• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The extreme Arctic warm anomaly in November 2020

    2022-09-03 09:04:54QiyaoFanXinpingXuShengpingHeBotaoZhou

    Qiyao Fan ,Xinping Xu,* ,Shengping He ,Botao Zhou

    a Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science & Technology, Nanjing, China

    b Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway

    c Nansen Environmental and Remote Sensing Center and Bjerknes Centre for Climate Research, Bergen, Norway

    d Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    Keywords:Arctic warm anomaly Arctic sea-ice loss Poleward moisture transport Rossby wave train

    ABSTRACT In November 2020,the eastern Arctic experienced an extensive extreme warm anomaly (i.e.,the second strongest case since 1979),which was followed by extreme cold conditions over East Asia in early winter.The observed Arctic warm anomaly in November 2020 was able to extend upwards to the upper troposphere,characterized as a deep Arctic warm anomaly.In autumn 2020,substantial Arctic sea-ice loss that exceeded the record held since 1979,accompanied by increased upward turbulent heat flux,was able to strongly warm the Arctic.Furthermore,there was abundant northward moisture transport into the Arctic from the North Atlantic,which was the strongest in the past four decades.This extreme moisture intrusion was able to enhance the downward longwave radiation and strongly contribute to the warm conditions in the Arctic.Further analysis indicated that the remote moisture intrusion into the Arctic was promoted by the large-scale atmospheric circulation patterns,such as the wave train propagating from the midlatitude North Atlantic to the Arctic.This process may have been linked to the warmer sea surface temperature in the midlatitude North Atlantic.

    1.Introduction

    The Arctic has been warming dramatically since the 1990s,at a rate of more than twice that of greenhouse gas–induced global warming (Huang et al.,2017).Arctic sea-ice decline and high-latitude snowcover retreat might play critical roles in causing polar surface warming,because they can change the surface albedo and increase cold-season heat transport from the ocean to the atmosphere (Cohen et al.,2014 ;Dai et al.,2019).Remote forcings such as poleward atmospheric energy transport (Graversen et al.,2008) and warm and moist air intrusion(Zhong et al.,2018) have also been proposed to cause Arctic warming.It is worth noting that the observed Arctic warming can extend from the surface to the upper troposphere (i.e.,deep Arctic warming)(Ogawa et al.,2018 ;He et al.,2020).The large spread in the vertical distributions of Arctic warming trends between model simulations and observations or among various climate models implies the potential role of natural variability (Xu et al.,2019 ;Cohen et al.,2020).Xu et al.(2021) discussed the different mechanisms of Arctic surface warming and tropospheric warming using coordinated climate model experiments.It was concluded that Arctic surface warming is strongly coupled with sea-ice decline,and that poleward moisture transport from the Norwegian Sea and midlatitude North Atlantic to the Barents–Kara seas,but not sea-ice decline,is an important contributor to Arctic tropospheric warming (Xu et al.,2021).Despite intensive research on Arctic warming (Graversen et al.,2008 ;Perlwitz et al.,2015 ;Cohen et al.,2020 ;Wang et al.,2021),knowledge of the mechanism remains unclear.

    The remote influence of Arctic warming has aroused considerable attention (Cohen et al.,2014 ;Screen,2017 ;Mori et al.,2019).For example,Arctic warming has been proven to be associated with Eurasian cold winters (Mori et al.,2014 ;Kug et al.,2015),forming the warmer Arctic–colder Eurasia pattern (Overland et al.,2011).He et al.(2016) emphasized the importance of the unprecedented Arctic warming (Kim et al.,2017) on the record-breaking cold extremes over East Asia in January 2016.In the first half of winter 2020/21,extreme cold waves invaded East Asia (Peng et al.,2022 ;Yang and Fan,2022),which is also believed to be linked with the warmer Arctic (Zheng et al.,2021).It is worth noting that an extraordinary increase in Arctic temperature was observed throughout the troposphere in November 2020 (Fig.1).The maximum surface air temperature (SAT) anomalies reached 12 °C over the Kara and Laptev seas (Fig.1 (a)),and the Arctic-averaged (0°–180°E)warm anomaly exceeded 3°C in the mid-troposphere (Fig.1 (b)).It has been revealed that winter SAT anomalies over the Barents–Kara seas were strongly negatively correlated with East Asian SAT anomalies in the later 30 days (Kug et al.,2015).Therefore,further investigation is needed into the cause of the extreme Arctic warm anomaly that followed by early-winter extreme cold temperatures over East Asia.

    Fig.1.Anomalies of (a) SAT and (b) vertical temperature averaged along 0°–180°E (units: °C) in November 2020,relative to the climatology of 1981–2010.(c)Normalized and detrended time series of November ARTI_2m during 1979–2020.

    In this paper,we focus on the cause of the extreme Arctic warm anomaly in November 2020,which might provide some insights into understanding the mechanism of Arctic warming.

    2.Data and methods

    Monthly atmospheric data including SAT,surface sensible and latent heat fluxes,surface downward longwave radiation,300-hPa geopotential height,air temperature,wind field,and specific humidity were obtained from the fifth major global reanalysis produced by ECMWF (ERA5) (Hersbach et al.,2020),with a horizontal resolution of 1.0° × 1.0°.Monthly sea-ice concentration and sea surface temperature (SST) data were obtained from the Met Office Hadley Center(Rayner et al.,2003).A 130-member ensemble of simulations from five atmosphere general circulation models (AGCMs: CAM4,WACCM,IFS,IAP4,and LMDZOR) prescribing daily varying sea ice and SST from the National Oceanic and Atmospheric Administration for the period 1982–2014 were also employed (Ogawa et al.,2018).Each ensemble member began with slightly different initial conditions.

    An Arctic surface temperature index (ARTI_2m) is defined as the area-averaged SAT in the domain (70°–80°N,30°–150°E) (black frame in Fig.1 (a)).An Arctic sea-ice index is defined as the area-averaged sea-ice concentration in the domain (75°–85°N,30°–180°E) (red frame in Fig.2 (a)).A moisture index is defined as the area-averaged magnitude of water vapor transport anomalies integrated from 1000 hPa to 300 hPa in the domain (60°–75°N,0°–90°E) (purple frame in Fig.2 (d)).High and low ARTI_2m years are defined when the normalized and detrended November ARTI_2m is above 0.5 and below -0.5,respectively.The observed climate anomalies in 2020 are relative to the climatology of 1981–2010.We removed the linear trend from all data before carrying out the composite analysis.

    3.Results

    Fig.1 (a) shows the spatial pattern of Arctic surface temperature anomalies in November 2020.Extensive surface warm anomalies can be seen in the eastern Arctic,including the Barents–Kara seas,Laptev Sea,East Siberian Sea,and high-latitude Eurasia (Fig.1 (a)).The warm center(above 12 °C) was located over the Kara and Laptev seas and northern Siberia.It is noteworthy that the eastern Arctic experienced the second warmest November over the past four decades and the warmest November since 1982 (Fig.1 (c)).In the vertical direction,the pronounced warm signal extended from the surface to the upper troposphere,characterized as a deep Arctic warm anomaly (Fig.1 (b)).At 300 hPa,the Arctic-averaged (0°–180°E) temperature anomaly reached 1.5 °C.It is thus clear that a pronounced surface-amplified Arctic warm anomaly occurred throughout the troposphere in November 2020.

    Arctic sea-ice decline has been revealed as a major cause of Arctic surface warming,through inducing increased upward turbulent heat flux to warm the atmosphere (Screen and Simmonds,2010).Specifically,Arctic sea ice shows the most pronounced reduction in September throughout the year and the excess heat is transferred from the anomalously warm and ice-free ocean water to the atmosphere in autumn(Liu et al.,2012 ;Cohen et al.,2014),which substantially influences the atmosphere circulations.In autumn 2020,dramatic sea-ice reduction was observed from the Kara Sea eastwards to the East Siberian Sea(Fig.2 (a)),exceeding the record from 1979 (Fig.2 (c)).The area with reduced sea ice coincided greatly with the surface warmer area (Fig.1 (a)and Fig.2 (a)).We cannot yet attribute the surface warm conditions to sea-ice loss on this basis,because a warmer Arctic can also drive changes in sea ice (Sorokina et al.,2016 ;Blackport et al.,2019).Fig.2 (b) shows the corresponding anomalies of Arctic turbulent (sensible+latent) heat flux,which help to clarify the direction of the ice–atmosphere interaction.There was anomalous upward turbulent heat flux over the sea-ice loss region (Fig.2 (b)).This means more heat was transferred from the ocean to the atmosphere and is indicative of the strong ice-driven surface warm conditions.

    Fig.2.Anomalies of (a) Arctic sea-ice concentration and (b) turbulent heat flux (upward positive;units: W m-2) in autumn (September–November) 2020,relative to the climatology of 1981–2010.(c) Normalized and detrended time series of autumn Arctic sea-ice index during 1979–2020.(d,e) Anomalies of (d) water vapor transport vertically integrated from 1000 hPa to 300 hPa (vectors;units: 102 kg m-1 s-1) and corresponding magnitude anomalies (shading;units: 102 kg m-1 s-1)and (e) surface downward longwave radiation (units: W m-2) in November 2020,relative to the climatology of 1981–2010.(f) Normalized and detrended time series of November moisture index during 1979–2020.

    Conversely,the anomalous downward turbulent heat flux west of Novaya Zemlya (Fig.2 (b)) implies heat transfer from the atmosphere to the ocean,which is indicative of warm and moist air intrusion (Woods and Caballero,2016).Previous studies suggest the influence of poleward moisture flux on Arctic warming (Park et al.,2015),particularly tropospheric warming (Xu et al.,2021),because moisture intrusion can enhance the downward longwave radiation over the Arctic (Park et al.,2015).In November 2020,there was abundant northward moisture transport from lower latitudes (e.g.,the North Atlantic) to the Arctic(Fig.2 (d)),which strongly enhanced the downward longwave radiation (Fig.2 (e)) and thus contributed to the deep Arctic warm anomaly(Xu et al.,2021).It is noteworthy that the increase in poleward moisture transport was also the strongest in the past 40 years (Fig.2 (f)).That is,both the extreme low Arctic sea ice and strong moisture intrusion into the Arctic were important contributing factors to the extensive extreme Arctic warm anomaly in November 2020.

    Relative to sea-ice reduction,the role of poleward heat and moisture transport from lower latitudes to the Arctic is just beginning to be understood (Cohen et al.,2020).To further investigate the contribution of moisture to the warmer Arctic,Fig.3 (a) presents the corresponding evaporation anomalies.A pronounced increase in evaporation anomalies occurred in the midlatitude North Atlantic (i.e.,a major external moisture source) (Fig.3 (a)).However,another major external moisture source–the Norwegian Sea (Zhong et al.,2018 ;Xu et al.,2021)–did not show any positive evaporation anomalies (Fig.3 (a)).That is,the midlatitude North Atlantic could have been the main external moisture source for the Arctic warm anomaly.More evidence can be obtained from the large-scale atmospheric circulation anomalies (Fig.3 (b)).A well-organized wave train structure spanned from the midlatitude North Atlantic to the Arctic and central Eurasia through Greenland or western Europe (Fig.3 (b)),which corresponded to two (high-latitude and midlatitude) pathways (Zhong et al.,2018).Over the North Atlantic–Arctic sector,the wave train was composed of the positive phase of the North Atlantic Oscillation (NAO) and a strengthened Ural blocking (Fig.3 (b)),which is an optimal circulation pattern that steers the pathway of moisture from the North Atlantic to the Arctic (Luo et al.,2017).

    We further discuss the possible drivers of the planetary waves propagating from the North Atlantic to the Arctic.In November 2020,widespread warmer SST dominated the midlatitude North Atlantic from 20°N to 45°N,with a warm center (above 1.6°C) near the Gulf Stream(Fig.3 (c)).Matching the warmer SST,anomalous divergent wind appeared in the upper troposphere (Fig.3 (d)).In other words,the warmer SST over the midlatitude North Atlantic could possibly have induced the upper-level divergent wind anomalies and thus driven the atmospheric Rossby wave propagation.This result is also consistent with Sato et al.(2014).

    To verify the above hypothesis about the remote impact on the Arctic warm anomaly in November 2020,Fig.4 (a–e) presents the composite November climate anomalies between high and low ARTI_2m years during 1979–2020 in ERA5.The significant surface warm anomalies over the eastern Arctic are largely consistent with the warm conditions in 2020 (Fig.4 (a)).Moreover,the significant warm signal was able to extend upwards to the upper troposphere (Fig.4 (b)).Associated with the deep Arctic warm anomaly,there was significantly increased moisture transport into the Arctic from the North Atlantic (Fig.4 (c)) via the atmospheric circulation patterns (Fig.4 (d)).This further supports the contribution of remote moisture to the deep Arctic warm anomaly in November 2020.The large-scale atmospheric wave train spanning from the midlatitude North Atlantic to the Arctic (Fig.4 (d)) may have been linked to the significant SST forcing near the Gulf Stream (Fig.4 (e)).This hypothesis can be further verified using the results from the ensemble mean of the five AGCMs,which displays a significant wave train pattern from the North Atlantic to the Arctic and warmer SST near the Gulf Stream,associated with the warmer Arctic (Fig.4 (f,g)).The composite results based on ERA5 and model simulations are highly consistent with the climate anomalies in November 2020,providing evidence that the poleward moisture transport from the midlatitude North Atlantic via the atmospheric circulation patterns related to SST forcing was an important contributing factor to this deep Arctic warm anomaly.

    Fig.3.Anomalies of (a) evaporation multiplied by 28.5 (1 mm d-1=28.5 W m-2),(b) 300-hPa geopotential height (shading;units: m) and wave activity flux (vectors;units: 1011 m2 s-2 ;computed according to Takaya and Nakamura (2001)),(c) SST (units: °C),and (d) 300-hPa velocity potential (shading;units: 105 m2 s-1) and divergent wind (vectors;units: m s-1) in November 2020,relative to the climatology of 1981–2010.

    4.Conclusions and further discussion

    In this study,we analyzed the extreme Arctic warm anomaly in November 2020 (i.e.,the second strongest case since 1979) and investigated the possible causes.The results showed that amplified surface warm conditions were observed over the eastern Arctic in November 2020,with the largest warm anomalies over the Kara and Laptev seas and northern Siberia.This warm signal was able to extend upwards to the upper troposphere,characterized as a deep Arctic warm anomaly.

    There was dramatic Arctic sea-ice loss and increased upward turbulent heat flux in autumn 2020,which meant a direct response of surface warm anomalies to sea-ice variability.In addition,abundant northward moisture advection from the midlatitude North Atlantic to the Arctic in November was able to enhance the downward longwave radiation and thus warm the Arctic.Both the reduction in autumn sea ice over the region (75°–85°N,30°–180°E) and the increase in poleward moisture intrusion over the region (60°–75°N,0°–90°E) exceeded the record held since 1979,which greatly contributed to the extreme Arctic warm anomaly in November 2020.Atmospheric circulation anomalies in the North Atlantic–Arctic sector were characterized by the positive phase of the NAO and an intensified Ural blocking.The planetary wave train spanning from the midlatitude North Atlantic to the Arctic through Greenland or western Europe was able to determine the transport of remote moisture to the Arctic.It has also been further discussed that the planetary wave propagation may have been related to warm SST forcing near the Gulf Stream.

    The above hypothesis regarding the remote impact on the Arctic warm anomaly in November 2020 was further verified by composite analysis based on ERA5 and model simulations.The high consistency between the climate anomalies in November 2020 and the composite climate anomalies (i.e.,high ARTI_2m minus low ARTI_2m years) supports the role of moisture intrusion into the Arctic from lower latitudes,which may have been related to the warmer SST near the Gulf Stream,in the deep Arctic warm anomaly.We therefore suggest a joint influence from the extremely low Arctic sea ice and strong moisture intrusion on the extreme Arctic warm anomaly in November 2020.Note that we have not yet determined the relative contributions of Arctic sea-ice loss and moisture intrusion;the influence of midlatitude SST forcing needs to be further investigated in future work.

    Funding

    This research was supported by the Guangdong Major Project of Basic and Applied Basic Research [grant number 2020B0301030004 ],the National Natural Science Foundation of China [grant numbers 42025502 and 41875118 ],the Research Council of Norway project BASIC [grant number 325440 ],and the State Scholarship Fund of the China Scholarship Council [grant number 202109045003].

    Fig.4.Composites of November (a) SAT,(b) vertical temperature averaged along 0°-180°E,(c) water vapor transport vertically integrated from 1000 hPa to 300 hPa (vectors;units: 102 kg m-1 s-1) and corresponding magnitude anomalies (shading;units: 102 kg m-1 s-1),(d) 300-hPa geopotential height (units: m),and (e)SST (units: °C) between the high and low ARTI_2m years during 1979–2020 from ERA5.(f,g) Composites of November (f) 300-hPa geopotential height (shading;units: m) and wave activity flux (vectors;units: 10-2 m2 s-2) and (g) SST (units: °C) between the high and low ARTI_2m years during 1982–2014 from the ensemble mean of five AGCMs.Dotted values exceed the 90% confidence level.

    ponron亚洲| 欧美区成人在线视频| 国产毛片a区久久久久| 干丝袜人妻中文字幕| 嫩草影院精品99| 免费看a级黄色片| 亚洲av中文字字幕乱码综合| 中文字幕免费在线视频6| 亚洲成a人片在线一区二区| 91在线精品国自产拍蜜月| 18禁黄网站禁片免费观看直播| 白带黄色成豆腐渣| 精品久久久久久久久久免费视频| 日韩高清综合在线| 亚洲国产欧美人成| 少妇被粗大猛烈的视频| 精品少妇黑人巨大在线播放 | 免费人成在线观看视频色| 日本欧美国产在线视频| 69人妻影院| 久久精品影院6| 在线观看av片永久免费下载| 欧美日本视频| 人妻久久中文字幕网| 久久久久久大精品| 免费看a级黄色片| 波野结衣二区三区在线| 一本一本综合久久| 欧美日本亚洲视频在线播放| 国产精品一区二区三区四区免费观看| 尤物成人国产欧美一区二区三区| 国产老妇伦熟女老妇高清| 欧美日韩乱码在线| 亚洲一级一片aⅴ在线观看| 只有这里有精品99| 欧美日韩一区二区视频在线观看视频在线 | 一级av片app| 97热精品久久久久久| 在线观看美女被高潮喷水网站| 免费电影在线观看免费观看| 自拍偷自拍亚洲精品老妇| 夜夜看夜夜爽夜夜摸| 内射极品少妇av片p| 久久久精品大字幕| 成年av动漫网址| 午夜激情欧美在线| 午夜福利视频1000在线观看| 丝袜美腿在线中文| 黄色视频,在线免费观看| 草草在线视频免费看| av在线观看视频网站免费| 你懂的网址亚洲精品在线观看 | 亚洲欧美精品综合久久99| 能在线免费观看的黄片| 嫩草影院入口| 免费大片18禁| 国产精品精品国产色婷婷| 成年女人永久免费观看视频| 97超视频在线观看视频| www.色视频.com| 久久精品人妻少妇| 欧美日韩一区二区视频在线观看视频在线 | 12—13女人毛片做爰片一| 岛国毛片在线播放| 久久亚洲国产成人精品v| 99久久人妻综合| 国产亚洲欧美98| 午夜精品在线福利| 99久久无色码亚洲精品果冻| 亚洲精品国产成人久久av| 亚州av有码| 男女下面进入的视频免费午夜| 日本五十路高清| 悠悠久久av| 1000部很黄的大片| 白带黄色成豆腐渣| 成年版毛片免费区| 亚洲丝袜综合中文字幕| 乱码一卡2卡4卡精品| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲欧美98| 欧洲精品卡2卡3卡4卡5卡区| 久久久国产成人免费| 成人午夜高清在线视频| 一级二级三级毛片免费看| 深夜精品福利| 麻豆久久精品国产亚洲av| 最近最新中文字幕大全电影3| 国产精品嫩草影院av在线观看| 欧美成人一区二区免费高清观看| 日本爱情动作片www.在线观看| a级毛片免费高清观看在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男人的好看免费观看在线视频| 欧美日韩乱码在线| 男女边吃奶边做爰视频| av天堂在线播放| 别揉我奶头 嗯啊视频| 亚洲精品久久国产高清桃花| 久久久久久久久久久免费av| 亚洲经典国产精华液单| 国产精品伦人一区二区| 在线观看午夜福利视频| 免费大片18禁| 欧美一区二区国产精品久久精品| 国产精品三级大全| 久久精品影院6| 久久中文看片网| 美女大奶头视频| 日韩三级伦理在线观看| 狠狠狠狠99中文字幕| 18禁在线播放成人免费| 国产私拍福利视频在线观看| 热99在线观看视频| 亚洲乱码一区二区免费版| 国内少妇人妻偷人精品xxx网站| 熟女电影av网| 白带黄色成豆腐渣| 亚洲av二区三区四区| 成年版毛片免费区| 九草在线视频观看| 成年版毛片免费区| 国产精品国产高清国产av| 欧美激情久久久久久爽电影| 天天一区二区日本电影三级| 国产伦在线观看视频一区| 在线播放无遮挡| 尾随美女入室| 午夜精品一区二区三区免费看| 国产在视频线在精品| 国产色爽女视频免费观看| 国产在线精品亚洲第一网站| 免费一级毛片在线播放高清视频| 精品人妻一区二区三区麻豆| 国产乱人偷精品视频| av在线老鸭窝| 亚洲在线自拍视频| 免费av观看视频| 欧美变态另类bdsm刘玥| 尾随美女入室| 欧美激情久久久久久爽电影| 波野结衣二区三区在线| 99视频精品全部免费 在线| 亚洲中文字幕一区二区三区有码在线看| 天堂中文最新版在线下载 | 毛片一级片免费看久久久久| 在线观看美女被高潮喷水网站| 少妇的逼好多水| 久久久精品94久久精品| 最近视频中文字幕2019在线8| 久久精品综合一区二区三区| 久久久久久久久大av| 亚洲国产欧美在线一区| 久久精品影院6| 少妇的逼好多水| 一边亲一边摸免费视频| 国产男人的电影天堂91| 亚洲精品粉嫩美女一区| 精品久久久久久久久av| 国产精品爽爽va在线观看网站| 国产精品一区二区三区四区久久| 搡女人真爽免费视频火全软件| 欧美bdsm另类| 一区福利在线观看| 亚洲成人久久性| 悠悠久久av| 国产午夜福利久久久久久| 久久久午夜欧美精品| 日日啪夜夜撸| 只有这里有精品99| av免费观看日本| 一区福利在线观看| 亚洲av成人av| 国产一区二区在线av高清观看| 超碰av人人做人人爽久久| 免费观看人在逋| 亚洲精品久久国产高清桃花| 亚洲成人久久爱视频| 韩国av在线不卡| 欧美高清性xxxxhd video| 日本黄色片子视频| 99热这里只有精品一区| 99热这里只有是精品50| 亚洲欧美成人精品一区二区| 日本熟妇午夜| 人人妻人人澡人人爽人人夜夜 | ponron亚洲| 欧美日韩在线观看h| 精品一区二区免费观看| 五月玫瑰六月丁香| 我要看日韩黄色一级片| 国产精品爽爽va在线观看网站| 日本av手机在线免费观看| 亚洲精品国产av成人精品| 最近2019中文字幕mv第一页| 国产精品伦人一区二区| av在线老鸭窝| 国产在线男女| 亚洲色图av天堂| 日本爱情动作片www.在线观看| 18禁在线播放成人免费| 亚洲婷婷狠狠爱综合网| 成人av在线播放网站| 国产69精品久久久久777片| 内地一区二区视频在线| 99久久成人亚洲精品观看| 成人午夜精彩视频在线观看| 亚洲欧美日韩东京热| 日本黄色视频三级网站网址| 中文字幕av成人在线电影| 日韩中字成人| 亚洲av成人av| 久久久久久伊人网av| 成年版毛片免费区| 赤兔流量卡办理| 亚洲人成网站在线播| 亚洲欧美中文字幕日韩二区| 亚洲国产精品成人综合色| 国产成人91sexporn| 久久久午夜欧美精品| 亚洲一区二区三区色噜噜| 熟妇人妻久久中文字幕3abv| 中文字幕制服av| 亚洲va在线va天堂va国产| 精品久久国产蜜桃| 日本色播在线视频| 三级经典国产精品| 国产亚洲av片在线观看秒播厂 | 欧美日本亚洲视频在线播放| 久久精品国产自在天天线| 国产精品免费一区二区三区在线| 成人特级av手机在线观看| 99久久无色码亚洲精品果冻| 国产老妇伦熟女老妇高清| 久久99热6这里只有精品| 99久久人妻综合| 青春草视频在线免费观看| 亚洲国产日韩欧美精品在线观看| 国产毛片a区久久久久| 成人毛片60女人毛片免费| 日本五十路高清| 亚洲欧洲国产日韩| 亚洲国产欧洲综合997久久,| 亚洲最大成人av| 69人妻影院| 麻豆成人午夜福利视频| 人妻系列 视频| 久久草成人影院| 大又大粗又爽又黄少妇毛片口| 成人永久免费在线观看视频| 国产极品精品免费视频能看的| 成人毛片a级毛片在线播放| 欧美精品一区二区大全| av.在线天堂| 国产精品福利在线免费观看| 国产一区亚洲一区在线观看| 成人漫画全彩无遮挡| 人妻少妇偷人精品九色| 亚洲av中文字字幕乱码综合| 高清午夜精品一区二区三区 | 美女xxoo啪啪120秒动态图| 久久综合国产亚洲精品| 一边摸一边抽搐一进一小说| 国产精品美女特级片免费视频播放器| 久久草成人影院| 又黄又爽又刺激的免费视频.| 国产精品人妻久久久久久| 夜夜看夜夜爽夜夜摸| 97人妻精品一区二区三区麻豆| 色吧在线观看| 午夜亚洲福利在线播放| 国产老妇伦熟女老妇高清| 欧美成人精品欧美一级黄| 国产在线精品亚洲第一网站| 老熟妇乱子伦视频在线观看| 蜜臀久久99精品久久宅男| 国产精品免费一区二区三区在线| 一个人免费在线观看电影| 毛片女人毛片| 男人狂女人下面高潮的视频| 亚洲欧美日韩高清在线视频| 网址你懂的国产日韩在线| 我的老师免费观看完整版| 久久热精品热| 亚洲成人精品中文字幕电影| 国产精品免费一区二区三区在线| 亚洲精品国产成人久久av| 久久6这里有精品| 国产美女午夜福利| 乱码一卡2卡4卡精品| 91狼人影院| 国产高潮美女av| 亚洲美女视频黄频| 美女xxoo啪啪120秒动态图| 国产不卡一卡二| 亚洲精品亚洲一区二区| 搞女人的毛片| 国产精品不卡视频一区二区| 99热精品在线国产| 国产成人精品一,二区 | 日韩大尺度精品在线看网址| 亚洲国产精品国产精品| 久久精品国产鲁丝片午夜精品| 精品日产1卡2卡| 18+在线观看网站| 亚洲电影在线观看av| 日本与韩国留学比较| 美女国产视频在线观看| 久久韩国三级中文字幕| 国产精品伦人一区二区| 18+在线观看网站| 欧美精品一区二区大全| 免费av毛片视频| 亚洲高清免费不卡视频| 高清毛片免费看| 久久精品国产亚洲av涩爱 | 在线免费十八禁| 欧美一级a爱片免费观看看| 国产免费一级a男人的天堂| 又粗又硬又长又爽又黄的视频 | 天堂影院成人在线观看| 免费无遮挡裸体视频| 精品久久久久久久久亚洲| 国产视频首页在线观看| 国产精品美女特级片免费视频播放器| 大又大粗又爽又黄少妇毛片口| av天堂中文字幕网| 美女黄网站色视频| 亚洲五月天丁香| 国产av一区在线观看免费| 亚洲成av人片在线播放无| 大型黄色视频在线免费观看| 国产一区二区亚洲精品在线观看| 1024手机看黄色片| 又爽又黄a免费视频| 国产探花极品一区二区| 麻豆久久精品国产亚洲av| 亚洲精品色激情综合| 亚洲五月天丁香| 久久久久久久久久久丰满| 国产精品一区二区在线观看99 | av卡一久久| 久久久国产成人精品二区| 国产伦一二天堂av在线观看| 久久人人精品亚洲av| 99九九线精品视频在线观看视频| 亚洲国产精品成人久久小说 | 人妻久久中文字幕网| 天堂√8在线中文| 亚洲最大成人中文| 国产真实乱freesex| 国内精品美女久久久久久| 亚洲精品乱码久久久久久按摩| 国产一区二区激情短视频| 国产老妇伦熟女老妇高清| 亚洲三级黄色毛片| 国产免费一级a男人的天堂| 又粗又硬又长又爽又黄的视频 | 亚洲图色成人| 国产精品久久久久久久电影| 美女黄网站色视频| 国产成人影院久久av| 久久精品国产鲁丝片午夜精品| 亚洲av二区三区四区| 亚洲综合色惰| 99国产精品一区二区蜜桃av| 国产色爽女视频免费观看| 亚洲人成网站在线播放欧美日韩| 男女边吃奶边做爰视频| 亚洲国产精品成人久久小说 | 男女做爰动态图高潮gif福利片| 偷拍熟女少妇极品色| 99久国产av精品| 特级一级黄色大片| avwww免费| 精品久久久久久久末码| 亚洲精品乱码久久久v下载方式| h日本视频在线播放| 日韩制服骚丝袜av| 毛片女人毛片| 国产精品野战在线观看| 12—13女人毛片做爰片一| 成年女人永久免费观看视频| 国产人妻一区二区三区在| 在线国产一区二区在线| 男人舔奶头视频| 国产一区二区三区在线臀色熟女| 国产成人aa在线观看| 国产伦理片在线播放av一区 | 成人特级av手机在线观看| 夜夜夜夜夜久久久久| 国产探花极品一区二区| 久久精品国产自在天天线| 搡老妇女老女人老熟妇| 中文字幕制服av| 国产黄片美女视频| www日本黄色视频网| 欧美激情在线99| 99热这里只有精品一区| 熟妇人妻久久中文字幕3abv| 日产精品乱码卡一卡2卡三| 中文字幕熟女人妻在线| 国产精品久久久久久久久免| 成人亚洲欧美一区二区av| 99热只有精品国产| 午夜老司机福利剧场| 精品日产1卡2卡| 免费av不卡在线播放| 国产精品久久久久久精品电影| 人妻制服诱惑在线中文字幕| 97人妻精品一区二区三区麻豆| 一个人免费在线观看电影| 亚洲国产精品久久男人天堂| 九九在线视频观看精品| 国产av不卡久久| 亚洲人与动物交配视频| 亚洲无线观看免费| 男女下面进入的视频免费午夜| 一边摸一边抽搐一进一小说| 亚洲丝袜综合中文字幕| 精品日产1卡2卡| 99在线视频只有这里精品首页| 亚洲人成网站高清观看| 日韩欧美 国产精品| 99九九线精品视频在线观看视频| 成人av在线播放网站| 97超碰精品成人国产| 少妇被粗大猛烈的视频| 国产精品久久久久久精品电影小说 | 乱码一卡2卡4卡精品| 午夜福利高清视频| а√天堂www在线а√下载| 国产综合懂色| 又粗又爽又猛毛片免费看| 狂野欧美激情性xxxx在线观看| 国产单亲对白刺激| 特级一级黄色大片| 色综合亚洲欧美另类图片| 亚洲欧美中文字幕日韩二区| 日本熟妇午夜| 一边亲一边摸免费视频| 成人鲁丝片一二三区免费| 国产高清不卡午夜福利| 国产一区二区在线av高清观看| 国产精品一区www在线观看| 一级毛片aaaaaa免费看小| 亚洲欧美日韩无卡精品| 国产又黄又爽又无遮挡在线| 欧美高清成人免费视频www| 国产乱人视频| 最近手机中文字幕大全| 97超碰精品成人国产| 久久精品国产亚洲av香蕉五月| 麻豆成人午夜福利视频| 一个人看视频在线观看www免费| 久久精品国产清高在天天线| 欧美色欧美亚洲另类二区| 小说图片视频综合网站| 日韩强制内射视频| 老师上课跳d突然被开到最大视频| 亚洲激情五月婷婷啪啪| 亚洲精品久久国产高清桃花| 日韩欧美在线乱码| 久久这里只有精品中国| 国产黄色视频一区二区在线观看 | 免费一级毛片在线播放高清视频| 成人国产麻豆网| 在线免费观看不下载黄p国产| 一个人看的www免费观看视频| 国产精品一区二区三区四区久久| 美女 人体艺术 gogo| 免费av不卡在线播放| 狂野欧美激情性xxxx在线观看| 一本精品99久久精品77| 久久99蜜桃精品久久| 日韩亚洲欧美综合| 亚洲色图av天堂| 深爱激情五月婷婷| 观看免费一级毛片| 自拍偷自拍亚洲精品老妇| 国产精华一区二区三区| 黄色一级大片看看| 在线观看美女被高潮喷水网站| 成人一区二区视频在线观看| 国产精品av视频在线免费观看| 中文字幕精品亚洲无线码一区| 国产熟女欧美一区二区| 成人漫画全彩无遮挡| 99热这里只有是精品50| 少妇丰满av| 少妇熟女欧美另类| 日本黄色视频三级网站网址| av在线播放精品| a级一级毛片免费在线观看| 国产精品,欧美在线| 成人二区视频| 国内精品美女久久久久久| 99久久无色码亚洲精品果冻| 国产成人午夜福利电影在线观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产精品国产精品| 欧美日本亚洲视频在线播放| 简卡轻食公司| 国产黄片美女视频| 噜噜噜噜噜久久久久久91| 十八禁国产超污无遮挡网站| 26uuu在线亚洲综合色| 欧美色欧美亚洲另类二区| 高清午夜精品一区二区三区 | 联通29元200g的流量卡| 久久这里只有精品中国| 成人鲁丝片一二三区免费| 91久久精品电影网| 99久久无色码亚洲精品果冻| 日日摸夜夜添夜夜添av毛片| 国产高清视频在线观看网站| 高清毛片免费看| 黄片无遮挡物在线观看| 熟女人妻精品中文字幕| 亚洲第一区二区三区不卡| 天美传媒精品一区二区| 国产精品电影一区二区三区| 国产精品久久久久久精品电影| 国产精品蜜桃在线观看 | 久久99热这里只有精品18| 三级毛片av免费| av在线蜜桃| 午夜老司机福利剧场| 婷婷精品国产亚洲av| 国产高清有码在线观看视频| 国产亚洲精品av在线| 亚洲精品粉嫩美女一区| 国产精品精品国产色婷婷| 国产日韩欧美在线精品| 国产成人91sexporn| 内地一区二区视频在线| 亚洲精品成人久久久久久| 韩国av在线不卡| 亚洲精品自拍成人| 麻豆成人午夜福利视频| 变态另类成人亚洲欧美熟女| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 亚洲无线在线观看| 免费观看精品视频网站| 国产精品,欧美在线| 内地一区二区视频在线| 精品人妻视频免费看| 99热6这里只有精品| 99久久久亚洲精品蜜臀av| 亚洲欧美日韩高清专用| 你懂的网址亚洲精品在线观看 | 国产一区二区三区在线臀色熟女| 欧美高清成人免费视频www| 一级毛片电影观看 | 在现免费观看毛片| 黄色日韩在线| 岛国在线免费视频观看| 欧美人与善性xxx| 国产精品精品国产色婷婷| 精品久久久久久久人妻蜜臀av| 亚洲精品粉嫩美女一区| 免费人成在线观看视频色| 国产成年人精品一区二区| 国产在视频线在精品| 美女国产视频在线观看| 亚洲精品乱码久久久v下载方式| av国产免费在线观看| 麻豆av噜噜一区二区三区| 亚洲精品久久久久久婷婷小说 | 亚洲18禁久久av| 国产综合懂色| 国产精品,欧美在线| 99久久人妻综合| 菩萨蛮人人尽说江南好唐韦庄 | 欧美激情在线99| 免费看光身美女| 免费观看人在逋| 国产成人一区二区在线| 超碰av人人做人人爽久久| 熟妇人妻久久中文字幕3abv| 日本免费a在线| 国产探花极品一区二区| 国产黄色小视频在线观看| 成人高潮视频无遮挡免费网站| 日韩成人av中文字幕在线观看| 麻豆成人av视频| 亚洲av第一区精品v没综合| 久久久久国产网址| 精品免费久久久久久久清纯| 国产成人一区二区在线| 亚洲av第一区精品v没综合| 久久鲁丝午夜福利片| av在线播放精品| 99久久九九国产精品国产免费| 天天躁日日操中文字幕| 在线观看66精品国产| 在线观看午夜福利视频| 欧美日韩一区二区视频在线观看视频在线 | 在线播放无遮挡| 床上黄色一级片| 欧美高清成人免费视频www| 最近视频中文字幕2019在线8| 中国美白少妇内射xxxbb| 欧美日韩乱码在线| 岛国毛片在线播放| 少妇猛男粗大的猛烈进出视频 | 白带黄色成豆腐渣| 久久午夜福利片| 国产精品久久久久久久电影| 日本一二三区视频观看| 亚洲中文字幕一区二区三区有码在线看| 国产亚洲精品久久久com| 身体一侧抽搐| 欧美xxxx性猛交bbbb|