• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of lower-boundary climate factors contributing to the summer heatwave frequency over eastern Europe using a machine-learning model

    2022-09-03 09:04:54RuizhiZhangXiaojingJiaQifengQian

    Ruizhi Zhang ,Xiaojing Jia,* ,Qifeng Qian

    a Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou, China

    b Zhejiang Institute of Meteorological Science (Chinese Academy of Meteorological Sciences, Zhejiang Branch), Hangzhou, China

    Keywords:Heatwave frequency Eastern Europe Summer Machine learning

    ABSTRACT A machine-learning (ML) model,the light gradient boosting machine (LightGBM),was constructed to simulate the variation in the summer (June–July–August) heatwave frequency (HWF) over eastern Europe (HWF_EUR)and to analyze the contributions of various lower-boundary climate factors to the HWF_EUR variation.The examined lower-boundary climate factors were those that may contribute to the HWF_EUR variation–namely,the sea surface temperature,soil moisture,snow-cover extent,and sea-ice concentration from the simultaneous summer,preceding spring,and winter.These selected climate factors were significantly correlated to the summer HWF_EUR variation and were used to construct the ML model.Both the hindcast simulation of HWF_EUR for the period 1981–2020 and its real-time simulation for the period 2011–2020,which used the constructed ML model,were investigated.To evaluate the contributions of the climate factors,various model experiments using different combinations of the climate factors were examined and compared.The results indicated that the LightGBM model had comparatively good performance in simulating the HWF_EUR variation.The sea surface temperature made more contributions to the ML model simulation than the other climate factors.Further examination showed that the best ML simulation was that which used the climate factors in the preceding winter,suggesting that the lower-boundary conditions in the preceding winter may be critical in forecasting the summer HWF_EUR variation.

    1.Introduction

    In recent decades,many European areas have experienced severe and frequent extreme temperature events under global warming(Sch?r et al.,2004 ;García-Herrera et al.,2010 ;Yang et al.,2021).As heat waves are dangerous to human health,the environment,and ecosystems,and can cause substantial economic losses,it is essential to understand the variation in,and dynamics of,heatwave events.Improving the ability of climate models to predict heatwave events is critical to contingency planning and decision making (Coumou and Rahmstorf,2012 ;Perkins,2015 ;Wulffand Domeisen,2019).

    Previous work has revealed that heatwave events are generally concurrent anomalous high-pressure systems with a long duration that are associated with favorable warm conditions for heat waves (Fischer and Sch?r,2010 ;Pezza et al.,2012 ;Perkins,2015).It has also been demonstrated that many heatwave events in Europe are caused by blockinghigh events over the midlatitudes–for instance,the European heatwave event in 2003 (Feudale and Shukla,2011),the central European and Russian event in 2010 (Grumm,2011),and the heatwave over northwestern Europe in 2018 (Kueh and Lin,2020).Certain lower-boundary conditions have also been revealed to contribute to extreme temperatures through complex feedback mechanisms.These lower-boundary contributors include sea surface temperature (SST),snow cover,soil moisture (SM),and sea ice (Hong and Kalnay,2000 ;Fischer et al.,2007 ;Koster et al.,2009 ;Wu et al.,2012,2013,2016 ;Chen and Zhou,2018 ;Wu and Francis,2019).

    Currently,climate models generally have limited ability in capturing the characteristics of extreme temperature events.Some real-time climate models fail to predict heat waves owing to misrepresentation of the feedback process between the atmosphere and lower-boundary fields (Koster et al.,2011 ;Perkins,2015 ;Quandt et al.,2017 ;Ford et al.,2018).Nevertheless,recent work has shown that while it is difficult to precisely simulate extreme temperature events because of cognitive limitations,it may be possible to capture the variation in heatwave frequency (HWF) (Zhang et al.,2022).Recently,benefiting from the rapid development in computing technology,a number of machine-learning(ML) models and techniques have been applied in climate research(Badr et al.,2014 ;Ham et al.,2019 ;Hwang et al.,2019 ;Qian et al.,2020,2021).In this respect,several studies have demonstrated that ML models possess comparable forecasting skills to,or in some cases even outperform,dynamic numerical models (Qian et al.,2020,2021 ;Ham et al.,2021).However,whether ML models can be applied to simulate some of the characteristics of extreme temperature events remains unclear.

    In this work,an ML model,the light gradient boosting machine(LightGBM) model,was applied to simulate the variation in summer HWF in eastern Europe (HWF_EUR) during the period 1981–2020.The ML model’s performance was assessed and the contributions of various lower-boundary climate factors used in the ML model were analyzed.

    2.Data,methods,and model

    The daily maximum 2-m temperature data used in this study were retrieved from the ERA5-Land hourly dataset.This reanalysis dataset covers the period from 1979 to the present day with a global horizontal coverage at a resolution of 0.1°×0.1°(Mu?oz Sabater,2019).

    The monthly mean SST and sea ice concentration (SIC) data were obtained from the Met Office Hadley Center (Rayner et al.,2003).These datasets (resolution: 1°×1°) cover the period from 1870 to the present day.

    The snow-cover extent (SCE) dataset was obtained from Rutgers University Global Snow Laboratory (Robinson and Estilow,2012).It has a temporal range from October 1966 to the present day,and a spatial resolution of 25 km.The SCE data were transformed into monthly mean data to facilitate the analysis in the current work.

    The monthly mean SM dataset,with a resolution of 1.875° × 1.9°covering the period from 1979 to the present day,was obtained from the NCEP Reanalysis II datasets (Kanamitsu et al.,2002).

    The LightGBM model,which has been shown in previous work to perform reasonably well (e.g.,Song et al.,2019 ;Qian et al.,2021),was applied in this study to simulate the summer HWF_EUR.In addition,LightGBM is a tree-ensemble ML model with high operational efficiency and scalability (Ke et al.,2017),and therefore we were able to analyze the relative contributions of the climate factors used in the model simulation.Based on the algorithm proposed by Breiman et al.(1984),the contributions of the climate factors could be calculated.Moreover,we also utilized a linear regression (LR) model to conduct a similar simulation and compared its results to the LightGBM model.

    In the present work,the summer HWF of a grid point denotes the total days when the daily maximum 2-m temperature (Tmax) exceeds the criterion of heat waves for at least six consecutive days during June–July–August (JJA).The criterion of heat waves is the 90th percentile ofTmax on each calendar day,calculated with a centered 15-day window for each calendar day.More details can be found in Perkins and Alexander (2013).

    Following Qian et al.(2020,2021),the simulation method utilized a seasonal forecast scheme with an empirical orthogonal function (EOF)algorithm.The core algorithm is expressed as

    wherexandydenote the spatial coordinate andtrepresents the time.EOFiand PCirepresent the pattern and time series of theith EOF of HWF_EUR,andnis the number of EOF modes.In this work,only EOF1 and PC1 were analyzed.They were used in the ML model to perform the HWF_EUR simulation.The HWF_EUR simulation was built according to Eq.(1) with the observational EOF1 and the model-simulated PC1.

    Fig.1.(a) The standard deviation (contours;units: days) and climatological mean (shading;units: days) of HWF_EUR for the period 1981–2020.The framed area in (46°–62°N,28°–60°E).(b) The EOF1 of HWF_EUR (shading;units: days)calculated by regression against PC1 for 1981–2020.The dotted areas denote the HWF anomalies significant at the 0.05 level.

    3.Results and discussion

    3.1. Summer HWF over eastern Europe

    The standard deviation and climatological mean of HWF_EUR were calculated and depicted in Fig.1 (a).High HWF values,as well as high variability,can be observed over eastern Europe (HWF_EUR;46°–62°N,28°–60°E),which is denoted by the blue box in Fig.1 (a).The EOF1 of HWF_EUR for 1981–2020 accounts for 31.8% of the total HWF variance and passes the separation criteria of North et al.(1982).The spatial structure of EOF1 (Fig.1 (b)) also shows significant anomalous positive HWF over eastern Europe,consistent with Fig.1 (a).PC1 is closely correlated to an area-averaged HWF_EUR index,which is significant at the 0.01 level (not shown).

    3.2. Hindcast simulation of HWF_EUR

    To test the feasibility of the ML simulation experiment,hindcast experiments for PC1 were run for the period from 1981 to 2020.The variables from the lower-boundary conditions that may impact the variation in HWF_EUR,i.e.,SM,SST,SCE,and SIC,in three seasons,i.e.,the simultaneous summer (JJA),preceding spring (March–April–May,MAM),and winter (December–January–February,DJF) were examined.The climate factors selected to build the ML model were calculated by standardizing and area-averaging the lower-boundary variables over the specific regions where they were significantly correlated with PC1.Details regarding the lower-boundary variables and selected areas to construct the climate factors are provided in Figs.S1–S4.

    Cross-validation with a grid search scheme was performed to determine the hyper-parameter of the LightGBM model.A five-fold crossvalidation method was adopted to evaluate the model,and the averaged RMSE was the metric used to assess the performance of the model.Fig.2 shows the simulation of PC1 in the LR and LightGBM models for the period 1981–2020.The take-10-years-out method was used in the simulation.The simulated PC1 from LightGBM correlated significantly with that in the observation,with a temporal correlation coefficient (TCC) of 0.36,significant at the 0.05 level,and was higher than that of the LR model,which had a TCC of 0.31.Then,the simulated PC1 and the EOF1 from the observations were employed to build the HWF_ERU for the LR (Fig.2 (b)) and LightGBM(Fig.2 (c)) models.Results showed that the LightGBM and LR model simulations were reasonably well matched the observations,with significant TCCs appearing over eastern Europe.Comparatively,the Light-GBM model performed better than the LR model,especially over the key region of HWF_EUR.Take-1-year-out and take-4-years-out hindcast experiments were also conducted,and the TCC maps of the same model with different take-out windows were consistent in general(not shown).

    Fig.2.(a) The standardized PC1 in the observations (black line) and the hindcast PC1 from the LR (blue line) and LightGBM (red line) model.(b,c) The TCCs between the observed and simulated HWF_EUR in the (b) LR and (c) LightGBM model for the period 1981–2020.Areas with TCCs significant at the 0.1 level are dotted.

    3.3. Real ‐time simulation of HWF_EUR

    Real-time simulation experiments were conducted with the same method as the hindcast experiments,but the PC1 and corresponding EOF1 were obtained from data for the period 1981–2010.The variables and regions used to construct the climate factors were those that were significantly correlated with PC1 for the same period.Details and a description of the climate factors are listed in Tables S1–S4,and the variables and regions selected are depicted in Figs.S5–S8.To mimic real-time simulation,the LightGBM models were trained with climate factors from 1981 to 2010 and simulated the variation in HWF_EUR for the period 2011–2020.

    Fig.3 (a) and Fig.3 (b) depict the TCCs between the observed and simulated HWF_EUR from the LR and LightGBM models,respectively.It is shown that the real-time simulation result of the LightGBM model with all potential climate factors clearly outperformed that of the LR model,especially over the northern Black Sea where the TCC skill was negative for the LR model.

    To evaluate the effects of these selected climate factors,several additional real-time simulation experiments using only some of the climate factors were conducted.The TCC maps of model experiments with single-field climate factors,i.e.,SST (Fig.3 (c)),SCE (Fig.3 (d)),and SM(Fig.3 (e)),in all three seasons,show positive TCCs over most regions of eastern Europe,while negative TCCs appear in the model experiment with SIC as the single factor (Fig.3 (f)).The results indicate that SST,SCE,and SM make positive contributions to the model skill in the experiments.The model experiments with climate factors in a single season,i.e.,the preceding DJF (Fig.3 (g)),preceding MAM (Fig.3 (h)),and JJA(Fig.3 (i)),show that the experiment with climate factors in the preceding DJF exhibits better simulation skill than that of MAM and JJA.

    Fig.3.(a,b) The TCCs between the observed and (a) LR-and (b) LightGBM-simulated HWF_EUR using all climate predictors for the period 2011–2020.(c–f) As in(b) but with only (c) SST,(d) SCE,(e) SM,and (f) SIC as the factor in the three seasons.(g–i) The TCCs of LightGBM using all climate factors in a single season: (g)the preceding DJF;(h) the preceding MAM;and (i) JJA.Areas with TCCs significant at the 0.1 level are dotted.

    As LightGBM is a tree-ensemble model,the relative contributions to the model simulation experiments of each climate factor can be evaluated.Fig.4 (a) demonstrates the contributions of the top 10 climate factors to the LightGBM model simulation with all climate factors.SST factors account for 70% of the top 10 climate factors,while SM and SCE factors account for 20% and 10%,respectively,consistent with Fig.3 (c–f),which indicates that SST factors make relatively more contributions to the LightGBM model experiment than other factors.Similarly,SST is the factor that contributes the most to the model simulation with climate factors in the preceding winter (Fig.4 (b)).

    4.Discussion and conclusions

    Considering the poor performance of current climate models in simulating heatwave events,ML models may be better than traditional climate models for capturing the nonlinear relationships between factors and such events.Therefore,in this study,an ML model,LightGBM,was used to simulate the variation in summer HWF_EUR for the period 2011–2020.The relative contributions of various climate factors that may contribute to the HWF_EUR variation,including SST,SCE,SM,and SIC,were analyzed in three seasons,i.e.,the simultaneous summer,preceding spring,and winter.

    Results showed that the LightGBM model had good skill in simulating the variation in summer HWF_EUR,and obviously outperformed the LR model.The SST,SCE,and SM factors contributed more than the SIC factor in the model experiments.Among them,SST played the most critical role in the ML model simulation compared to the other climate factors.In addition,model experiments using climate factors from the preceding DJF showed the best skill compared to the other two seasons,indicating that the lower-boundary conditions in the preceding DJF may be vital impact factors for the summer HWF_EUR variation and may contribute to the forecasting of summer HWF_EUR variation.Note that the SM may face uncertainties with different datasets.For example,the SM data from NCEP and ERA5-Land may bear some inconsistencies,especially in North America,and therefore the interpretation of the contribution of SM should be taken with caution and needs to be further examined in the future.

    Fig.4.Contributions of the top 10 climate factors (units: %) to the simulation of PC1 in LightGBM with all climate factors: (a) in all three seasons;(b) in DJF only.

    Funding

    This research was supported by the National Natural Science Foundation of China [grant number 42075050 ].

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi: 10.1016/j.aosl.2022.100256.

    欧美丝袜亚洲另类| 在线观看免费日韩欧美大片 | 国产永久视频网站| 亚洲久久久国产精品| 亚洲av中文字字幕乱码综合| 高清在线视频一区二区三区| 中文字幕亚洲精品专区| 国产 精品1| 大香蕉97超碰在线| 一本久久精品| 一级毛片我不卡| 性色avwww在线观看| 国模一区二区三区四区视频| 狂野欧美激情性xxxx在线观看| 搡女人真爽免费视频火全软件| 九九久久精品国产亚洲av麻豆| 国内少妇人妻偷人精品xxx网站| 日本免费在线观看一区| 亚洲精华国产精华液的使用体验| 中文资源天堂在线| 欧美老熟妇乱子伦牲交| 小蜜桃在线观看免费完整版高清| 国产日韩欧美在线精品| 亚洲av成人精品一区久久| 国产久久久一区二区三区| 日日啪夜夜爽| 高清毛片免费看| 亚洲国产精品国产精品| 最近最新中文字幕大全电影3| 国产色爽女视频免费观看| 亚洲精品乱码久久久v下载方式| 亚洲av在线观看美女高潮| 欧美日韩亚洲高清精品| 国产欧美日韩一区二区三区在线 | 看非洲黑人一级黄片| 日韩精品有码人妻一区| 亚洲国产av新网站| 精品一区二区免费观看| 国产一区亚洲一区在线观看| 各种免费的搞黄视频| 我的女老师完整版在线观看| 丰满人妻一区二区三区视频av| 亚洲精品日韩在线中文字幕| 精品国产一区二区三区久久久樱花 | 日本av手机在线免费观看| 偷拍熟女少妇极品色| 国产黄片视频在线免费观看| 国产高清有码在线观看视频| 免费观看无遮挡的男女| 卡戴珊不雅视频在线播放| 亚洲aⅴ乱码一区二区在线播放| 丰满少妇做爰视频| 插阴视频在线观看视频| 精品久久久精品久久久| 午夜老司机福利剧场| 欧美日韩国产mv在线观看视频 | 亚洲色图av天堂| 久久女婷五月综合色啪小说| 黑丝袜美女国产一区| 夜夜看夜夜爽夜夜摸| 国产免费福利视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 久久精品国产亚洲av涩爱| 欧美+日韩+精品| 伦精品一区二区三区| 国产欧美亚洲国产| 最近中文字幕2019免费版| 老司机影院毛片| 美女脱内裤让男人舔精品视频| 精品国产露脸久久av麻豆| 亚洲欧美精品自产自拍| 22中文网久久字幕| 国产永久视频网站| 欧美日韩视频精品一区| 国产乱人视频| 国产男女超爽视频在线观看| 99视频精品全部免费 在线| 夫妻性生交免费视频一级片| 人体艺术视频欧美日本| 男的添女的下面高潮视频| 久久99蜜桃精品久久| 少妇丰满av| 高清日韩中文字幕在线| 日韩三级伦理在线观看| 欧美少妇被猛烈插入视频| 亚洲精品国产成人久久av| 观看美女的网站| 超碰av人人做人人爽久久| 亚洲aⅴ乱码一区二区在线播放| 久久国内精品自在自线图片| 色婷婷久久久亚洲欧美| 人妻系列 视频| 久久99热6这里只有精品| 免费看日本二区| av线在线观看网站| 老女人水多毛片| 少妇的逼水好多| 五月开心婷婷网| 久久国产精品大桥未久av | 午夜免费男女啪啪视频观看| 国产成人freesex在线| 最近中文字幕2019免费版| 日韩一本色道免费dvd| 自拍偷自拍亚洲精品老妇| 精品国产三级普通话版| 日韩大片免费观看网站| 精品久久久久久久久av| 亚洲色图综合在线观看| 精品久久久精品久久久| 午夜福利影视在线免费观看| 亚洲欧美日韩另类电影网站 | 欧美+日韩+精品| 伊人久久精品亚洲午夜| 黑丝袜美女国产一区| 日本-黄色视频高清免费观看| 男人舔奶头视频| 久久精品久久久久久噜噜老黄| 亚洲精品乱久久久久久| 一级二级三级毛片免费看| 亚洲国产最新在线播放| 久久久久网色| 干丝袜人妻中文字幕| tube8黄色片| 国产精品不卡视频一区二区| 看十八女毛片水多多多| 日本免费在线观看一区| 在线观看免费日韩欧美大片 | 亚洲精品第二区| 狠狠精品人妻久久久久久综合| 丝袜喷水一区| 国产精品不卡视频一区二区| 插逼视频在线观看| av播播在线观看一区| 一边亲一边摸免费视频| 国产高清有码在线观看视频| 在线 av 中文字幕| 亚洲精品成人av观看孕妇| 亚洲不卡免费看| 亚洲第一av免费看| 日韩成人伦理影院| 精品酒店卫生间| 欧美日韩一区二区视频在线观看视频在线| 日韩欧美 国产精品| 九草在线视频观看| 日本免费在线观看一区| 久久久亚洲精品成人影院| 美女主播在线视频| 大片电影免费在线观看免费| 综合色丁香网| 乱系列少妇在线播放| 久久精品国产亚洲av天美| 国产深夜福利视频在线观看| 最近手机中文字幕大全| 日日啪夜夜爽| 香蕉精品网在线| 国产av一区二区精品久久 | 国产精品伦人一区二区| 蜜桃亚洲精品一区二区三区| 少妇精品久久久久久久| 亚洲在久久综合| av在线蜜桃| 免费播放大片免费观看视频在线观看| 夫妻午夜视频| 毛片一级片免费看久久久久| 在现免费观看毛片| 香蕉精品网在线| 国产精品国产av在线观看| 国产男女超爽视频在线观看| 国产极品天堂在线| 97超视频在线观看视频| 少妇裸体淫交视频免费看高清| av女优亚洲男人天堂| 亚洲国产成人一精品久久久| 黄色欧美视频在线观看| 女性生殖器流出的白浆| 亚洲人成网站高清观看| 少妇的逼水好多| 欧美日韩一区二区视频在线观看视频在线| 国产精品成人在线| 日韩大片免费观看网站| 天美传媒精品一区二区| 亚洲欧美一区二区三区国产| 久久久久久久久久久丰满| 一个人看视频在线观看www免费| 寂寞人妻少妇视频99o| 国产精品偷伦视频观看了| 一本—道久久a久久精品蜜桃钙片| 欧美日韩视频高清一区二区三区二| 精品一区二区三区视频在线| 亚洲精品乱码久久久v下载方式| 欧美日本视频| 国产精品一区二区性色av| 美女主播在线视频| 97在线视频观看| 2021少妇久久久久久久久久久| 久久久久久久大尺度免费视频| 精品视频人人做人人爽| 最近中文字幕2019免费版| 日韩中字成人| 亚洲精品国产成人久久av| 亚洲av免费高清在线观看| 99热这里只有精品一区| 日韩成人伦理影院| 日韩欧美 国产精品| 久久久成人免费电影| 18禁在线播放成人免费| 人妻少妇偷人精品九色| 久久精品国产a三级三级三级| 国产成人一区二区在线| 亚洲精品亚洲一区二区| 国产精品人妻久久久影院| 午夜免费鲁丝| 少妇熟女欧美另类| 青春草视频在线免费观看| 看十八女毛片水多多多| 哪个播放器可以免费观看大片| 久久久精品94久久精品| 婷婷色综合www| 香蕉精品网在线| 一个人看视频在线观看www免费| 只有这里有精品99| 日韩精品有码人妻一区| 精品一区在线观看国产| 亚洲精品日本国产第一区| 精品亚洲成国产av| 国产av精品麻豆| 黄片wwwwww| 亚洲国产精品一区三区| 午夜激情福利司机影院| 青春草视频在线免费观看| 国产精品久久久久久久电影| 久久精品国产自在天天线| 超碰av人人做人人爽久久| 国产成人aa在线观看| 大又大粗又爽又黄少妇毛片口| 男女免费视频国产| 亚洲美女视频黄频| 免费观看性生交大片5| 一级黄片播放器| 久热这里只有精品99| 亚洲第一区二区三区不卡| 亚洲国产精品专区欧美| 久久97久久精品| 午夜精品国产一区二区电影| 亚洲国产日韩一区二区| 久久精品国产自在天天线| 日本av手机在线免费观看| 欧美 日韩 精品 国产| 日日摸夜夜添夜夜添av毛片| 中文天堂在线官网| 97在线视频观看| a 毛片基地| 一级毛片aaaaaa免费看小| 久久久久久九九精品二区国产| 最近最新中文字幕免费大全7| 18禁裸乳无遮挡免费网站照片| 丝袜喷水一区| 精品国产露脸久久av麻豆| 精品一区二区免费观看| 啦啦啦视频在线资源免费观看| 国产欧美日韩一区二区三区在线 | 国产视频首页在线观看| 精品一区二区三区视频在线| 久久精品熟女亚洲av麻豆精品| 国产免费福利视频在线观看| 久久久国产一区二区| 在线免费十八禁| 免费人成在线观看视频色| 人妻夜夜爽99麻豆av| 我的女老师完整版在线观看| 丰满少妇做爰视频| 精品亚洲成国产av| 久久国产精品大桥未久av | 日本vs欧美在线观看视频 | 亚洲国产最新在线播放| 99久久人妻综合| 亚洲色图av天堂| 日韩制服骚丝袜av| 国产免费一区二区三区四区乱码| 中文字幕亚洲精品专区| 国产精品.久久久| 一区二区av电影网| 美女福利国产在线 | 久久精品国产亚洲av涩爱| av国产免费在线观看| 欧美zozozo另类| 久久久久久人妻| 五月开心婷婷网| 精品一区二区免费观看| 成人无遮挡网站| 国产色爽女视频免费观看| av.在线天堂| 啦啦啦在线观看免费高清www| 久久久色成人| 免费人成在线观看视频色| 日韩av不卡免费在线播放| 欧美另类一区| 精品少妇久久久久久888优播| 干丝袜人妻中文字幕| 人妻制服诱惑在线中文字幕| 免费观看a级毛片全部| 欧美成人a在线观看| 新久久久久国产一级毛片| 亚洲av二区三区四区| 亚州av有码| 免费观看的影片在线观看| 少妇精品久久久久久久| 91久久精品电影网| 九色成人免费人妻av| 最近的中文字幕免费完整| 91狼人影院| 在线观看一区二区三区| 亚洲综合精品二区| 精品亚洲乱码少妇综合久久| 一级毛片黄色毛片免费观看视频| 精品午夜福利在线看| 女性被躁到高潮视频| 91精品一卡2卡3卡4卡| 在线观看一区二区三区| 国内精品宾馆在线| 亚洲av中文字字幕乱码综合| 欧美精品一区二区免费开放| 91精品国产国语对白视频| tube8黄色片| 亚洲一区二区三区欧美精品| 在线观看美女被高潮喷水网站| 高清毛片免费看| 欧美三级亚洲精品| 亚洲国产欧美人成| 青春草国产在线视频| 国产成人精品福利久久| 精品午夜福利在线看| 韩国av在线不卡| 国产在线免费精品| 国产欧美另类精品又又久久亚洲欧美| av女优亚洲男人天堂| 99国产精品免费福利视频| 菩萨蛮人人尽说江南好唐韦庄| 国产 精品1| 国产精品99久久久久久久久| 欧美bdsm另类| 精品一区二区三区视频在线| 成人美女网站在线观看视频| 亚洲av中文av极速乱| 久久 成人 亚洲| 一个人免费看片子| 日日啪夜夜撸| av国产精品久久久久影院| av黄色大香蕉| 午夜福利高清视频| 国产精品欧美亚洲77777| 黄色视频在线播放观看不卡| 99国产精品免费福利视频| 一区二区av电影网| 毛片女人毛片| 亚洲精品一二三| 最黄视频免费看| 老司机影院成人| 99国产精品免费福利视频| 亚洲av男天堂| 国产 精品1| 国产一区二区三区综合在线观看 | 97超视频在线观看视频| 国产美女午夜福利| 99re6热这里在线精品视频| 菩萨蛮人人尽说江南好唐韦庄| 男人爽女人下面视频在线观看| 91狼人影院| 中国三级夫妇交换| 99热这里只有是精品在线观看| 免费大片黄手机在线观看| 色吧在线观看| 国产成人aa在线观看| 大香蕉久久网| 日韩中文字幕视频在线看片 | 边亲边吃奶的免费视频| 精品久久国产蜜桃| 久久久久久久国产电影| 男女免费视频国产| 免费大片18禁| 久久99热6这里只有精品| 亚洲成人av在线免费| 日韩强制内射视频| 亚洲不卡免费看| 国产黄色免费在线视频| 久久韩国三级中文字幕| 日韩电影二区| 又大又黄又爽视频免费| 下体分泌物呈黄色| 国产欧美亚洲国产| 久久人人爽人人爽人人片va| 欧美成人精品欧美一级黄| 永久网站在线| 啦啦啦中文免费视频观看日本| 国产日韩欧美在线精品| 精华霜和精华液先用哪个| 王馨瑶露胸无遮挡在线观看| 赤兔流量卡办理| 少妇人妻久久综合中文| 少妇人妻精品综合一区二区| 亚洲最大成人中文| 国产男人的电影天堂91| 极品教师在线视频| 亚洲第一区二区三区不卡| 在线观看美女被高潮喷水网站| 精品久久久噜噜| 国产真实伦视频高清在线观看| 国产亚洲精品久久久com| 亚洲在久久综合| 久久人人爽人人爽人人片va| 欧美 日韩 精品 国产| 男女免费视频国产| 国产黄片视频在线免费观看| 人妻 亚洲 视频| 美女国产视频在线观看| 麻豆乱淫一区二区| 熟女电影av网| 校园人妻丝袜中文字幕| 久久婷婷青草| 菩萨蛮人人尽说江南好唐韦庄| 最近2019中文字幕mv第一页| av福利片在线观看| 舔av片在线| 最近最新中文字幕大全电影3| 自拍偷自拍亚洲精品老妇| 亚洲av免费高清在线观看| 国产一区二区三区综合在线观看 | 亚洲国产精品一区三区| tube8黄色片| 草草在线视频免费看| 成年免费大片在线观看| 亚洲精品aⅴ在线观看| 亚洲成人手机| 91狼人影院| 亚洲内射少妇av| 精品人妻一区二区三区麻豆| 亚洲精品,欧美精品| 女性被躁到高潮视频| 成人免费观看视频高清| 成人18禁高潮啪啪吃奶动态图 | 97精品久久久久久久久久精品| 日本免费在线观看一区| 偷拍熟女少妇极品色| 精品视频人人做人人爽| 久久久久精品久久久久真实原创| 国产 精品1| 全区人妻精品视频| 青青草视频在线视频观看| 99久久精品一区二区三区| 我的女老师完整版在线观看| 如何舔出高潮| 国产亚洲5aaaaa淫片| av女优亚洲男人天堂| 人体艺术视频欧美日本| 91在线精品国自产拍蜜月| 国产av一区二区精品久久 | 性色avwww在线观看| 亚洲精品成人av观看孕妇| 免费观看av网站的网址| 卡戴珊不雅视频在线播放| 中国美白少妇内射xxxbb| 精品久久久久久久久av| 少妇精品久久久久久久| 最新中文字幕久久久久| 五月天丁香电影| 国产精品.久久久| 少妇裸体淫交视频免费看高清| 成年女人在线观看亚洲视频| 精品久久久久久电影网| 极品教师在线视频| 国产黄频视频在线观看| 国产精品99久久99久久久不卡 | 一级a做视频免费观看| 久久精品国产鲁丝片午夜精品| 少妇人妻一区二区三区视频| 国产淫片久久久久久久久| 波野结衣二区三区在线| 一级毛片久久久久久久久女| 男人添女人高潮全过程视频| 在线观看一区二区三区| 免费看av在线观看网站| 欧美精品一区二区大全| 插阴视频在线观看视频| 少妇高潮的动态图| 久久人人爽av亚洲精品天堂 | 久久人人爽人人爽人人片va| 观看免费一级毛片| 亚洲怡红院男人天堂| 女的被弄到高潮叫床怎么办| 91午夜精品亚洲一区二区三区| 一本一本综合久久| 熟女电影av网| 欧美xxxx黑人xx丫x性爽| 亚洲色图av天堂| 一二三四中文在线观看免费高清| 色5月婷婷丁香| 国产亚洲最大av| h视频一区二区三区| 亚洲自偷自拍三级| 国产成人精品一,二区| 十分钟在线观看高清视频www | 国产精品久久久久成人av| 成人亚洲欧美一区二区av| 国产免费视频播放在线视频| 内射极品少妇av片p| 国产精品一区二区在线不卡| 国产伦精品一区二区三区四那| 一级片'在线观看视频| 在线观看一区二区三区激情| 精品久久久久久电影网| 国产深夜福利视频在线观看| 一区二区av电影网| 亚洲精品乱码久久久v下载方式| 精品久久久久久久久亚洲| 精品99又大又爽又粗少妇毛片| 最黄视频免费看| 女的被弄到高潮叫床怎么办| 精华霜和精华液先用哪个| 男人狂女人下面高潮的视频| 国产精品福利在线免费观看| 国产精品一二三区在线看| 日韩av在线免费看完整版不卡| 亚洲四区av| 国产高潮美女av| 国产精品久久久久久精品电影小说 | av在线蜜桃| 亚洲国产色片| 两个人的视频大全免费| 简卡轻食公司| 久久久亚洲精品成人影院| 乱系列少妇在线播放| 欧美日韩一区二区视频在线观看视频在线| 一区二区三区免费毛片| 成人亚洲欧美一区二区av| 18禁裸乳无遮挡免费网站照片| 人人妻人人澡人人爽人人夜夜| 亚洲高清免费不卡视频| 国产精品.久久久| 激情五月婷婷亚洲| 老师上课跳d突然被开到最大视频| 日韩制服骚丝袜av| 久久久久久人妻| 九九久久精品国产亚洲av麻豆| 亚洲av在线观看美女高潮| 国产亚洲5aaaaa淫片| 国产精品久久久久成人av| 亚洲第一区二区三区不卡| 能在线免费看毛片的网站| 久久亚洲国产成人精品v| 黑人猛操日本美女一级片| 人人妻人人看人人澡| 成人18禁高潮啪啪吃奶动态图 | 99久久综合免费| 免费看不卡的av| 国国产精品蜜臀av免费| 日韩欧美一区视频在线观看 | 18禁在线播放成人免费| 欧美人与善性xxx| a级毛片免费高清观看在线播放| 青春草视频在线免费观看| 精品熟女少妇av免费看| 一级二级三级毛片免费看| 人人妻人人看人人澡| 我要看日韩黄色一级片| 蜜桃在线观看..| 在线观看美女被高潮喷水网站| 国产探花极品一区二区| 美女福利国产在线 | 亚洲熟女精品中文字幕| 建设人人有责人人尽责人人享有的 | 欧美少妇被猛烈插入视频| 国产精品一区www在线观看| 制服丝袜香蕉在线| 国产 精品1| 亚洲精品日韩在线中文字幕| 性色av一级| 成人黄色视频免费在线看| 成年av动漫网址| 99久久中文字幕三级久久日本| 日本欧美视频一区| 久久久精品94久久精品| 国产成人午夜福利电影在线观看| 美女xxoo啪啪120秒动态图| 精品酒店卫生间| 国产免费一区二区三区四区乱码| 精品熟女少妇av免费看| 成人无遮挡网站| 国产男女超爽视频在线观看| 在现免费观看毛片| 日韩人妻高清精品专区| 美女高潮的动态| 成人国产麻豆网| 老女人水多毛片| 欧美精品国产亚洲| 免费看不卡的av| 视频中文字幕在线观看| 免费大片黄手机在线观看| 精品久久久久久久末码| 夜夜看夜夜爽夜夜摸| 日韩 亚洲 欧美在线| av播播在线观看一区| 九九爱精品视频在线观看| 国产成人免费观看mmmm| 国产免费又黄又爽又色| 国产精品三级大全| 伦精品一区二区三区| 18禁在线无遮挡免费观看视频| 亚洲欧美精品自产自拍| 国产成人aa在线观看| 亚洲欧美精品专区久久| 91精品国产九色| av免费在线看不卡| 久久久精品免费免费高清| 日本av手机在线免费观看| 大陆偷拍与自拍|