• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CBETor:a hybrid-kinetic particle-in-cell code for cross-beam energy transfer simulation

    2022-09-06 13:04:28JinlongJIAO矯金龍HeziWANG汪鶴子HongyuZHOU周泓宇YanYIN銀燕BinQIAO喬賓andHongbinZHUO卓紅斌
    Plasma Science and Technology 2022年10期

    Jinlong JIAO(矯金龍),Hezi WANG(汪鶴子),Hongyu ZHOU(周泓宇),Yan YIN (銀燕),Bin QIAO (喬賓) and Hongbin ZHUO (卓紅斌)

    1 Department of Physics,National University of Defense Technology,Changsha 410073,People’s Republic of China

    2 Zhejiang Institution of Modern Physics,Department of Physics,Zhejiang University,Hangzhou 310027,People’s Republic of China

    3 Center for Applied Physics and Technology,HEDPS,SKLNPT,and School of Physics,Peking University,Beijing 100871,People’s Republic of China

    4 Center for Advanced Material Diagnostic Technology,Shenzhen Technology University,Shenzhen 518118,People’s Republic of China

    5 These authors contributed equally to this paper and should be considered co-first authors.

    Abstract The parametric instability related to ion motion and the resulting cross-beam energy transfer are important aspects in the physics of inertial confinement fusion.The numerical simulation of the above physical problems still faces great technical challenges.This paper introduces a 2D hybrid-kinetic particle-in-cell(PIC)code,CBETor.In this code,the motion of ions is described by the kinetic method,the motion of electrons is described by the simplified fluid method and the propagation of laser in plasma is described by solving the wave equation.We use CBETor and the popular fully kinetic PIC code EPOCH to simulate the stimulated Brillouin scattering and cross-beam energy transfer process,respectively.The physical images are in good agreement,but CBETor can significantly reduce the amount of calculation.With the premise of correctly simulating the ion dynamics,our hybrid-kinetic code can effectively suppress the noise of numerical simulation and significantly expand the simulation scale of physical problems.CBETor is very suitable for simulating the physical process dominated by ion motion in the interaction of medium intensity laser and underdense plasma.

    Keywords: cross-beam energy transfer,hybrid-PIC simulation,stimulated Brillouin scattering

    1.Introduction

    Stimulated Brillouin scattering(SBS),produced by the coupling of laser field and ion acoustic wave(IAW)in plasma,is an important parametric instability in laser-plasma interaction physics of inertial confinement fusion[1-6].The development and saturation of SBS often require dozens of picoseconds or even more,which poses a great challenge to numerical simulation.In the central ignition scheme of inertial confinement fusion,many laser beams are arranged in the inner cone and outer cone pointing to different parts of the cone wall,and cross at the laser incident holes[5,6].Under appropriate physical conditions,SBS will cause the energy of one laser beam to transfer to another beam crossing it,so as to change the beam symmetry[7].This process is called cross-beam energy transfer (CBET),which has attracted extensive interest in recent years,and a large number of theoretical simulation and experimental studies have been carried out [8-11].The experiments of direct-drive implosions performed on the OMEGA facility indicate that CBET is responsible for a significant reduction in hydrodynamic coupling efficiency [12].For indirect-drive experiments on the National Ignition Facility (NIF),CBET has been developed into a method to control implosion symmetry by adjusting the frequency of different laser beams[13].

    The main methods to study parametric instability include the three-wave coupling model[14],fluid simulation[15,16]and kinetic simulation[17-21].The three-wave-coupling model can predict physical properties,such as instability growth rate through reasonable linearization approximation,which has high computational efficiency but ignores kinetic and nonlinear effects.Fluid simulation can describe the physical evolution on a large space-time scale,but it cannot simulate the kinetic behavior,such as random ion heating [19]and ion trapping [20].Fully kinetic simulation including the Vlasov method [17-19]and the particle-in-cell (PIC) method [20]can accurately simulate the kinetic and nonlinear effects,but the computational cost is very large because the fast electron time scale must be resolved.If the considered physical process is dominated by ion motion,such as SBS or CBET,hybrid-PIC modeling (fluid electron/particle ion) [21-23]is an appropriate method,which can not only obtain dominant characteristics of the physical system,but also greatly improve computational efficiency.

    In this work,we developed a 2D parallel code CBETor(Cross Beam Energy Transfer simulator),a hybrid-PIC code with fluid electron and kinetic-ion.This paper is organized as follows.In section 2,the physical model used in the code,including physical assumptions and governing equations,is introduced.In section 3,the numerical algorithm and implementation of the code are described.In section 4,we present the simulations of SBS and CBET to show the capabilities of the code.In particular,comparisons with the fully kinetic PIC code EPOCH [24]are performed.It is shown that the simulation results of CBETor and EPOCH agree well,but the amount of calculation of CBETor is much lower than that of EPOCH.

    2.The physical model

    CBETor is developed to study the laser-plasma interaction in the inertial confinement fusion (ICF) regime.The laser intensity that we are concerned about mainly falls within the range of 1014-1016W cm?2,and only underdense plasma is taken into account.Under the action of such low and medium intensity laser,the motion of ions can be considered nonrelativistic,and the electron temperature can be considered constant because electron heating is not intense.The following physical assumptions are used in CBETor:

    (1) only the physical process on the ion time scale is considered.The fast oscillation of electrons and the laser are both ignored;

    (2) the plasma approximation is valid;

    (3) the motion of ions is non-relativistic and described by Newton equation;

    (4) collision in plasma is ignored;

    (5) the electron temperature is not changed.

    The evolution of a laser pulse in plasma is described by the wave equation [25]:

    where ωpis the plasma frequency and E is the laser electric field.The change in plasma density will cause a change in plasma frequency,and then affect the evolution of the laser pulse.

    The laser electric field E in equation (1) can be divided into a high-frequency component and low-frequency component.Only electrons can respond to the high-frequency oscillation of a laser field,and ions will not be directly affected due to their large inertia.The low-frequency component corresponds to the evolution of the laser intensity envelope and generates the laser ponderomotive force as the follows:

    Electrons will be repelled by the ponderomotive force from ions to form an electrostatic field,and ions will move under the action of this electrostatic field.Since the ions can be considered stable within the electron response time,it can be considered that the electrostatic force acting on electrons is in balance with the laser ponderomotive force,namely,eE = FL.In addition to the charge separation field,when the plasma density has a gradient,the electrons will form a thermal pressure.In order to balance the thermal pressure,a self-generated electric field Epappears as follows:

    where the electron temperature is assumed constant.Therefore,the total force acting on the ions is the sum of the above two electrostatic forces:

    where Z is the ion charges.When we obtain the total force by equation (4),the position and velocity of ions can be calculated by Newton’s equation of motion:

    Equations(1)-(5)are the governing equations of CBETor.

    The physical quantities (time,length,laser electric field,density,plasma frequency,force,ion mass and temperature)in CBETor are normalized as follows:

    where ωL,kL,me,e,c and ncare laser frequency,laser wave vector,electron mass,element charge,light speed and plasma critical density,respectively.

    3.The numerical algorithm

    The code flow chart (figure 1) demonstrates how CBETor works.In one cycle,given the ion density,the evolution of the laser electric field can be calculated by equation (1) [24].Using the ion density and laser electric field,one can obtain the total force acting on the ions according to equation (4).The total force pushes ions,and their new positions and velocities can be obtained by advancing equation(5).Finally,the statistical data of ions with new positions give a new ion density.In order to improve computation efficiency,two different time and space scales are used to push the laser and the ions,respectively.When solving the laser wave equation,a set of finer time and space grids is needed.In order to maintain numerical stability,the laser wavelength must be resolved,and the time step must obey the Courant condition[26].When solving the ion motion equation,a set of coarser time and space grids is used,as long as the size of the space grid is large enough to resolve the wavelength of IAW and the size of the time grid is large enough to resolve the ion response time scale.This will greatly reduce the amount of computation compared with the fully kinetic PIC method.

    3.1.Difference scheme of the wave equation

    The 3D expansion of equation (1) is as follows:

    In 2D geometry (e.g.in the x-y plane),the laser field can be split into two independent polarization states:P-polarization E = (Ex,Ey,0) and S-polarization E = (0,0,Ez).The above equations can be simplified and the finite difference schemes are as follows:

    where the superscripts (n+1),n and (n?1) respectively denote the next,current and previous time step,and (i,j)denotes the 2D spatial coordinates (x,y).

    3.2.Loading laser on the boundary

    Loading the laser requires updating the laser electric field on the boundary of the simulation box at each time step.If the laser is incident from the left boundary in figure 2,the expression of the laser electric field on the left boundary is,

    wherer=y?y0,Here,f and g are the time envelope and space envelope of the incident laser,respectively.A is the amplitude of the laser electric field,θis the incident angle and Φ is the initial phase.

    3.3.Laser absorption boundary

    The right boundary is set as the Mur absorption boundary[27],which has the advantage of low computational cost.When the laser is incident on the right boundary,it will be absorbed.Figure 3 shows the reflection of the laser on the right boundary at different incident angles,where the background is a vacuum.We define the boundary reflectivity as the ratio of reflected laser intensity to incident laser intensity.By comparing figures 3(b) and (d),it can be seen that the boundary reflectivity rises quickly when the incident angle θ increases.When θ = 5°,the reflectivity is about 4 × 10?4,while when θ = 35°,the reflectivity increases to about 4 × 10?3.In the two simulation examples of this paper,the incident angels are respectively θ = 0° (SBS simulation)and θ = ±5°(CBET simulation),where the Mur absorption boundary works well.

    Figure 1.Code flow chart of CBETor.

    Figure 2.Schematic diagram of laser loading on the boundary.

    3.4.Ion motion

    The difference scheme of equations (2)-(4) is as follows:

    Ions are usually located inside the grid cell.Therefore,to calculate the force on an ion,it is necessary to interpolate the force on the nearest grid point.After obtaining the ion force,we use the leapfrog scheme to calculate the ion velocity and position as follows:

    When the ions move to a new position,we can collect them in each grid cell to obtain a new ion density.In order to reduce the noise of density statistics,a low-pass filter is used to smooth the ion density as follows:

    3.5.Ion boundary

    The real plasma volume in ICF is in the order of centimeters,so it is very difficult to carry out full-scale numerical simulation.The area we simulate is always much smaller than the volume of the real system.Choosing an appropriate boundary for the simulation box is very important.The commonly used ion boundary types in PIC codes (such as EPOCH) are ‘open’,‘reflective’ and ‘hot’.These boundaries do not work well when a large number of highenergy non-thermal ions leave the simulation box.The ‘open’boundary leads to the loss of a large number of ions from the box,the ‘reflection’ boundary introduces additional high-energy ions,and the‘hot’boundary leads to the accumulation of a large number of hot ions at the simulation boundary.

    Here,we propose a new ion boundary to overcome the above defects.We named it ‘ion source boundary’.This boundary introduces an ion source surrounding the simulation domain,as shown in figure 4.The density and temperature of the ion source are the same as those of the box boundary plasma.The ions in the ion source move freely.When they enter the simulation domain,we attach them to the linked list of ions in the domain.When domain ions leave the simulation box,we delete them from the linked list of domain ions.

    3.6.Parallel method

    According to the number of computer processes,we divide the simulation domain into several sub-domains,and each process is responsible for one sub-domain.Figure 5 shows an example of simulation domain division,in which the simulation domain is divided into npx × npy = 4 × 3 sub-domains,where npx and npy are the maximum number of sub-domains along the x-and y-axis,respectively.Each sub-domain is numbered with an message passing interface(MPI)process number(ID),as shown in figure 5.If the ID of a sub-domain is known,the coordinates(ppi,ppj) can be obtained,where ppi = mod (ID/npx) and ppj = floor (ID/npy).This coordinate can be used for communication between sub-domains.Each sub-domain is surrounded by several guard grids,as shown in figure 6(the red grids).The guard grids are used to exchange the laser electric field,ion density and force at the boundary of adjacent sub-domains.

    Figure 3.Reflection of the laser on the right boundary: (a) θ = 5°,t = 20T0;(b) θ = 5°,t = 180T0;(c) θ = 35°,t = 20T0;(d) θ = 35°,t = 180T0.Value in the figure has been normalized with the peak intensity of the incident laser.

    Figure 4.Schematic diagram of ‘ion source boundary’.

    Figure 5.Arrangement of MPI process numbers in the simulation domain,e.g.the case of npx × npy = 4 × 3.

    Figure 6.Parallel sub-region and its guard grids.

    Figure 7.Dispersion relationship of the electromagnetic wave in plasma obtained by the Fourier transform of Ez simulated by(a)EPOCH and(b) CBETor.

    4.Numerical simulations

    In order to verify the correctness of CBETor,we compare the simulation results of CBETor and EPOCH for two specific examples.

    4.1.Simulations of SBS in the linear stage

    First,we simulate the occurrence of SBS during the propagation of a laser beam in plasma.An S-polarized,Gaussian laser pulse is normally incident on the left boundary.The laser intensity is 3 × 1016W cm?2,and the waist is 2.58T,where T is the period of the laser.The simulation box is[400λ,200λ],where λ is the laser wavelength.A homogeneous hydrogen plasma with density 0.2nc(ncis the critical plasma density)is in the central region of the simulation box.The length of the plasma is 360λ.The electron and proton temperatures are 2500 and 833 eV,respectively.

    According to the linear theory of SBS in homogeneous plasmas [28],the angular frequency and wave number of the incident light(ω0,k0),the backscattered light(ω1,k1)and the ion acoustic wave (ωIAW,kIAW) satisfy the following resonance conditions:ω0=ω1+ωIAW,k0=k1+kIAW.Substituting the initial plasma parameters into a theoretical formula,it is easy to obtain that k0= 0.8944ω0/c,ω1= 0.9953ω0and k1= ?0.8898ω0/c,where the minus signal of k1means that it is a backscattered wave.The simulation results of the CBETor and EPOCH are shown in figure 7,where the electric fieldEzis Fourier transformed both in time and space to obtain the dispersion relationship of the electromagnetic wave in plasma.Both the SBS and stimulated Raman scattering signals appear in the simulation results of EPOCH,while there is only SBS signal in that of the CBETor code because the kinetic behavior of electrons is ignored.In the two subgraphs of figure 7,it is shown that the positions of the SBS signals simulated by EPOCH and CBETor are(?0.8896ω0/c,0.9958ω0) and (?0.8895ω0/c,0.9955ω0),respectively.The results agree well and are very close to the theoretical value(?0.8898ω0/c,0.9953ω0).This shows that CBETor can reliably simulate the physical phenomena related to ion response.

    4.2.Simulation of CBET

    Second,we simulate the CBET effect of two laser beams crossing in a plasma.In this test case,our simulation parameters are consistent with those in [29].Two S-polarized lasers with an angle of 10°cross in a homogeneous hydrogen plasma.There is a small frequency difference between the two lasers: the wavelength is 1 μm for the pump beam and 1.00026 μm for the seed beam.The two lasers have identical temporal and spatial envelope.The laser intensity increases linearly from 0 to 1015W cm?2within 0.53 ps,and then remains constant.The spatial envelope of the laser satisfies the Gaussian functionE⊥=E0exp (?(rcosθ)2/w02)with w0= 28.8 μm in the transverse direction.The plasma density is 0.01nc,and the electron and proton temperatures are 1 keV and 333 eV,respectively.

    Figure 8 shows the spatial distributions of laser intensity and ion density at t = 100 ps simulated by two codes.The ion density distributions show the modulation stripes produced by the crossing laser beams,which act as a moving grating.When laser beams interact with the moving grating,SBS-like scattering transfers the laser energy from the pump beam to the seed laser,as shown in figures 8(a)and(c).The simulation results given by EPOCH and CBETor agree well,and are coincident with the results of [29].However,CBETor has a much higher computational efficiency compared with EPOCH.When the testing case is completed,EPOCH uses 1600 computing processes to run for 78 h,while CBETor uses 224 processes to run for only 2.5 h.CBETor improves the computational efficiency by two orders of magnitude.

    Figure 8.Spatial distributions of laser intensity((a),(c))and ion density((b),(d))at t = 100 ps.(a)and(b)are results of EPOCH;(c)and(d)are results of CBETor.

    Figure 9.Time evolution of CBET gain simulated by CBETor and EPOCH.

    Figure 10.Ion phase-space (y,py) distribution at different time simulated by CBETor.Laser intensity is I = 1015 W cm?2.

    The evolution of CBET gain with time is shown in figure 9.At each moment,we integrate in the region where x∈[0.8 mm,1.0 mm]to respectively obtain the energy of seed beam and pump beam.The beam energy gain is defined as the ratio of beam energy to the averaged energy.In figure 9,the solid line denotes the energy gain of the seed beam (red) or pump beam(blue)simulated by CBETor,while the solid line with dots denotes the counterpart simulated by EPOCH.Irrespective of whether CBETor or EPOCH is used for simulation,it can be observed that there is a bump structure on the energy gain curve.The seed beam gain increases rapidly to a peak value at about 16 ps,and then decreases rapidly to the bottom value at about 55 ps.After that,the gain increases to saturation.Although the simulation results of CBETor and EPOCH are basically consistent,there are obvious differences.In the EPOCH simulation,the seed beam gain falls more steeply after 16 ps,and saturates at a lower level.

    In order to study the physical origin of the bump structure and learn what is behind the difference in simulation results by CBETor and EPOCH,a set of simulations is added where the incident laser peak intensity is decreased to I′ = I/10 = 1014W cm?2,which is called the low-intensity case.The dash line denotes the energy gain of the seed beam(red) or pump beam (blue) simulated by CBETor in the lowintensity case,while the dots denote the counterpart simulated by EPOCH.In this low-intensity case,we find that the simulation results of CBETor and EPOCH are almost identical,and no bump structures are observed.This indicates that the bump structure is a nonlinear phenomenon,which occurs when the laser intensity is high.

    In the high-intensity case (I = 1015W cm?2),the ion phase-space (y,py) distribution simulated by CBETor is shown in figure 10,which agrees well with the simulation result by EPOCH shown in our previous work [30].At t = 16 ps,some ions gain positive momentum in the y direction because they are accelerated by the ponderomotive force due to the interference of the crossing beams.The energetic ions can be captured by IAW,as shown in figure 10(b).The normal mode frequency of IAW is nonlinearly shifted by the ion trapping effect,resulting in a decrease in the transferred energy [31].It is shown in figures 10(c) and (d) that some captured ions effectively escape the wave’s potential due to Landau damping,so the energy gain curve rises again after t = 55 ps and gradually flattens out after t = 82 ps.In the low-intensity case(I′ = I/10),no ion trapping effect is observed,so the energy gain curve only rises slowly and tends to be stable.

    It can be seen that the bump structure in figure 9 originates from the wave-particle interaction.The difference in simulation results by CBETor and EPOCH in the highintensity case can be attributed to the kinetic behavior of electrons.It is shown that IAWs are affected by the electron kinetic behavior,and the effect is very important whenZTeTi?10[32].In the high-intensity case,the heating of electrons can be simulated by EPOCH,but the effect is absent in CBETor.In the low-intensity case,the electron heating is not strong,so the simulation results of CBETor and EPOCH agree well.

    5.Summary

    In this paper,a hybrid-PIC code CBETor is introduced.The physical model,numerical algorithm and implementation are described in detail.In CBETor,the electrons are regarded as fluid,while the ions are treated as particles to retain the kinetic effect.By comparison with the fully kinetic PIC simulations by EPOCH,it is shown that CBETor can simulate the evolution of SBS and CBET with high precision at a much lower computational cost.Currently,ion-ion collisions are not taken into consideration in CBETor,so the effect of collisions on the ion distribution function[20]over long time scales cannot be simulated.It should be pointed out that the scope of application of CBETor is limited.It has medium laser intensity so that the electron heating is not very strong,the plasma density is underdense so that the ion collision effect is not significant,and the incident angle is small so that the absorption boundary works well.Under appropriate physical conditions,CBETor can simulate the kinetic characteristics of the physical process dominated by ion motion with high computational efficiency.

    Acknowledgments

    This research was supported by National Natural Science Foundation of China (Nos.11774430,11875091,12075157 and 11975062).

    ORCID iDs

    大陆偷拍与自拍| 亚洲成av片中文字幕在线观看| 欧美日本亚洲视频在线播放| 波多野结衣高清无吗| 悠悠久久av| 久久久久亚洲av毛片大全| 一级a爱片免费观看的视频| 91麻豆精品激情在线观看国产 | 人人妻人人澡人人看| 亚洲男人的天堂狠狠| 高潮久久久久久久久久久不卡| 久久久久久久久免费视频了| 9191精品国产免费久久| 亚洲精品av麻豆狂野| 女人爽到高潮嗷嗷叫在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 1024视频免费在线观看| cao死你这个sao货| 国产av精品麻豆| 制服诱惑二区| 波多野结衣一区麻豆| 99在线视频只有这里精品首页| 在线观看日韩欧美| 91国产中文字幕| 18禁黄网站禁片午夜丰满| 国产精品亚洲av一区麻豆| 色综合欧美亚洲国产小说| 色综合欧美亚洲国产小说| 人人澡人人妻人| 亚洲 欧美一区二区三区| 丝袜美足系列| 久久久国产一区二区| 日韩大码丰满熟妇| 国产一区二区激情短视频| www.自偷自拍.com| 妹子高潮喷水视频| 成人av一区二区三区在线看| avwww免费| 欧美激情极品国产一区二区三区| 露出奶头的视频| av欧美777| 女生性感内裤真人,穿戴方法视频| 亚洲国产中文字幕在线视频| 亚洲国产精品999在线| 亚洲人成伊人成综合网2020| 午夜影院日韩av| 香蕉久久夜色| 又大又爽又粗| 久久精品国产清高在天天线| 国产亚洲精品综合一区在线观看 | 久久中文看片网| 亚洲专区国产一区二区| 久久99一区二区三区| 超碰成人久久| 两人在一起打扑克的视频| 久久精品aⅴ一区二区三区四区| 精品久久久精品久久久| 亚洲国产中文字幕在线视频| 国产黄a三级三级三级人| 欧美日韩精品网址| 亚洲一区高清亚洲精品| 久久人妻福利社区极品人妻图片| 亚洲美女黄片视频| 激情在线观看视频在线高清| 久久久国产精品麻豆| 国产成人av激情在线播放| av在线天堂中文字幕 | 亚洲精品一卡2卡三卡4卡5卡| 女警被强在线播放| 精品人妻1区二区| 中文字幕高清在线视频| 亚洲人成伊人成综合网2020| 丝袜美腿诱惑在线| 亚洲自拍偷在线| 黄色 视频免费看| 国产在线精品亚洲第一网站| 制服人妻中文乱码| 免费久久久久久久精品成人欧美视频| 精品一区二区三卡| 久久久国产一区二区| 亚洲国产精品sss在线观看 | 欧美人与性动交α欧美精品济南到| 超碰97精品在线观看| 黑人操中国人逼视频| 精品一区二区三区四区五区乱码| 在线永久观看黄色视频| 精品一区二区三区视频在线观看免费 | 好男人电影高清在线观看| 欧美日韩亚洲国产一区二区在线观看| 成人手机av| 中文字幕人妻丝袜一区二区| 精品国产亚洲在线| 亚洲人成网站在线播放欧美日韩| 久久久久精品国产欧美久久久| 大码成人一级视频| 岛国视频午夜一区免费看| 久9热在线精品视频| 18禁观看日本| 在线国产一区二区在线| 18美女黄网站色大片免费观看| 一区福利在线观看| 99久久久亚洲精品蜜臀av| 黑人操中国人逼视频| 女警被强在线播放| 色综合站精品国产| 亚洲精品在线观看二区| 韩国av一区二区三区四区| 亚洲avbb在线观看| 一进一出抽搐动态| 国产色视频综合| 一级a爱片免费观看的视频| 成人亚洲精品av一区二区 | 热99re8久久精品国产| 亚洲熟妇熟女久久| 亚洲 欧美 日韩 在线 免费| 法律面前人人平等表现在哪些方面| a级毛片在线看网站| 亚洲第一青青草原| 国产精品综合久久久久久久免费 | 18禁美女被吸乳视频| 精品国产亚洲在线| 国产97色在线日韩免费| 日韩av在线大香蕉| 亚洲精品国产精品久久久不卡| 日韩成人在线观看一区二区三区| 亚洲av成人一区二区三| 精品国产一区二区久久| 日本a在线网址| 久久亚洲精品不卡| 欧美+亚洲+日韩+国产| 亚洲精品成人av观看孕妇| 老司机福利观看| 一本大道久久a久久精品| 日本wwww免费看| 交换朋友夫妻互换小说| 一二三四社区在线视频社区8| 亚洲成人免费电影在线观看| 9色porny在线观看| 日韩人妻精品一区2区三区| 亚洲人成网站在线播放欧美日韩| 国产熟女午夜一区二区三区| 久久亚洲精品不卡| 久久婷婷成人综合色麻豆| 精品人妻1区二区| 国产精品综合久久久久久久免费 | 18禁国产床啪视频网站| 女同久久另类99精品国产91| 午夜日韩欧美国产| 搡老乐熟女国产| 一级片'在线观看视频| 久久伊人香网站| 狂野欧美激情性xxxx| 国产熟女午夜一区二区三区| 波多野结衣一区麻豆| 中文欧美无线码| 国产黄色免费在线视频| 亚洲aⅴ乱码一区二区在线播放 | 国产精品国产av在线观看| 国产在线观看jvid| 中文亚洲av片在线观看爽| 久久国产精品影院| 在线观看免费视频日本深夜| 天堂俺去俺来也www色官网| 91在线观看av| 久久 成人 亚洲| 可以在线观看毛片的网站| 久久久久久久久免费视频了| 亚洲中文日韩欧美视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲精品久久久久5区| 99在线人妻在线中文字幕| 亚洲av日韩精品久久久久久密| 大陆偷拍与自拍| 丝袜人妻中文字幕| 亚洲第一欧美日韩一区二区三区| 精品欧美一区二区三区在线| 老司机福利观看| 久久伊人香网站| 久久热在线av| 黑人欧美特级aaaaaa片| 日日夜夜操网爽| 久久精品国产综合久久久| 无限看片的www在线观看| 久久精品亚洲熟妇少妇任你| 亚洲精品一卡2卡三卡4卡5卡| 成人av一区二区三区在线看| 亚洲成人精品中文字幕电影 | 国产精品日韩av在线免费观看 | 一个人免费在线观看的高清视频| 欧美日韩乱码在线| www.www免费av| 久99久视频精品免费| 操美女的视频在线观看| 精品一区二区三区四区五区乱码| 欧美一级毛片孕妇| 成人影院久久| 中文字幕最新亚洲高清| 高清在线国产一区| 国产aⅴ精品一区二区三区波| 99精品欧美一区二区三区四区| 涩涩av久久男人的天堂| 国产一区在线观看成人免费| 国产免费现黄频在线看| 亚洲av第一区精品v没综合| 香蕉国产在线看| 欧美成狂野欧美在线观看| 极品人妻少妇av视频| 成人三级做爰电影| 国内久久婷婷六月综合欲色啪| 男男h啪啪无遮挡| 久久久久久久久中文| 91九色精品人成在线观看| 99国产精品一区二区三区| 757午夜福利合集在线观看| 欧美 亚洲 国产 日韩一| 久久精品国产99精品国产亚洲性色 | 午夜福利在线免费观看网站| 宅男免费午夜| 精品久久久精品久久久| 韩国av一区二区三区四区| 一本综合久久免费| netflix在线观看网站| 国产精品乱码一区二三区的特点 | 高清黄色对白视频在线免费看| 极品教师在线免费播放| 亚洲性夜色夜夜综合| www.www免费av| 亚洲欧美精品综合久久99| 99久久综合精品五月天人人| 成年女人毛片免费观看观看9| 91麻豆av在线| e午夜精品久久久久久久| 亚洲成国产人片在线观看| 久久草成人影院| 午夜老司机福利片| 亚洲一区高清亚洲精品| 高清av免费在线| 男男h啪啪无遮挡| 亚洲熟女毛片儿| 一a级毛片在线观看| 午夜免费观看网址| 电影成人av| 十八禁网站免费在线| 18禁国产床啪视频网站| 91麻豆精品激情在线观看国产 | 在线观看一区二区三区| 精品一品国产午夜福利视频| 高清黄色对白视频在线免费看| 满18在线观看网站| 国产精品 国内视频| 两性夫妻黄色片| bbb黄色大片| 99久久综合精品五月天人人| 看免费av毛片| 99热国产这里只有精品6| 午夜老司机福利片| 国产成人欧美在线观看| 美女扒开内裤让男人捅视频| 亚洲在线自拍视频| 黑人欧美特级aaaaaa片| 欧美大码av| 最新美女视频免费是黄的| 亚洲欧美精品综合久久99| 伦理电影免费视频| 亚洲精品av麻豆狂野| 免费日韩欧美在线观看| 女人被躁到高潮嗷嗷叫费观| 日韩成人在线观看一区二区三区| 国产精品香港三级国产av潘金莲| 啦啦啦免费观看视频1| 日本黄色日本黄色录像| 亚洲七黄色美女视频| 国产成人精品久久二区二区91| 国产精品 国内视频| 人人妻人人澡人人看| 十分钟在线观看高清视频www| 成年女人毛片免费观看观看9| 免费在线观看黄色视频的| 两人在一起打扑克的视频| 性欧美人与动物交配| 麻豆av在线久日| 一级片'在线观看视频| 欧美性长视频在线观看| 又黄又粗又硬又大视频| 男人舔女人的私密视频| 久久久久久人人人人人| av欧美777| 757午夜福利合集在线观看| 美女扒开内裤让男人捅视频| 99久久国产精品久久久| 亚洲avbb在线观看| xxx96com| 99国产精品99久久久久| 老司机亚洲免费影院| 韩国精品一区二区三区| 激情视频va一区二区三区| 国产欧美日韩一区二区三区在线| 国产又爽黄色视频| 国产一区二区三区综合在线观看| 久久人妻熟女aⅴ| 狠狠狠狠99中文字幕| 日韩高清综合在线| 99久久国产精品久久久| 校园春色视频在线观看| 一区二区三区国产精品乱码| 老汉色∧v一级毛片| 亚洲国产毛片av蜜桃av| 国产亚洲欧美在线一区二区| 日韩欧美免费精品| 香蕉国产在线看| 人妻久久中文字幕网| 久久影院123| 中文字幕高清在线视频| 99国产精品一区二区三区| 久久久久久免费高清国产稀缺| 亚洲自拍偷在线| 大陆偷拍与自拍| 亚洲五月天丁香| 女人被狂操c到高潮| xxxhd国产人妻xxx| 国产成人精品久久二区二区免费| 黄色成人免费大全| 12—13女人毛片做爰片一| 欧美av亚洲av综合av国产av| 天堂动漫精品| 欧美日韩乱码在线| 欧美日韩一级在线毛片| 自拍欧美九色日韩亚洲蝌蚪91| 在线播放国产精品三级| 香蕉久久夜色| 亚洲国产欧美日韩在线播放| 国产成人系列免费观看| 日本黄色日本黄色录像| 亚洲黑人精品在线| 亚洲av片天天在线观看| 免费日韩欧美在线观看| 好男人电影高清在线观看| av欧美777| 亚洲精品粉嫩美女一区| av超薄肉色丝袜交足视频| 18禁黄网站禁片午夜丰满| 99久久综合精品五月天人人| 久久青草综合色| 免费在线观看影片大全网站| av中文乱码字幕在线| 亚洲熟妇中文字幕五十中出 | 成人亚洲精品一区在线观看| 亚洲 欧美一区二区三区| 欧美乱码精品一区二区三区| 亚洲欧美精品综合一区二区三区| 国产在线观看jvid| 国产精品九九99| 亚洲人成电影观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲自偷自拍图片 自拍| 一二三四在线观看免费中文在| 国产三级在线视频| 免费av毛片视频| 欧美成人性av电影在线观看| 亚洲熟妇熟女久久| 啪啪无遮挡十八禁网站| 女警被强在线播放| 成人亚洲精品av一区二区 | 夫妻午夜视频| 一级毛片女人18水好多| 国产精品99久久99久久久不卡| 好男人电影高清在线观看| 精品乱码久久久久久99久播| 操出白浆在线播放| 丰满人妻熟妇乱又伦精品不卡| 日韩精品中文字幕看吧| 精品人妻在线不人妻| 欧美在线黄色| 日本黄色日本黄色录像| 老鸭窝网址在线观看| 成人免费观看视频高清| 国产精品日韩av在线免费观看 | 国产真人三级小视频在线观看| 十八禁网站免费在线| 亚洲五月婷婷丁香| 91大片在线观看| 久久亚洲真实| 大码成人一级视频| 午夜91福利影院| 国产亚洲精品综合一区在线观看 | 女生性感内裤真人,穿戴方法视频| 又大又爽又粗| 久久久久久亚洲精品国产蜜桃av| 国产成人免费无遮挡视频| 亚洲中文字幕日韩| 久久精品国产亚洲av香蕉五月| 少妇裸体淫交视频免费看高清 | 脱女人内裤的视频| 国产精品国产高清国产av| 在线观看免费视频日本深夜| 悠悠久久av| 国产成年人精品一区二区 | 国产激情久久老熟女| 国产亚洲精品综合一区在线观看 | 久久亚洲真实| 国产成人影院久久av| 女人精品久久久久毛片| 熟女少妇亚洲综合色aaa.| 日日爽夜夜爽网站| 亚洲中文字幕日韩| 亚洲片人在线观看| 美女高潮喷水抽搐中文字幕| 亚洲成av片中文字幕在线观看| 桃红色精品国产亚洲av| 亚洲成a人片在线一区二区| 中文字幕高清在线视频| 热re99久久精品国产66热6| 国产91精品成人一区二区三区| 日韩av在线大香蕉| 视频区图区小说| 国产成人影院久久av| 可以免费在线观看a视频的电影网站| 最新美女视频免费是黄的| 欧美日韩瑟瑟在线播放| 日韩欧美国产一区二区入口| 国产亚洲欧美在线一区二区| 大香蕉久久成人网| 黄色丝袜av网址大全| 精品少妇一区二区三区视频日本电影| 国产99白浆流出| 久久久精品欧美日韩精品| 午夜成年电影在线免费观看| 老汉色∧v一级毛片| 亚洲精品国产精品久久久不卡| 亚洲免费av在线视频| 麻豆成人av在线观看| av有码第一页| 久久久国产成人精品二区 | 亚洲自拍偷在线| www.www免费av| 欧美大码av| 九色亚洲精品在线播放| 19禁男女啪啪无遮挡网站| 欧美黄色淫秽网站| a在线观看视频网站| 看片在线看免费视频| 日本欧美视频一区| 色精品久久人妻99蜜桃| 国产1区2区3区精品| 一a级毛片在线观看| 久久久国产成人免费| 757午夜福利合集在线观看| 深夜精品福利| 久久久久久亚洲精品国产蜜桃av| 亚洲专区字幕在线| 国产又色又爽无遮挡免费看| 免费女性裸体啪啪无遮挡网站| 亚洲第一欧美日韩一区二区三区| 久久久久国产精品人妻aⅴ院| 美女大奶头视频| 国产伦人伦偷精品视频| 久久久国产成人精品二区 | 一边摸一边做爽爽视频免费| 欧美激情 高清一区二区三区| 超色免费av| 欧美大码av| 在线国产一区二区在线| 免费看a级黄色片| 国产免费男女视频| 亚洲av成人不卡在线观看播放网| av有码第一页| 日日干狠狠操夜夜爽| 国产成人一区二区三区免费视频网站| 啦啦啦在线免费观看视频4| 午夜视频精品福利| 国产欧美日韩精品亚洲av| 在线观看日韩欧美| 亚洲午夜理论影院| 日本五十路高清| 两个人免费观看高清视频| 午夜福利在线观看吧| 我的亚洲天堂| 亚洲全国av大片| 亚洲一码二码三码区别大吗| 国产片内射在线| 老司机靠b影院| 国产亚洲精品久久久久5区| 国产精品 欧美亚洲| 韩国精品一区二区三区| 欧美在线一区亚洲| 在线观看免费高清a一片| 99久久久亚洲精品蜜臀av| 欧美激情极品国产一区二区三区| 精品无人区乱码1区二区| 国产伦一二天堂av在线观看| 最好的美女福利视频网| 18禁黄网站禁片午夜丰满| 亚洲 欧美一区二区三区| 午夜影院日韩av| 91av网站免费观看| 亚洲成a人片在线一区二区| 久久精品亚洲熟妇少妇任你| 久久精品人人爽人人爽视色| 精品国产一区二区久久| 亚洲色图av天堂| 亚洲视频免费观看视频| 99在线视频只有这里精品首页| 精品国内亚洲2022精品成人| 亚洲av五月六月丁香网| 国产精品一区二区三区四区久久 | 欧美黑人精品巨大| 大香蕉久久成人网| 欧美最黄视频在线播放免费 | 91成人精品电影| 69av精品久久久久久| 欧美最黄视频在线播放免费 | 波多野结衣av一区二区av| 母亲3免费完整高清在线观看| 我的亚洲天堂| 涩涩av久久男人的天堂| 久久久久九九精品影院| 在线国产一区二区在线| av在线播放免费不卡| 大香蕉久久成人网| 亚洲国产欧美网| 国产在线观看jvid| 嫁个100分男人电影在线观看| 色播在线永久视频| 一区二区日韩欧美中文字幕| 国产亚洲欧美在线一区二区| av有码第一页| 热99re8久久精品国产| 高清欧美精品videossex| 老汉色av国产亚洲站长工具| 久久久国产一区二区| 久久婷婷成人综合色麻豆| 国产91精品成人一区二区三区| 性色av乱码一区二区三区2| 99久久精品国产亚洲精品| 亚洲专区国产一区二区| 亚洲av日韩精品久久久久久密| 成人亚洲精品av一区二区 | 波多野结衣高清无吗| 男女下面插进去视频免费观看| 久久精品国产99精品国产亚洲性色 | 久久青草综合色| 女人高潮潮喷娇喘18禁视频| 电影成人av| 人人澡人人妻人| 美女福利国产在线| 无遮挡黄片免费观看| 日韩高清综合在线| 欧美中文综合在线视频| 日本免费一区二区三区高清不卡 | 久久人人爽av亚洲精品天堂| 99久久人妻综合| 久久亚洲真实| 啦啦啦在线免费观看视频4| 搡老岳熟女国产| 午夜免费激情av| 91在线观看av| 久久天堂一区二区三区四区| 亚洲精品国产一区二区精华液| 日本欧美视频一区| 欧美中文日本在线观看视频| 新久久久久国产一级毛片| 视频区图区小说| 国产高清视频在线播放一区| 中文欧美无线码| 久久久久久免费高清国产稀缺| 大香蕉久久成人网| 亚洲成人免费电影在线观看| 18美女黄网站色大片免费观看| 亚洲精品成人av观看孕妇| 亚洲一区二区三区欧美精品| 黄色成人免费大全| 一级,二级,三级黄色视频| 国产精品1区2区在线观看.| 母亲3免费完整高清在线观看| 欧美国产精品va在线观看不卡| 国产亚洲精品久久久久5区| 亚洲午夜理论影院| 淫秽高清视频在线观看| 欧美乱码精品一区二区三区| 村上凉子中文字幕在线| 亚洲一区二区三区欧美精品| 亚洲av成人一区二区三| 午夜福利,免费看| 国产亚洲欧美精品永久| 99久久久亚洲精品蜜臀av| 亚洲av熟女| 黄色怎么调成土黄色| 大型黄色视频在线免费观看| 久久久久国内视频| 国产伦一二天堂av在线观看| 深夜精品福利| 亚洲人成伊人成综合网2020| 老司机在亚洲福利影院| 久久久国产精品麻豆| 欧洲精品卡2卡3卡4卡5卡区| ponron亚洲| 交换朋友夫妻互换小说| 精品久久久精品久久久| 午夜a级毛片| 电影成人av| 午夜91福利影院| av在线播放免费不卡| 99热国产这里只有精品6| 国产精品98久久久久久宅男小说| a级片在线免费高清观看视频| 欧美丝袜亚洲另类 | 91av网站免费观看| 一级毛片高清免费大全| 免费av毛片视频| 国产精品秋霞免费鲁丝片| 一边摸一边做爽爽视频免费| 性色av乱码一区二区三区2| xxxhd国产人妻xxx| 国产精品国产av在线观看| 夜夜夜夜夜久久久久|