av| netflix在线观看网站| 日本免费a在线| 欧美性长视频在线观看| 一边摸一边抽搐一进一小说| 丝袜在线中文字幕| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品999在线| 校园春色视频在线观看| 精品乱码久久久久久99久播| 可以在线观看毛片的网站| 色综合站精品国产| 超碰成人久久| 一边摸一边抽搐一进一小说| 亚洲国产欧美日韩在线播放| 桃色一区二区三区在线观看| 国内揄拍国产精品人妻在线 | 一a级毛片在线观看| 国产av一区在线观看免费| 国产成年人精品一区二区| 一级毛片女人18水好多| 听说在线观看完整版免费高清| 不卡av一区二区三区| 母亲3免费完整高清在线观看| 国产亚洲精品久久久久久毛片| 一本一本综合久久| 婷婷精品国产亚洲av在线| www国产在线视频色| 婷婷六月久久综合丁香| 高潮久久久久久久久久久不卡| 亚洲av日韩精品久久久久久密| 国产伦一二天堂av在线观看| 亚洲五月天丁香| 亚洲中文字幕日韩| 午夜老司机福利片| 国产精品久久久av美女十八| svipshipincom国产片| 亚洲久久久国产精品| 久久久久久久久中文| 日本a在线网址| 在线观看66精品国产| 亚洲色图 男人天堂 中文字幕| 18禁观看日本| 成年女人毛片免费观看观看9| 日韩欧美一区二区三区在线观看| 99久久久亚洲精品蜜臀av| 久久香蕉激情| 日韩精品青青久久久久久| 精品久久蜜臀av无| 欧美激情 高清一区二区三区| 黄色毛片三级朝国网站| а√天堂www在线а√下载| 日本成人三级电影网站| bbb黄色大片| 精品久久久久久,| 法律面前人人平等表现在哪些方面| 亚洲男人天堂网一区| 热re99久久国产66热| 精品免费久久久久久久清纯| 亚洲中文字幕日韩| 老司机午夜十八禁免费视频| 日韩欧美一区视频在线观看| 我的亚洲天堂| 欧美激情高清一区二区三区| 一边摸一边做爽爽视频免费| 美女 人体艺术 gogo| 日韩 欧美 亚洲 中文字幕| 精品第一国产精品| 亚洲性夜色夜夜综合| 白带黄色成豆腐渣| 99在线视频只有这里精品首页| 欧美日本亚洲视频在线播放| 精品久久久久久久久久久久久 | 国产人伦9x9x在线观看| 成人亚洲精品一区在线观看| 精品福利观看| 久99久视频精品免费| 成人三级黄色视频| 亚洲人成网站高清观看| 久久中文字幕一级| 亚洲人成网站在线播放欧美日韩| 99热6这里只有精品| 日本 av在线| 91老司机精品| 免费女性裸体啪啪无遮挡网站| 亚洲人成网站在线播放欧美日韩| 精品一区二区三区四区五区乱码| 久久婷婷人人爽人人干人人爱| 免费在线观看日本一区| 亚洲精品中文字幕一二三四区| 亚洲国产高清在线一区二区三 | 99久久久亚洲精品蜜臀av| 久久精品国产99精品国产亚洲性色| 国产精品久久久人人做人人爽| 免费一级毛片在线播放高清视频| 欧美在线一区亚洲| 一进一出抽搐gif免费好疼| www国产在线视频色| 亚洲第一青青草原| 香蕉久久夜色| 国产精华一区二区三区| 村上凉子中文字幕在线| 天堂影院成人在线观看| 91成年电影在线观看| 777久久人妻少妇嫩草av网站| av福利片在线| 久久精品夜夜夜夜夜久久蜜豆 | 岛国在线观看网站| 欧美成狂野欧美在线观看| 色在线成人网| 国产精品一区二区免费欧美| 日韩欧美免费精品| 在线观看www视频免费| 欧美丝袜亚洲另类 | 亚洲国产精品999在线| xxx96com| 一夜夜www| 欧美日韩黄片免| 国产单亲对白刺激| 亚洲熟妇中文字幕五十中出| 亚洲最大成人中文| 国产真实乱freesex| 国产精品久久久av美女十八| 夜夜躁狠狠躁天天躁| 精品国产乱码久久久久久男人| 夜夜看夜夜爽夜夜摸| 欧美丝袜亚洲另类 | 日韩精品免费视频一区二区三区| 啦啦啦观看免费观看视频高清| 亚洲欧美一区二区三区黑人| 亚洲国产欧美日韩在线播放| 亚洲avbb在线观看| 色综合站精品国产| 日本成人三级电影网站| 国产亚洲欧美98| 日韩欧美三级三区| 日韩国内少妇激情av| 麻豆国产av国片精品| 天天躁狠狠躁夜夜躁狠狠躁| 我的亚洲天堂| 久久久久久久精品吃奶| 老熟妇仑乱视频hdxx| 国产成人啪精品午夜网站| 欧美激情极品国产一区二区三区| 精品福利观看| 免费在线观看亚洲国产| 欧美激情 高清一区二区三区| 成人永久免费在线观看视频| 一本一本综合久久| 一a级毛片在线观看| 真人做人爱边吃奶动态| 久久精品成人免费网站| 村上凉子中文字幕在线| 黄色a级毛片大全视频| 成人午夜高清在线视频 | 成人亚洲精品av一区二区| 国产一区二区在线av高清观看| 激情在线观看视频在线高清| 热99re8久久精品国产| 午夜免费观看网址| 搡老熟女国产l中国老女人| 亚洲成av人片免费观看| 国产真人三级小视频在线观看| 国产1区2区3区精品| 欧美成人一区二区免费高清观看 | 欧美一区二区精品小视频在线| 午夜成年电影在线免费观看| 嫩草影院精品99| 亚洲精品在线美女| 成人亚洲精品av一区二区| 久久久国产精品麻豆| 亚洲成人免费电影在线观看| 亚洲欧美精品综合久久99| av有码第一页| 久久香蕉精品热| 国产v大片淫在线免费观看| 国产一区二区激情短视频| 精品少妇一区二区三区视频日本电影| 最新在线观看一区二区三区| 久久精品影院6| 国产精品1区2区在线观看.| 亚洲成a人片在线一区二区| 十八禁网站免费在线| 亚洲国产精品合色在线| 国产精品美女特级片免费视频播放器 | 国产aⅴ精品一区二区三区波| 免费女性裸体啪啪无遮挡网站| 国产av一区二区精品久久| 亚洲国产日韩欧美精品在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 窝窝影院91人妻| 日韩高清综合在线| 巨乳人妻的诱惑在线观看| 看黄色毛片网站| 国产亚洲av嫩草精品影院| 午夜a级毛片| 国产亚洲精品一区二区www| 国产av又大| 久久亚洲精品不卡| 国产精品亚洲美女久久久| 免费在线观看黄色视频的|