• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation study on electron heating characteristics in magnetic enhancement capacitively coupled plasmas with a longitudinal magnetic field

    2022-09-06 13:04:34HaiyunTAN譚海云TianyuanHUANG黃天源PeiyuJI季佩宇LanjianZHUGE諸葛蘭劍andXuemeiWU吳雪梅
    Plasma Science and Technology 2022年10期
    關(guān)鍵詞:諸葛

    Haiyun TAN (譚海云),Tianyuan HUANG (黃天源),Peiyu JI (季佩宇),Lanjian ZHUGE (諸葛蘭劍) and Xuemei WU (吳雪梅),?

    1 School of Physical Science and Technology&Collaborative Innovation Center of Suzhou Nano Science and Technology,Soochow University,Suzhou 215006,People’s Republic of China

    2 Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province &Key Lab of Modern Optical Technologies of Education Ministry of China,Soochow University,Suzhou 215006,People’s Republic of China

    3 School of Optoelectronic Science and Engineering,Soochow University,Suzhou 215006,People’s Republic of China

    4 Analysis and Testing Center,Soochow University,Suzhou 215123,People’s Republic of China

    Abstract The electron heating characteristics of magnetic enhancement capacitively coupled argon plasmas in presence of both longitudinal and transverse uniform magnetic field have been explored through both theoretical and numerical calculations.It is found that the longitudinal magnetic field can affect the heating by changing the level of the pressure heating along the longitudinal direction and that of the Ohmic heating along the direction which is perpendicular to both driving electric field and the applied transverse magnetic field,and a continuously increased longitudinal magnetic field can induce pressure heating to become dominant.Moreover,the electron temperature as well as proportion of some low energy electrons will increase if a small longitudinal magnetic field is introduced,which is attributed to the increased average electron energy.We believe that the research will provide guidance for optimizing the magnetic field configuration of some discharge systems having both transverse and longitudinal magnetic field.Keywords: capacitively coupled plasma,longitudinal magnetic field,electron heating,PIC/

    1.Introduction

    The parameters of capacitively coupled plasmas(CCPs),such as plasma density and electron energy distribution function(EEDF),etc,play important roles in material etching or thin film deposition,and they usually depend on how electrons gain energy from driving electric fields,which is traditionally known as electron heating [1].

    Ohmic heating is an important mechanism in electron heating,which origins from the collision between electrons and neutral particles [2].In this case,the synchronous relationship between the motion of the colliding electrons and the driving electric fields is destroyed,and therefore the electrons obtain net energy.In some cases,however,the strong power deposition in CCPs cannot be explained well by Ohmic heating,and there must be some additional ‘collisionless’mechanisms to heat electrons,as pointed out by Godyak et al[3,4].A classical model described collisionless heating is known as hard-wall model,which proposed by Lieberman[5].In this model,the electric filed in plasma zone is ignored,and the collisionless heating is considered as a result of the random interactions between the moving electrons and the oscillating sheath electric filed.Some further researches show that the strong electric filed reversals in the region between the sheath and plasma zone can also introduce additional collisionless heating [6,7],which is known as ambipolar electron heating [8].In addition,the electrostatic waves originated from the energetic electron beam propagating from the sheath edge toward plasma zone can also contribute to the collisionless heating in some cases [9].Another classical model proposed to understand the collisionless heating is known as the pressure heating model.In this model,the collisionless heating is considered to be related to the pressure action in electronic fluid [10,11].

    To analyze the dependence of collisionless heating on discharge parameters,some analytical models have been proposed to describe the level of collisionless heating[6,12].These models,however,often show some errors when compare their results with that from particle-in-cell (PIC) simulations[13],and cannot describe all the physical mechanisms of collisionless heating completely.To determine the level of the heating accurately,Surendra and Dalvie proposed a quantitative method,in which a dynamic fluid model is used to analyze the heating,and parameters of this model are taken from simulations [14].Through this method,heating components from different physical mechanisms can be distinguished,and thereby which components are important can be determined.They further revealed that the pressure tensor of electrons is the physical origin of collisionless heating,and time-varying electron temperature is very important for this heating.Based on such a method,people have a clearer understanding of electronic heating in CCPs.For example,Lafleur et al found that the total heating in their most CCPs tested cases consists mainly of Ohmic heating and pressure heating,with the additional collisionless heating associated with the electron inertia being negligible[15].Liu et al found that the thick dielectric sidewall in CCPs can enhance the level of the axial Ohmic heating and result in the increase of axial electron density[16].Schulze et al found that the strong bipolar electric fields are very important for pressure heating in electropositive CCPs[17],and Proto et al further expanded this conclusion to electronegative CCPs recently [18,19].

    If one introduces a transverse magnetic field which oriented parallel to the electrodes into CCPs,then the electron heating as well as plasma characteristics of the CCPs may be modulated [20].For example,transverse magnetic field can enhance the level of Ohmic heating significantly,and induce the Ohmic heating to become dominant in total heating[21,22].In addition,the electrons near the magnetized plasma sheath edge can undergo periodic cyclotron motion,and in some cases the couple between the oscillating sheath and the cyclotron electron can enhance the electron heating,which is known as electron bounce-cyclotron resonance heating[23-25].On the other hand,some quantitative studies about the influences of transverse magnetic field on electron heating in CCPs have also been reported.For example,Wang et al found that with the increase of transverse magnetic field,the dominant heating mechanism in magnetized oxygen CCP will translate from electronegative drift-ambipolar heating to electropositive stochastic electron heating [26].Zheng et al revealed that the transverse magnetic field induced Hall currents play important roles in enhancing the level of Ohmic heating in CCPs [27].

    In summary,a series of accurate quantitative researches have discussed the effects of transverse magnetic fields on the electron heating in CCPs,few studies,however,report the effects of longitudinal magnetic fields on that in CCPs.In this work,the electron heating characteristics in a magnetic enhancement CCP with a longitudinal uniform magnetic field are explored through both theoretical and numerical calculations.This paper is structured as follows.In section 2,a dynamic fluid model used for analyzing the electron heating characteristics is reviewed.The simulation model used to perform numerical calculations and its parameter setting is described in section 3.The effects of longitudinal magnetic fields on electron heating characteristics are stated in section 4.The last part is a summary of the full text.

    2.Theoretical background

    For a magnetized plasma,the first momentum Boltzmann equation for electrons is the momentum balance equation,read as [28]

    wherene,ueand Γerepresent the density,mean velocity and flux of electrons,respectively.E and B represent driving electric fields and applied magnetic fields,respectively.represents the pressure tensor of electrons andΠcrepresents the momentum change resulting from electron-neutron collisions.Since elastic collision is dominant in the electronneutral collisions,theΠccan be obtained by subtracting the electron momentum before elastic collision from that after elastic collision.In this work,we take electron positions at integral time oftand electron velocities at half integral time oft+Δt/2to calculate Πc,a more detailed discussion of Πccan be found in Lafleur et al [15].Multiplying equation (1)with the mean velocityue,the new equation can be expanded as follows,

    where the subscripti=x,y,zandEH=ue×Brepresents Hall fields.pe,xi=mene(〈vx vi〉 ?u x ui)represents the elements of the pressure tensor,wherevrepresents velocities of the electrons.The term?eneue,i Ei=Pabsrepresents the level of the electron heating.In the case of a one-dimensional(1D)plasma with a driving electric field ofE=(Ex,0,0),Pabsobtained from equation(2)can be expressed in two forms,i.e.the heating in x-direction including magnetic field term

    or the heating in global space excluding magnetic field term,Pabs=Pin+Ppress+Pohmic,where

    represent the level of inertia heating,pressure heating and Ohmic heating,respectively.In the following studies,Pinis ignored since the time averagedPinis usually unimportant [15].

    3.Simulation descriptions

    In this work,an implicit 1d3v PIC/MCC code is used to perform all the simulations,and the code has been benchmarked with the results from Zheng et al[24]and the results from Yang et al [29].We consider a magnetic enhancement CCP discharge system operated in argon,as shown in figure 1.In this model,we assume the working pressure and gas temperature are 100 mTorr and 300 K,respectively.The transverse magnetic fieldByis a fixed uniform magnetic field,while the longitudinal magnetic fieldBxis a tunable uniform magnetic field.The driving electric fieldExis generated by a voltage source having a waveform ofV~=V0cos (2πft),whereV0=300V andf=13.56MHz.The gap between the electrodes is 2.5 cm,and we have 80 equal cells in this gap.

    In all simulations,we consider electron-neutral collisions and argon ion-neutral collisions,where the collision types and the collision cross sections are shown in figure 2.The cross sections of electron-neutral collisions are taken from[30],in which for elastic electron-neutral collision the momentum transfer cross-section is used,and all scattering events are treated as isotropic,as referred as [17].The crosssections of argon ion-neutral collisions are taken from [31],and elastic ion-neutral collision is isotropic,while the ion after the charge exchange collision (backscattering collision)has a velocity equal to the velocity of the neutral atom that collides with the ion.The velocities of particles after collision events are calculated by the method in [32].

    The initial electrons and ions have Maxwell distributions with temperatures of 2 eV and 0.026 eV,respectively,and have a uniform profile in the gap.When the simulations reach a steady state,there are about 60 000-80 000 super-electrons(the number of super-ions is similar).We use a double-timescale algorithm in all simulations,that is,the time step of electrons and that of ions are 1 × 10?10s and4 × 10?10s,respectively.The secondary electron emission process is not considered here to simplify the analysis and it will not have a significant impact on our main conclusions.All simulations run for 5000 radio frequency (RF) periods and take about 3000 periods to reach a steady state.The macroscopic quantities,such asne,peand electron temperatureTe,etc,are calculated by a linear weighting scheme [33],and their time averaged value in 1500 RF periods are taken as the input parameters for the fluid model described in section 2.

    4.Results and discussions

    Evolutions ofneat different uniformBxare shown in figure 3(a),where the fixed uniformByis 50 G.It can be seen that the globalnedecreases gradually with the increasedBx,which implies a weakened electron heating.Figure 3(b) further demonstrates evolutions of the peakneand the averagednewithBx.WhenBxincreases from 0 to 40 G,the peaknedecreases from2.65 × 1016to 1.05 × 1016m?3,while the averagednedecreases from 1.4 × 1016to0.47 × 1016m?3,both electron densities decrease.AsBxcontinues to increase,however,the rates of decrease of both electron densities slow down gradually,which indicates that there is a limit to the effect ofBxon the heating.

    Figure 1.The model of the magnetic enhancement CCP operated in argon.

    Figure 2.The collision cross sections used in simulations,which are taken from [30,31].

    Figure 3.Evolutions of ne versus different Bx,where By is 50 G.(a) Global electron density,(b) peak electron density as well as averaged electron density.

    Figure 4 shows evolutions of the total heating profile〈E x·Jx〉 with differentBx,whereJx=?eneue,xrepresents current density in x-direction andeis unit charge.The figure also showsPabsas well as the different heating components calculated from equation (4).It can be seen that the results from the theoretical calculations agree very well with those directly from numerical calculations in all cases.Meanwhile,Ppressis negative in the plasma zone,and oscillates at the sheath boundary,whilePohmicmakes an important contribution to the heating in plasma zone,and it reaches a maximum near the sheath region.AsBxincreases continuously,the level of all these heating components decreases gradually,and the heating in plasma zone tends to be negligible.

    Figure 4.Evolutions of both the total heating profile and each heating component profile versus different longitudinal magnetic fields.(a) Bx=0G,(b) Bx=10G,(c) Bx=20G.

    The phenomenon ofBx-induced reduction in the heating is related to the electron confinement in the z-direction.It can be seen from equation (3) that the total heating can be expressed as a sum of a series of heating components in xdirection,i.e.Pabs=Pin,x+Ppress,x+Pohmic,x+eneue,xEH,x,where the termeneue,xEH,xcan be considered as a magnetically induced heating [26].With the increasedBx,the Hall fieldEH,xdecreases since the increasedBxconstrains electrons more so thatue,zdecreases [2],and this results in a reduction in the level of the heating.On the other hand,asBxcontinues to increase,the termeneue,xEH,x=?eneue,xue,z Byis expected to be negligible sinceue,ztends to zero,which can explain why there is a limit to the effect ofBxon the heating.

    Figure 5 shows the spatio-temporal evolutions of the total heating as well as that of different heating components at differentBxin one RF periodic.It can be seen from figures 5(a1)-(c1)that the electrons near the sheath boundary lose and gain energy periodically with the oscillating sheath,and the loss of energy is correlated highly with the energy loss caused by pressure heating mechanism during sheath collapse,as shown in figures 5(a2)-(c2).Electrons gain energy in two main ways,that is,energy gain caused by pressure heating mechanism during sheath expansion and that caused by Ohmic heating mechanism during entire RF cycle.In addition,the Ohmic heating reaches maximum near the sheath boundary when the sheath begins to expand or the sheath collapse is about to end.Finally,with the increase ofBx,the level of all heating decreases.Interestingly,when a smallBxof 10 G is introduced,the Ohmic heating in front of the sheath boundary is enhanced when the sheath begins to expand,and this phenomenon disappears with the further enhancement ofBx,as shown in figures 5(a3)-(c3).

    Figure 5.The spatio-temporal evolutions of both the total heating and different heating components at different Bx in one RF periodic.(a) Bx=0G,(b) Bx=10G,(c) Bx=20G.

    Figure 6.The evolutions of the spatio-temporally averaged heating components with different Bx.(a) Pressure heating,(b) Ohmic heating.

    Figure 7.Evolutions of Te as well as that of the global EEDF versus different Bx.(a) Electron temperature distribution,(b) global EEDF.

    Figure 8.Evolutions of loss rates of both the spatio-temporally averaged electron density and the spatio-temporally averaged electron absorbed power versus different Bx.

    To further analyze the influences ofBxon the heating,figure 6 shows the evolutions of both the spatio-temporally averaged total electron heating(includes〈E·J〉andPabs)and each heating component.It can be seen that the total heating decreases with the increasedBx,and tends to be stable,which is consistent with the change inneshown in figure 3.Meanwhile,the decreased total heating is correlated highly with the weakened Ohmic heating,as shown in figure 6(b).In addition,asBxkeeps increasing,the level of the Ohmic heating decreases gradually while that of the pressure heating shows an opposite trend,which implies a transition in the dominant heating mechanisms from Ohmic heating to pressure heating whenBxincreases gradually.

    On the other hand,figure 6 also shows howBxaffects the heating components.It can be seen that whenBx=0,PpressandPohmicare zero in the y-direction.WhenBx> 0,however,net heating in the y-direction appears,which arises fromBx-induced Hall electric fieldEH,y.In addition,asBxincreases,Ppress,xandPpress,yshow an upward trend,whilePpress,zshows a downward trend.It is clear that the varying pressure heating is correlated highly withPpress,x.Meanwhile,Pohmic,xchanges little withBx,whilePohmic,yfirst increases and then decreases,andPohmic,zshows a downward trend.The varying Ohmic heating is correlated highly withPohmic,z,and the weakenedPohmic,zis attributed to the reduced Hall currents along ‘E × B’ direction [27].Here the ‘E × B’ direction is referred as a direction which is perpendicular to bothExandBy.Now,by analyzing the level of different heating components,it is confirmed thatBxaffects the electron heating mainly by changing pressure heating along the longitudinal direction and by changing Ohmic heating along the ‘E × B’direction.

    The influences ofBxon plasma characteristics are also explored,as shown in figure 7,which shows the evolutions ofTeas well as that of global EEDF at differentBx.As can be seen from figure 7(a),when a small(10 G in this work)Bxis introduced,Tein plasma zone increased sharply,and then decreased gradually with the continuously increasedBx,which results in the spatial profile ofTeevolving from bimodal-like to inverted U-like and then back to bimodal-like.

    Meanwhile,the global EEDF shows a similar change.When a smallBxof 10 G is introduced,the proportion of a considerable part of low energy (about 2.5-15 eV in this figure) electrons in the EEDF increases,which means that electrons become ‘hotter’.AsBxfurther increases to 40 G,however,the proportion of most low energy(about 2.5-9 eV)electrons decreases significantly,while the proportion of some lower energy electrons (about 0-2.5 eV) increased slightly,as shown in the blue dotted line in figure 7(b).As a result,the electron temperature decreases.

    To understand the dramatic change in bothTeand EEDF caused by the smallBx,figure 8 shows evolutions of loss rates of both the spatio-temporally averaged electron density and the spatio-temporally averaged electron absorbed power at differentBx,where the benchmark data are the plasma parameters atBx=0.It can be seen that whenBx> 10G,the two loss rates rise at almost the same speed and tend to be stable.However,whenBx≤ 10G,the change in the loss rate of the averaged absorbed power is not as intense as that of the averaged electron density.For example,whenBx=10G,the loss rate of the averaged absorbed power rises from 0% to 9.113% (9.113%/10 G),while that of the averaged electron density rises from 0%to 22.14%(22.14%/10 G).In this case,electrons are lost quickly,while the total electron heating remains at a relatively high level,and results in most of the electrons gaining more energy.As a result,the electron temperature and proportion of some low energy electrons in EEDF increase.

    5.Conclusions

    In summary,the electron heating characteristics of a magnetic enhancement CCP in presence of both longitudinal and transverse uniform magnetic field have been explored by using a combination of theoretical and numerical calculations.It is found that the electron density as well as level of the total heating decreases gradually and tends to be stable with a continuously increased longitudinal magnetic field,which results from the confinement of electrons in the direction which is perpendicular to both the driving electric field and the applied transverse magnetic field(a direction referred to as‘E × B’ direction in this work).Further analysis shows that longitudinal magnetic field affects the heating mainly by changing pressure heating along the longitudinal direction and by changing Ohmic heating along the‘E × B’direction.As longitudinal magnetic field increases continuously,the level of the Ohmic heating decreases gradually,and the pressure heating tends to be the dominant heating mechanism.Finally,it is worth mentioning that when a small longitudinal magnetic field is introduced,the electron temperature as well as the proportion of some low energy electrons in the EEDF increases.This is because the small longitudinal magnetic field causes a significant decrease in electron density but remains a relatively high level of the electron heating,which results in more energy per electron.Although the analyses in this paper are based on 1D simulations,these research conclusions,however,are still expected to be effective in 2D cases [34],and can provide guidance for optimizing the magnetic field configuration of some discharge systems with both transverse and longitudinal magnetic fields introduced.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.11975163 and 12175160),a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

    猜你喜歡
    諸葛
    小諸葛漫“話”天氣之逆溫
    小諸葛漫“話”天氣之雷電
    小諸葛漫“話”天氣之寒潮
    Design of Creative Incentive Contract of Cultural and Creative Industry Chain from Dual Perspective
    諸葛羽扇
    小讀者(2021年4期)2021-06-11 05:42:26
    諸葛恪:人萌嘴甜“小機(jī)靈”
    少兒科技(2021年4期)2021-01-11 16:54:50
    諸葛古村的人間煙火
    諸葛南征
    三國(guó)演異
    諸葛八卦村的“妙”
    国产成人欧美| 精品国产一区二区三区四区第35| 中出人妻视频一区二区| 亚洲免费av在线视频| 国产精品二区激情视频| 黄片小视频在线播放| 亚洲精品美女久久久久99蜜臀| 动漫黄色视频在线观看| 成人av一区二区三区在线看| 又黄又粗又硬又大视频| 精品少妇一区二区三区视频日本电影| 亚洲三区欧美一区| xxxhd国产人妻xxx| 王馨瑶露胸无遮挡在线观看| 国产成人欧美在线观看 | 9色porny在线观看| 日本撒尿小便嘘嘘汇集6| 女人精品久久久久毛片| 校园春色视频在线观看| 高清在线国产一区| 亚洲 欧美一区二区三区| 欧美日韩福利视频一区二区| 国产区一区二久久| 校园春色视频在线观看| 夜夜躁狠狠躁天天躁| 亚洲精品av麻豆狂野| 亚洲欧美一区二区三区久久| 99国产精品一区二区三区| xxxhd国产人妻xxx| 天天躁日日躁夜夜躁夜夜| 一本综合久久免费| 欧美激情久久久久久爽电影 | 欧美亚洲 丝袜 人妻 在线| 久久久久国内视频| 如日韩欧美国产精品一区二区三区| 久99久视频精品免费| 久久久国产一区二区| 黄片播放在线免费| 王馨瑶露胸无遮挡在线观看| 一本大道久久a久久精品| 免费日韩欧美在线观看| 国产亚洲一区二区精品| 18禁观看日本| 精品亚洲成国产av| 另类亚洲欧美激情| 久久精品国产清高在天天线| 岛国毛片在线播放| 久久亚洲精品不卡| 欧美老熟妇乱子伦牲交| 视频区欧美日本亚洲| 亚洲七黄色美女视频| 国产精品久久视频播放| 欧美人与性动交α欧美精品济南到| 两人在一起打扑克的视频| 国产男女内射视频| 高清在线国产一区| 在线国产一区二区在线| a级毛片黄视频| 老司机靠b影院| 免费黄频网站在线观看国产| 亚洲精品一二三| 露出奶头的视频| 午夜亚洲福利在线播放| 香蕉国产在线看| 国产精品亚洲av一区麻豆| 久久热在线av| 成人永久免费在线观看视频| 亚洲精品成人av观看孕妇| www.自偷自拍.com| 国产免费av片在线观看野外av| 老汉色av国产亚洲站长工具| 久久99一区二区三区| tocl精华| 性少妇av在线| 亚洲avbb在线观看| 午夜免费鲁丝| 美女国产高潮福利片在线看| 悠悠久久av| av中文乱码字幕在线| 啦啦啦免费观看视频1| 欧美激情 高清一区二区三区| 国产免费现黄频在线看| 亚洲aⅴ乱码一区二区在线播放 | tube8黄色片| 久久精品国产清高在天天线| 亚洲精品国产精品久久久不卡| 中文字幕人妻丝袜制服| 18禁裸乳无遮挡免费网站照片 | 欧美日韩一级在线毛片| 少妇的丰满在线观看| 色尼玛亚洲综合影院| 亚洲中文日韩欧美视频| 国产精品一区二区精品视频观看| 国产欧美日韩一区二区三区在线| 欧美久久黑人一区二区| 两个人看的免费小视频| 又黄又爽又免费观看的视频| 老汉色∧v一级毛片| 欧美精品高潮呻吟av久久| 国产精品免费一区二区三区在线 | 99热国产这里只有精品6| 日本撒尿小便嘘嘘汇集6| 伦理电影免费视频| 国产成人免费无遮挡视频| 老司机在亚洲福利影院| 天天躁夜夜躁狠狠躁躁| 99re在线观看精品视频| 99re6热这里在线精品视频| 欧美日韩亚洲综合一区二区三区_| 一边摸一边抽搐一进一小说 | 久久久久久久国产电影| 亚洲片人在线观看| 久久久久久久午夜电影 | 欧美亚洲 丝袜 人妻 在线| av片东京热男人的天堂| 正在播放国产对白刺激| 亚洲专区字幕在线| 欧美日韩亚洲高清精品| 午夜福利欧美成人| 露出奶头的视频| 最新的欧美精品一区二区| 美女 人体艺术 gogo| 久久ye,这里只有精品| 人人澡人人妻人| 老司机亚洲免费影院| 国产欧美日韩一区二区三区在线| 精品国产美女av久久久久小说| 国产男女超爽视频在线观看| 国产色视频综合| 精品欧美一区二区三区在线| av国产精品久久久久影院| 一级黄色大片毛片| 久久国产乱子伦精品免费另类| 亚洲成av片中文字幕在线观看| 欧美激情高清一区二区三区| 欧美精品一区二区免费开放| 国产精品 欧美亚洲| 精品久久久精品久久久| 免费在线观看影片大全网站| 国产一区在线观看成人免费| 日韩熟女老妇一区二区性免费视频| 丝袜人妻中文字幕| 欧美黄色淫秽网站| 日日爽夜夜爽网站| 精品少妇一区二区三区视频日本电影| 亚洲国产毛片av蜜桃av| 亚洲精品国产精品久久久不卡| 亚洲精品自拍成人| 夜夜夜夜夜久久久久| 国产激情欧美一区二区| 麻豆成人av在线观看| 亚洲美女黄片视频| 午夜福利,免费看| 精品国产一区二区三区久久久樱花| 免费看十八禁软件| 99久久综合精品五月天人人| 黄色毛片三级朝国网站| 丰满饥渴人妻一区二区三| 亚洲国产看品久久| 亚洲精品国产精品久久久不卡| 1024视频免费在线观看| 99久久综合精品五月天人人| 一区二区三区国产精品乱码| 国产成人欧美| 国产精品免费一区二区三区在线 | 久久ye,这里只有精品| 九色亚洲精品在线播放| 日本欧美视频一区| 俄罗斯特黄特色一大片| 欧美乱妇无乱码| 丰满迷人的少妇在线观看| 九色亚洲精品在线播放| 搡老岳熟女国产| 老司机影院毛片| 国产欧美日韩综合在线一区二区| 国产精品一区二区在线不卡| 老司机在亚洲福利影院| 天天影视国产精品| 国产伦人伦偷精品视频| av片东京热男人的天堂| 一级毛片精品| 久久香蕉精品热| 亚洲国产看品久久| 男女免费视频国产| 女人精品久久久久毛片| 真人做人爱边吃奶动态| 丰满饥渴人妻一区二区三| 日韩精品免费视频一区二区三区| 中文字幕人妻丝袜制服| 久久这里只有精品19| 午夜免费鲁丝| 亚洲成人免费电影在线观看| 国产又爽黄色视频| 国产一区二区三区在线臀色熟女 | 18禁黄网站禁片午夜丰满| 夜夜躁狠狠躁天天躁| 又紧又爽又黄一区二区| 巨乳人妻的诱惑在线观看| 一个人免费在线观看的高清视频| 久久九九热精品免费| 成人18禁在线播放| 国产乱人伦免费视频| 在线视频色国产色| 国产男女超爽视频在线观看| 视频区图区小说| 在线观看免费高清a一片| 成人特级黄色片久久久久久久| 他把我摸到了高潮在线观看| 男女下面插进去视频免费观看| 国产精品亚洲av一区麻豆| 欧美+亚洲+日韩+国产| 成年动漫av网址| 国产伦人伦偷精品视频| 国产区一区二久久| av电影中文网址| 亚洲少妇的诱惑av| 日韩视频一区二区在线观看| 热99re8久久精品国产| 亚洲国产欧美网| 午夜视频精品福利| a级片在线免费高清观看视频| 国产精品久久视频播放| 成人18禁在线播放| 97人妻天天添夜夜摸| 在线观看免费视频网站a站| 满18在线观看网站| 多毛熟女@视频| 欧美不卡视频在线免费观看 | 亚洲专区字幕在线| 男人舔女人的私密视频| 人人妻人人澡人人爽人人夜夜| 老司机午夜十八禁免费视频| 亚洲 欧美一区二区三区| 日韩免费av在线播放| 女性生殖器流出的白浆| 国产精品秋霞免费鲁丝片| 搡老熟女国产l中国老女人| 免费黄频网站在线观看国产| 亚洲av第一区精品v没综合| 一级片'在线观看视频| 九色亚洲精品在线播放| 国产蜜桃级精品一区二区三区 | av免费在线观看网站| 巨乳人妻的诱惑在线观看| 国产精品自产拍在线观看55亚洲 | 午夜免费成人在线视频| 亚洲性夜色夜夜综合| av福利片在线| 人妻丰满熟妇av一区二区三区 | 亚洲第一av免费看| 国产免费现黄频在线看| 国产欧美日韩一区二区精品| 国产aⅴ精品一区二区三区波| 激情在线观看视频在线高清 | 69精品国产乱码久久久| 看免费av毛片| 国产成人欧美| 99在线人妻在线中文字幕 | 777久久人妻少妇嫩草av网站| 国产亚洲精品第一综合不卡| 视频区欧美日本亚洲| 中文欧美无线码| 久久午夜综合久久蜜桃| 又紧又爽又黄一区二区| 国产精品国产av在线观看| 99国产精品一区二区蜜桃av | 涩涩av久久男人的天堂| 五月开心婷婷网| 99香蕉大伊视频| 免费观看精品视频网站| 久久久久久人人人人人| 19禁男女啪啪无遮挡网站| 亚洲黑人精品在线| 99热网站在线观看| 王馨瑶露胸无遮挡在线观看| av中文乱码字幕在线| 免费高清在线观看日韩| e午夜精品久久久久久久| 热99国产精品久久久久久7| 巨乳人妻的诱惑在线观看| 亚洲欧美一区二区三区黑人| 国产单亲对白刺激| 岛国在线观看网站| 国产高清激情床上av| 视频在线观看一区二区三区| 免费久久久久久久精品成人欧美视频| 亚洲欧美精品综合一区二区三区| 久久亚洲精品不卡| 中亚洲国语对白在线视频| 久久人人爽av亚洲精品天堂| 自线自在国产av| 黄频高清免费视频| 色综合欧美亚洲国产小说| 美女国产高潮福利片在线看| 久久天堂一区二区三区四区| 欧美色视频一区免费| 一级毛片高清免费大全| 午夜两性在线视频| www.999成人在线观看| 18禁黄网站禁片午夜丰满| 欧美乱码精品一区二区三区| 国产精品香港三级国产av潘金莲| 欧美在线一区亚洲| 久久久国产一区二区| 又紧又爽又黄一区二区| 捣出白浆h1v1| 无人区码免费观看不卡| 又黄又粗又硬又大视频| 两个人免费观看高清视频| 在线观看午夜福利视频| 黄片播放在线免费| 日韩制服丝袜自拍偷拍| 中文字幕人妻丝袜制服| 人妻久久中文字幕网| 国产亚洲av高清不卡| 国产一区二区激情短视频| 热99re8久久精品国产| 757午夜福利合集在线观看| 99热只有精品国产| 日本撒尿小便嘘嘘汇集6| 麻豆成人av在线观看| 亚洲人成77777在线视频| 777米奇影视久久| 国产亚洲精品久久久久久毛片 | 黄色怎么调成土黄色| 亚洲专区中文字幕在线| 久久精品国产亚洲av高清一级| 免费在线观看日本一区| 天天影视国产精品| 又大又爽又粗| 成人精品一区二区免费| 久久国产精品男人的天堂亚洲| cao死你这个sao货| 我的亚洲天堂| 国产成人欧美| 亚洲av熟女| 亚洲情色 制服丝袜| 国产深夜福利视频在线观看| 天堂中文最新版在线下载| 免费观看a级毛片全部| 脱女人内裤的视频| 国产在线观看jvid| 嫁个100分男人电影在线观看| 啦啦啦视频在线资源免费观看| 免费黄频网站在线观看国产| 久久天躁狠狠躁夜夜2o2o| 窝窝影院91人妻| 免费黄频网站在线观看国产| av超薄肉色丝袜交足视频| 日日夜夜操网爽| 在线观看一区二区三区激情| 一级,二级,三级黄色视频| 一级毛片女人18水好多| 免费黄频网站在线观看国产| 亚洲精品自拍成人| 男男h啪啪无遮挡| 搡老岳熟女国产| 桃红色精品国产亚洲av| 真人做人爱边吃奶动态| 国产精品香港三级国产av潘金莲| 制服诱惑二区| 中文字幕精品免费在线观看视频| 国产av一区二区精品久久| tocl精华| 亚洲专区字幕在线| 欧美老熟妇乱子伦牲交| 99热网站在线观看| 一级a爱视频在线免费观看| 国产成人精品在线电影| 国产精品永久免费网站| 男人舔女人的私密视频| 51午夜福利影视在线观看| 99精品在免费线老司机午夜| 无遮挡黄片免费观看| 久久性视频一级片| 无限看片的www在线观看| 精品国产美女av久久久久小说| 99久久国产精品久久久| 老熟妇乱子伦视频在线观看| 亚洲av成人av| 亚洲第一欧美日韩一区二区三区| 老司机靠b影院| 大型av网站在线播放| 国产成人免费无遮挡视频| 日本欧美视频一区| 69精品国产乱码久久久| 欧美性长视频在线观看| 一本一本久久a久久精品综合妖精| 最新在线观看一区二区三区| 侵犯人妻中文字幕一二三四区| 亚洲中文av在线| 国产高清videossex| 人人妻,人人澡人人爽秒播| 最新的欧美精品一区二区| 欧美 亚洲 国产 日韩一| 中文字幕人妻丝袜一区二区| 成人国语在线视频| 精品国产亚洲在线| 国产伦人伦偷精品视频| 精品久久久久久久久久免费视频 | a级毛片黄视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品一二三| 中出人妻视频一区二区| 天天躁夜夜躁狠狠躁躁| 国产精华一区二区三区| 日韩免费高清中文字幕av| 精品人妻熟女毛片av久久网站| 中文字幕色久视频| 亚洲精品国产区一区二| 夜夜爽天天搞| 91在线观看av| 久久中文看片网| 精品欧美一区二区三区在线| 丝瓜视频免费看黄片| 男人的好看免费观看在线视频 | 国产91精品成人一区二区三区| 国产成人一区二区三区免费视频网站| 国产精品1区2区在线观看. | 少妇的丰满在线观看| 欧美日韩黄片免| 大型av网站在线播放| 精品国产国语对白av| 亚洲男人天堂网一区| 可以免费在线观看a视频的电影网站| 亚洲熟女毛片儿| 男女之事视频高清在线观看| 国精品久久久久久国模美| 国产精品香港三级国产av潘金莲| 久99久视频精品免费| 成年版毛片免费区| 久久国产精品大桥未久av| 亚洲欧美日韩高清在线视频| 午夜福利一区二区在线看| 亚洲精品乱久久久久久| 午夜视频精品福利| 十八禁人妻一区二区| 一本大道久久a久久精品| 亚洲精品粉嫩美女一区| 免费av中文字幕在线| av中文乱码字幕在线| 在线观看免费日韩欧美大片| 热99国产精品久久久久久7| av有码第一页| 男女高潮啪啪啪动态图| 男女午夜视频在线观看| 国产一区二区三区在线臀色熟女 | 免费在线观看日本一区| 国产av一区二区精品久久| 自拍欧美九色日韩亚洲蝌蚪91| 嫩草影视91久久| 高清毛片免费观看视频网站 | 搡老乐熟女国产| 女人高潮潮喷娇喘18禁视频| 久久国产精品人妻蜜桃| 久久国产乱子伦精品免费另类| 18禁黄网站禁片午夜丰满| 免费在线观看影片大全网站| 欧美亚洲 丝袜 人妻 在线| 水蜜桃什么品种好| 一夜夜www| 亚洲国产欧美网| 99精品欧美一区二区三区四区| 国产精品永久免费网站| 天天影视国产精品| 两人在一起打扑克的视频| 天天躁夜夜躁狠狠躁躁| 欧美乱妇无乱码| 精品少妇一区二区三区视频日本电影| 最近最新中文字幕大全免费视频| 9191精品国产免费久久| 在线天堂中文资源库| 国产成人av激情在线播放| 18禁国产床啪视频网站| 色尼玛亚洲综合影院| 啦啦啦免费观看视频1| 狂野欧美激情性xxxx| www.自偷自拍.com| 欧美日韩一级在线毛片| 999久久久精品免费观看国产| 18在线观看网站| 变态另类成人亚洲欧美熟女 | 亚洲成人免费电影在线观看| 亚洲精品自拍成人| 一级a爱视频在线免费观看| 狠狠狠狠99中文字幕| 亚洲专区字幕在线| 日韩视频一区二区在线观看| 男男h啪啪无遮挡| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产精品合色在线| 极品教师在线免费播放| 在线观看免费高清a一片| 岛国毛片在线播放| 亚洲色图综合在线观看| 99热只有精品国产| 91大片在线观看| 国产又爽黄色视频| 女人被狂操c到高潮| 精品亚洲成国产av| 99久久国产精品久久久| 黄色 视频免费看| 欧美色视频一区免费| 久久婷婷成人综合色麻豆| 如日韩欧美国产精品一区二区三区| 黄网站色视频无遮挡免费观看| 免费看十八禁软件| 男男h啪啪无遮挡| 国产精品99久久99久久久不卡| 久久中文字幕人妻熟女| 亚洲自偷自拍图片 自拍| а√天堂www在线а√下载 | 人人妻,人人澡人人爽秒播| 女人精品久久久久毛片| 久久国产精品男人的天堂亚洲| 性少妇av在线| 在线观看免费视频日本深夜| 久久国产精品大桥未久av| 亚洲欧美一区二区三区久久| 午夜福利免费观看在线| 国产在视频线精品| 老鸭窝网址在线观看| 欧美日韩瑟瑟在线播放| 女性生殖器流出的白浆| 亚洲精品久久午夜乱码| 日本精品一区二区三区蜜桃| 日本撒尿小便嘘嘘汇集6| 一级黄色大片毛片| 亚洲黑人精品在线| 啦啦啦视频在线资源免费观看| 曰老女人黄片| 男女免费视频国产| 老司机亚洲免费影院| 99国产精品一区二区蜜桃av | 一二三四社区在线视频社区8| 搡老乐熟女国产| 欧美黑人欧美精品刺激| 黄色怎么调成土黄色| 国产又爽黄色视频| 亚洲综合色网址| 亚洲国产毛片av蜜桃av| 可以免费在线观看a视频的电影网站| 国产成人系列免费观看| 精品久久蜜臀av无| 日韩 欧美 亚洲 中文字幕| www.精华液| 午夜免费观看网址| xxx96com| 19禁男女啪啪无遮挡网站| 男男h啪啪无遮挡| 天天添夜夜摸| 免费在线观看视频国产中文字幕亚洲| 欧美激情高清一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 色综合婷婷激情| 美女高潮喷水抽搐中文字幕| 脱女人内裤的视频| 人人妻人人澡人人爽人人夜夜| 欧美日韩国产mv在线观看视频| 亚洲人成77777在线视频| 高清欧美精品videossex| 满18在线观看网站| 一级黄色大片毛片| 制服诱惑二区| 日韩中文字幕欧美一区二区| 一级作爱视频免费观看| 韩国精品一区二区三区| 可以免费在线观看a视频的电影网站| 亚洲国产精品sss在线观看 | 一进一出抽搐动态| 亚洲成人免费av在线播放| 99热国产这里只有精品6| 侵犯人妻中文字幕一二三四区| 久久精品国产亚洲av高清一级| 亚洲av片天天在线观看| 99re6热这里在线精品视频| 校园春色视频在线观看| 日本欧美视频一区| 国产精品美女特级片免费视频播放器 | 久久草成人影院| 欧美日韩黄片免| 99国产精品一区二区蜜桃av | 涩涩av久久男人的天堂| 99久久综合精品五月天人人| 天天影视国产精品| 久久久久国产一级毛片高清牌| 久久精品熟女亚洲av麻豆精品| 亚洲欧洲精品一区二区精品久久久| 国产精品二区激情视频| 看黄色毛片网站| 一夜夜www| 亚洲精品成人av观看孕妇| 一区在线观看完整版| 丝瓜视频免费看黄片| 欧美一级毛片孕妇| 精品国产美女av久久久久小说| 久久青草综合色| 欧美日韩亚洲综合一区二区三区_| 又黄又爽又免费观看的视频| 18禁裸乳无遮挡免费网站照片 | 12—13女人毛片做爰片一| 日本撒尿小便嘘嘘汇集6| 午夜福利欧美成人| 国产aⅴ精品一区二区三区波| 大香蕉久久网| 天天躁日日躁夜夜躁夜夜| 免费人成视频x8x8入口观看| 丰满饥渴人妻一区二区三| 国产欧美日韩综合在线一区二区| 色在线成人网| 国内久久婷婷六月综合欲色啪| 中文字幕人妻丝袜一区二区| 黑人操中国人逼视频| 国产精品久久久久久人妻精品电影| 黑人巨大精品欧美一区二区mp4|