• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Response of extreme precipitation to increasing extratropical cyclonic vortex frequency

    2022-09-03 09:04:50JieZhangJiangLiu

    Jie Zhang,Jiang Liu

    Key Laboratory of Meteorological Disaster, Ministry of Education (KLME) /Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology,Nanjing, China

    Keywords:Extratropical cyclonic vortex Quasi-stationary vortex Synoptic-scale transient eddy Extreme precipitation

    ABSTRACT Since the 2000s,extratropical extremes have been more frequent,which are closely related to anomalies of planetary-scale and synoptic-scale systems.This study focuses on a key synoptic system,the extratropical cyclonic vortex (ECV) over land,to investigate its relations with extreme precipitation.It was found that ECVs have been more active post-2000,which has induced more extreme precipitation,and such variation is projected to persist along with increasing temperature within 1.5°C of global warming.An enhanced quasi-stationary vortex(QSV) primarily contributes to the ECV,rather than inactive synoptic-scale transient eddies (STEs).Inactive STEs respond to a decline in baroclinicity due to the tendency of the homogeneous temperature gradient.However,such conditions are helpful to widening the westerly jet belt,favoring strong dynamic processes of quasi-resonant amplification and interaction of STEs with the quasi-stationary wave,and the result favors an increasing frequency and persistence of QSVs,contributing to extreme precipitation.

    1.Introduction

    Since the beginning of the 21st century,extreme weather and climate events have occurred frequently in boreal summer in the Northern Hemisphere (Coumou and Rahmstorf,2012 ;Zhang et al.,2019).Besides the serious temperature extremes such as heatwaves that have frequently occured in North America (2011,2014,2016,and 2021),Europe (2003,2019,2020,and 2021),Russia,and Japan (2010)(Stott et al.,2004 ;Hong et al.,2011 ;Johnson et al.,2018),serious drought/flood extremes have also occurred in Europe (2016/17)(García-Herrera et al.,2019) and China (2009/10,2012,2016,and 2021).In addition,strong convective thunderstorms,serious gales and hail were frequent in China in 2021.In August 2020,heatwaves with temperatures higher than 44°C occurred in western Europe,while extreme floods resulted in 28 fatalities in Korea,and frequent floods,hailstorms,thunder,and lightning frequently hit northern China.Frequent extremes and strong convection have caused considerable damage worldwide.Thus,the related circulations need to be identified for weather forecasting and hazard prevention,especially in those regions without sufficient adaptation strategies.

    Extratropical extremes are directly related to synoptic systems including extratropical vortex anomalies,blocking,etc.,and they overlap and interact with quasi-stationary waves and planetary-scale transient waves.For instance,Eurasian heatwaves are often produced under anomalous circulations characterized by an anticyclonic vortex,persistent blocking (Schneidereit et al.,2012 ;Matsueda,2011),and weakening of the zonal mean jets (Orsolini and Nikulin,2006).Apart from the predominant effect of large-scale zonal winds,the extratropical anticyclonic vortex is another significant contributor to the formation and maintenance of blockings (Shutts,1983).In addition,most extratropical floods are directly related to an extratropical cyclonic vortex (ECV) anomaly,including a quasi-stationary vortex (QSV) and synoptic-scale transient eddy (STE).Recent studies suggest that STEs could drive Rossby wave breaking (Woollings,2011 ;Novak et al.,2015 ;O’Reilly et al.,2016,2017),thereby blocking the flank of the eddy-driven jet (Pelly and Hoskins,2003 ;Woollings et al.,2008).Ren et al.(2008) suggested that a meridional shift in the cyclonic vortex favors a meridional shift in the subtropical jet over East Asia via the convergence of momentum eddy fluxes (Ren and Zhang,2007 ;Xiang and Yang,2012),developing and organizing mesoscale convective systems (Liang and Wang,1998 ;Park et al.,2015),thereby resulting in intense rainfall.The ECVs over northeastern and northern China,called the Northeast Cold Vortex and North Cold Vortex,respectively(Sun et al.,2002 ;Xie and Bueh,2015),are favorable for rainstorms,thunder,lightning,and hailstorms (Sun et al.,2002 ;Wang et al.,2012 ;Zhao and Sun,2007).The ECV in northern China causes 20%–60% of precipitation in the warm season and 53% (22.4%) of hailstorms (floods)(Zhang et al.,2008).The ECV in the lower and middle levels over central Asia,called the Central Asian Vortex,is one of dominent synoptic systems causing rainstorms,snowstorms,and persistent low temperatures.The Central Asian Vortex caused more than 61% of 116 intense precipitation events from 1970 to 1999 (Yang and Zhang,2014) and two of the heaviest precipitation events.

    ECVs also influence and interact with low-frequency circulation.They tend to reinforce monthly mean wave anomalies (Lau and Nath,1991) through vorticity flux divergence and heat transport.STE feedbacks may be modified into an equivalent barotropic response(Magnusdottir et al.,2004),which in turn reinforces the midlatitude wave pattern,thus,STE heat transport dissipates low-frequency temperature variability (Lin and Derome,1995).Conversely,the tropical vortex over the western North Pacific drives the anomalous meridional Pacific–Japan/East Asian Pacific teleconnection (Ren et al.,2008) and thereby enhances the Northeast Vortex,which also interacts with the ECV in the northeast of China.Because of the significant link between ECVs and precipitation,their development and variation are important for weather forecasts.

    ECV heat flux results from the enhanced baroclinicity (Novak et al.,2015 ;O’Reilly et al.,2017),which is a response to inhomogeneous diabatic heating (Lee,1997) and the internal variability of the atmosphere.Against the background of global warming,significant surface anomalies have occurred,such as Arctic sea-ice loss,reduced Eurasian snow cover (Zhang et al.,2020 ;Wu et al.,2016),and variation in soil moisture (Chen et al.,2019),which result in large daily to subseasonal variation in diabatic heating over extratropical land areas and atmospheric baroclinicity.Such forcings raise some interesting questions: What is the variability of ECVs besing response to land thermal anomalies? How are ECVs related to the frequency of extreme events? What is the likely future trend of ECVs? Observational and model analyses were conducted in the present study to address these questions.

    2.Data and methods

    Typically,STEs are defined as the high-pass 2–8-day Lanczos filtered 500-hPa geopotential height (Lau and Nath,1991).For those cyclonic vortexes without an STE,i.e.,QSVs,they are defined as the cyclonic vortex at 500 hPa with a minimum center and at least one closed contour with an interval of 40 gpm from the center within the range of 10°×7°.The total extreme precipitation is defined as the total precipitation rate being equal to or greater than 10 mm d-1in every grid cell.The statistical significance of the linear regression coefficient,anomaly field,and the correlation between the two series was assessed using a Monte Carlo test.

    Daily circulation data were obtained from ERA-Interim (http://apps.ecmwf.int/datasets/).Daily precipitation was acquired from NOAA’s Climate Prediction Center (CPC) (http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.html).

    The vortices in the future projections of CMIP6 climate models (https://esgf-node.llnl.gov/search/cmip6/) under the emissions scenario with intermediate greenhouse gas emissions (SSP2-4.5) and very high greenhouse gas emissions (SSP5-8.5) were used in this study.A seven-model ensemble was employed.The individual models were:the Beijing Climate Center Climate System Model;the European Consortium Earth System Model;the Institute for Numerical Mathematics Climate Model;the L’Institute Pierre-Simon Laplace Coupled Model;the Max Planck Institute Earth System Model;the Meteorological Research Institute Earth System Model;and the Norwegian Earth System Model.

    3.Results

    3.1. A case of ECV distribution

    In 2020,the cutofflow and blocking high were active,indicating a persistent vortex disturbance,which was accompanied by weather extremes.Fig.1 shows the geopotential height over 500 hPa at 1200 UTC 9 August 2020 and the precipitation larger than 10 mm d-1on 8–9 August 2020 retrieved from CPC daily data.This result reflects extreme and intense precipitation over northern America (NA),southern Europe to the Mediterranean (Eu-Med),Central Asia (CA),and East Asia (EA) on 8–9 August 2020 being similar to the observed result.Reports show that extreme floods resulted in 28 deaths in Korea on 8 August 2020.Subsequently,strong convective weather occurred frequently in northern China on 8–9 August 2020,accompanyied by lasting floods,hailstorms,thunder,and lightning.The 500-hPa geopotential height exhibits significant meridional anomalies such as a cutofflow and blocking high.The ECVs exhibited by the cutofflow have four significant centers over land,and corresponding to those four centers,the precipitation is larger than 10 mm d-1,revealing the close relationship between extreme precipitation,the ECV,and quasi-stationary wave.In addition,the anticyclonic vortex corresponds to a blocking high.The geopotential height distribution exhibits the ECV and blocking high distribution,which strengthens the likelihood of weather extremes.

    This study defines four centers,named NA (35°–60°N,110°–60°W),Eu-Med (35°–45°N,10°–45°E),CA (35°–60°N,50°–80°E),and EA (35°–60°N,110°–150°E),to analyze the statistical characteristics of the ECV.The EA region covers the most active position of the Northeast Cold Vortex (Sun et al.,2002),and the CA region covers the most active position of the Central Asia Vortex (Yang and Zhang,2017),most of which generally result from the development of planetary-scale waves and QSV.However,a highly frequent ECV indicates the significant effect of STEs on the quasi-stationary wave.QSVs and STEs are the significant parts as for the Northeast Cold Vortex and the Central Asia Vortex.The non-uniform QSV distribution possibly relates to the topographic effect,strong surface friction,land–ocean distribution and internal variability(Son et al.,2009).Fig.1 shows the monthly variations of the ECV frequencies over the four defined regions averaged in every 1°×1°grid cell in 1979–2018.The ECV mainly occurs from mid-spring to mid-summer(April to July) in NA and EU-Med;however,it mainly occurs in late spring and summer (May to September) in CA and EA,which follows the active period of the Northeast Cold Vortex (Xie and Bueh,2015).Therefore,the monthly ECV is frequent in spring and summer and is worthy of exploration.

    3.2. Spatial distribution of ECVs in the Northern Hemisphere

    The most frequent positions of ECVs are over the North Atlantic and North Pacific;however,they are also active over land.The latitude–time and time-mean distributions of ECVs over land in JA (July–August) are shown in Fig.2 (a,b),respectively.It is active between 48°N and 65°N,and the ECV frequency is larger than 10 d in JA in 1979–2018;however,it is less than 5 d at latitudes lower than 48°N.It is between 5–10 d at latitudes higher than 65°N.The ECV distribution with time reveals highfrequency ECVs concentrated in the midlatitude belt between 50°N and 60°N,with the largest variability.Given the significant abrupt occurrence of ECVs in 1998,by comparing the ECVs in 1979–1998 with 1999–2018,we find that the ECV frequency increases,which should garner more attention.Fig.2 (c) shows the spatial distribution of the 40-yr vortex frequency for one grid cell,revealing active vortex over the Eurasian than the North American continent.There are four highly frequent ECV regions.Compared with the climatological state,the ECV distribution is active in the wave trough of the climatological quasi-stationary wave,revealing that the meridional development of quasi-stationary waves interacts with the formation of a low cutoffand ECV.Previous studies have suggested that blocking circulation over the Ural Mountains and the Sea of Okhotsk are favorable to wave troughs around Lake Baikal and the Northeast Cold Vortex (Wang and Lupo,2009),a type of mixed STE and QSV.According to upstream effects,blocking circulation over the Ural Mountains favors a wave trough around Balkhash Lake and the Central Asia Vortex (Yang and Zhang,2017).These results show that the formation of the ECV is very similar to the formation of the QSV over the wave trough position.Conversely,when the ECV is imposed on the wave trough,it will deepen the wave trough of the quasi-stationary wave.Previous studies have shown that a negative-phase west Pacific teleconnection pattern (Qu and Huang,2012) favors ECV disturbance and the Northeast Cold Vortex (Xie and Bueh,2015) over the EA region.Tibetan Plateau heating and the Indian monsoon also stimulate a tripole pattern disturbing the ECV over northern China and the Northeast Cold Vortex.

    Corresponding to an active ECV,the total precipitation with a rate greater than or equal to 10 mm d-1is high over the three regions(Fig.2 (d)).The most significant extreme precipitation occurs in EA,followed by NA and EU-Med.The results reveal a close relationship between ECVs with extreme precipitation and other extreme events.Apart from these three regions,there are active ECVs over CA;however,the response of extreme precipitation in CA to ECVs is the lowest.The possible reason is that the 10 mm d-1precipitation threshold is slightly higher for CA,a typical Asian dryland region.Our statistical results show that the 10 mm d-1precipitation threshold is close to the 90th percentile of precipitation.However,for the 6 mm d-1precipitation threshold,being close to the 80th percentile of precipitation,the extreme precipitation shows a good correlation with ECVs in CA.

    3.3. Increasing trend of ECVs and response of extreme precipitation

    To further explore the response of extreme precipitation to ECVs and their variations,Fig.3 shows the temporal distribution of standardized ECV frequency,total precipitation at the 10 mm d-1threshold,and the occurence numbers of QSVs and STEs over NA,EU-Med,and EA.It shows an increasing trend of ECVs over the three regions,with statistical significance at the 95% confidence level.

    An 11°E ×7°N range around the ECV center is suggested as an effective region to explore extreme precipitation,as it covers more than 80%of extreme events over Asia accompanied by an ECV (Hu et al.,2010).Corresponding to an ECV,the total precipitation at the 10 mm d-1threshold (hereafter called total P10) also shows an increasing trend over the three regions (Fig.3 (a2–c2)).In particular,it shows a decadal increase since the 2000s.There is a statistically significant correlation between the ECVs and total P10 at the 95% confidence level over the three regions,which reveals that the more ECVs there are,the more extreme precipitation and other weather extremes occur.In addition,we found that the decreases in ECVs over northern Europe and total P10 are consistent with decreasing baroclinicity,corresponding to increasing anticyclonic vortex and heatwaves over northern Europe (Zhang et al.,2020).There are low correlations between the ECVs and total P10 over CA before 2000;however,the correlation is significant after 2000 along with increasing meridional circulation and meridional water vapor flux,revealing that water vapor flux is another dominant factor besides ECVs for extreme precipitation in Asian dryland regions (Zhang et al.,2021).Fig.3 (a3–c3) shows the ECV event numbers,STE decreases,however,increasing QSVs are the dominant contributor to the increase in ECVs and total P10.

    Fig.2.(a) Latitude–time cross-section of total ECV frequency in 1979–2018 over land,expressed by the ECV center position (units: 40 yr-1).(b) Time-mean of total ECVs with latitude and ± standard deviation,as well as the contrast of ECV with latitude between 1979–1998 and 1999–2018 (units: 40 yr-1).(c) Spatial distribution of 40-yr vortex frequency (units: 40 yr-1) and (d) the related total P10 (units: × 100 mm 40 yr-1) in JA over land.The yellow boxes are northern America (NA),southern Europe to the Mediterranean (EU-Med) and East Asia (EA).

    3.4. Projection of ECVs and extremes

    How will ECVs vary in the future? And is their variation related to global warming? To address these questions,Fig.4 shows the projection of ECV variation and related precipitation extremes from seven CMIP6 coupled models for the period 2015–2065 aimed at the goals of 1.5°C and 2°C of the Paris Agreement.According to the ensemble simulations of the seven models,the 1.5°C goal under SSP2-4.5 and SSP5-8.5 emission scenarios occurs in 2046 and 2037,respectively,and the 2°C goal in 2061 and 2047.Before the goal of 1.5°C,the ECV frequency in 1°×1°grid cells is higher than the averaged ECV frequency in 2015–2065;however,it is lower than average beyond the goal of 1.5°C under SSP2-4.5 in NA and EA.The variation in ECV frequency within the goal of 1.5°C under SSP5-8.5 is similar to that under SSP2-4.5,but the higher value lasts until the goal of 2°C in NA.The decreased frequency is significant beyond the goal of 2°C.Such results indicate that the higher ECV frequently lasts for more than 25 years under SSP2-4.5 and for more than 19–26 years under SSP5-8.5,closely related to the relatively high local baroclinicity,if CMIP6 models are credible.These results also reveal the nonlinear variation of ECVs with global warming,especially within the goal of 1.5°C,which is possibly related to the dynamic contribution,besides baroclinicity variation.

    Fig.3.Temporal variation of (a1-c1) standardized ECV frequency,(a2-c2) total P10,(c1-c3) STE and QSV process numbers over NA,EU-Med,and EA.(a1-a3,b1-B3) Thick lines and dashed lines are 5-yr filtered and linear trends,respectively.The r_trd is the correlation of linear trend,r_eddy_P is correlation between vortex frequency and total precipitation larger than 10mm,rSTE,rQSV are the correlation of linear trend of STE and QSV,respectively.

    4.Conclusions and discussion

    An ECV is a prominent factor for extratropical weather extremes,and it is the interaction of a planetary-scale transient vortex and synoptic-scale transient eddy with quasi-stationary waves (Sheng and Derome,1991).The energy transferred from the ECV is three times higher than the seasonal mean flow.Since the 2000s,ECVs have increased in frequency over some land areas,with a significant increasing trend in NA,Eu-Med,and EA.Future projections indicate ECVs will remain high in frequency until the goal of 1.5°C in 2046 under SSP2-4.5,and in 2037 under SSP5-8.5.

    An increase in ECV frequency corresponds to enhanced inhomogeneous baroclinicity and instability over land;however,this cannot support a high ECV frequency after 2000.With global warming,high baroclinicity on the transient timescale directly excites STEs and QSVs;however,on average,the weakening surface temperature gradient decreases the baroclinicity in the midlatitude zone,but widens the meridional activity range of the westerly jet,which is favorable for meridional circulation development.This strengthens the resonance of the quasistationary wave (Mann et al.,2018),which is favorable to QSVs and cutofflows,such as the Central Asian Vortex,Northeast Cold Vortex,and North American Vortex.

    Precipitation extremes occur along with QSV and STE disturbances.Corresponding to an ECV,the total P10 increases over NA,Eu-Med and EA.As one type of synoptic circulation,the ECV frequency increases due to inhomogeneous warming.The land–atmosphere interaction with inhomogeneous warming is partially responsible for the transient and subseasonal baroclinicity and impacts on the ECV,which explains increasing extremes.Furthermore,the ECV disturbance responses to land process and land cover change are worthy of explanation;In addition,related simulations should be further explored to reveal the variations and physical processes in future work.

    Funding

    This research was supported by the National Natural Science Foundation of China (Grant No.41975083).

    Fig.4.Temporal variation of ECV numbers (green line) and its 75/25 percentile range (shaded) in JA from 2015 to 2065 under SSP2-4.5 and SSP5-8.5 in (a1,a2)NA and (b1,b2) EA and (a3,b3) scatter relationship between standardized ECV and total P10 in NA and EA within the goal of 1.5°.

    av国产精品久久久久影院| 精品亚洲乱码少妇综合久久| 日韩在线高清观看一区二区三区| 熟女电影av网| 日韩不卡一区二区三区视频在线| 日韩成人av中文字幕在线观看| 欧美国产精品va在线观看不卡| 国产精品久久久久久精品古装| 一个人免费看片子| 国产精品国产av在线观看| 在线观看国产h片| 男女国产视频网站| 久久午夜综合久久蜜桃| 精品少妇久久久久久888优播| 天美传媒精品一区二区| 91在线精品国自产拍蜜月| 校园人妻丝袜中文字幕| 91在线精品国自产拍蜜月| 国产av国产精品国产| 亚洲内射少妇av| xxx大片免费视频| 一本色道久久久久久精品综合| 极品人妻少妇av视频| 日韩伦理黄色片| 国产成人免费观看mmmm| 精品国产国语对白av| 国产爽快片一区二区三区| 国产精品二区激情视频| 如日韩欧美国产精品一区二区三区| av天堂久久9| 丰满少妇做爰视频| a级毛片黄视频| av在线播放精品| 色哟哟·www| 国产人伦9x9x在线观看 | 好男人视频免费观看在线| 啦啦啦在线免费观看视频4| 91久久精品国产一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 国精品久久久久久国模美| 免费久久久久久久精品成人欧美视频| 日韩精品有码人妻一区| 超色免费av| 只有这里有精品99| 免费观看a级毛片全部| 黑人猛操日本美女一级片| www日本在线高清视频| 精品亚洲成a人片在线观看| 女人久久www免费人成看片| 欧美精品一区二区免费开放| 久久人人爽av亚洲精品天堂| 亚洲av免费高清在线观看| 少妇人妻精品综合一区二区| 高清欧美精品videossex| 国产精品 欧美亚洲| 夫妻午夜视频| 国产亚洲午夜精品一区二区久久| 成年女人毛片免费观看观看9 | 叶爱在线成人免费视频播放| 精品国产一区二区三区久久久樱花| 国产成人精品在线电影| 人人妻人人爽人人添夜夜欢视频| 寂寞人妻少妇视频99o| 日日撸夜夜添| 99久国产av精品国产电影| 老女人水多毛片| 久久国产精品大桥未久av| 免费在线观看黄色视频的| 亚洲精品av麻豆狂野| 999精品在线视频| 亚洲,欧美,日韩| 大香蕉久久成人网| 亚洲精品久久午夜乱码| 久久久久久久国产电影| 看免费成人av毛片| 日韩制服骚丝袜av| 免费观看性生交大片5| 不卡av一区二区三区| 欧美日韩视频高清一区二区三区二| 性少妇av在线| 可以免费在线观看a视频的电影网站 | 成年女人在线观看亚洲视频| 国产毛片在线视频| 90打野战视频偷拍视频| 亚洲第一区二区三区不卡| 男的添女的下面高潮视频| 亚洲精品日韩在线中文字幕| av福利片在线| 性少妇av在线| av一本久久久久| 日韩 亚洲 欧美在线| 亚洲人成网站在线观看播放| 欧美精品一区二区免费开放| 99久久综合免费| 成年av动漫网址| 看十八女毛片水多多多| 国产 一区精品| 中文字幕av电影在线播放| 欧美日韩亚洲高清精品| 欧美最新免费一区二区三区| 爱豆传媒免费全集在线观看| 久久久久国产网址| 香蕉国产在线看| 日韩成人av中文字幕在线观看| 国产精品久久久久久精品电影小说| 女的被弄到高潮叫床怎么办| 亚洲三区欧美一区| 99久国产av精品国产电影| 下体分泌物呈黄色| 在线免费观看不下载黄p国产| 九九爱精品视频在线观看| 国产免费一区二区三区四区乱码| 国产综合精华液| www.精华液| 亚洲美女视频黄频| 老鸭窝网址在线观看| 九草在线视频观看| 精品一区二区三卡| 丝袜脚勾引网站| 亚洲欧洲精品一区二区精品久久久 | 国产日韩一区二区三区精品不卡| 91精品伊人久久大香线蕉| videos熟女内射| 久久精品国产亚洲av高清一级| 有码 亚洲区| 精品少妇一区二区三区视频日本电影 | av线在线观看网站| 午夜福利在线观看免费完整高清在| 亚洲欧洲日产国产| 婷婷成人精品国产| 黄频高清免费视频| 一级片'在线观看视频| 啦啦啦视频在线资源免费观看| 丰满少妇做爰视频| 一本大道久久a久久精品| 国产乱来视频区| 人妻 亚洲 视频| 色94色欧美一区二区| 亚洲av国产av综合av卡| 成人黄色视频免费在线看| 777米奇影视久久| 免费在线观看视频国产中文字幕亚洲 | 99九九在线精品视频| 最近的中文字幕免费完整| 乱人伦中国视频| 欧美av亚洲av综合av国产av | 伦精品一区二区三区| 人体艺术视频欧美日本| 亚洲熟女精品中文字幕| 一区二区三区四区激情视频| 美女午夜性视频免费| 汤姆久久久久久久影院中文字幕| 男男h啪啪无遮挡| 国产在线一区二区三区精| 永久网站在线| 国产综合精华液| 伊人久久国产一区二区| videosex国产| 久久久久久久久久久久大奶| 亚洲精品自拍成人| 亚洲美女黄色视频免费看| 日韩不卡一区二区三区视频在线| 久久久久久久精品精品| 国产乱来视频区| 亚洲精品在线美女| 秋霞伦理黄片| 亚洲国产精品一区二区三区在线| 久久久久久伊人网av| 一区二区三区四区激情视频| 最近2019中文字幕mv第一页| 男女午夜视频在线观看| 91精品三级在线观看| 久久99一区二区三区| 国产精品成人在线| 色哟哟·www| 亚洲av免费高清在线观看| 丁香六月天网| 大香蕉久久网| 精品国产乱码久久久久久小说| 日韩免费高清中文字幕av| 少妇被粗大的猛进出69影院| 99热网站在线观看| 三级国产精品片| 看十八女毛片水多多多| 久久ye,这里只有精品| 纯流量卡能插随身wifi吗| 日本免费在线观看一区| 最近中文字幕高清免费大全6| 新久久久久国产一级毛片| 视频在线观看一区二区三区| 好男人视频免费观看在线| 丝袜喷水一区| 国产av精品麻豆| 最近最新中文字幕大全免费视频 | 国产高清不卡午夜福利| 国产成人午夜福利电影在线观看| 一级毛片黄色毛片免费观看视频| 大香蕉久久成人网| av网站在线播放免费| 久久韩国三级中文字幕| 一级黄片播放器| 天天影视国产精品| 亚洲男人天堂网一区| 亚洲激情五月婷婷啪啪| 男女国产视频网站| 国产 精品1| 成年女人在线观看亚洲视频| 成人毛片60女人毛片免费| 国产一区二区 视频在线| 国产在线一区二区三区精| 视频在线观看一区二区三区| 亚洲天堂av无毛| 一区二区三区乱码不卡18| 国产av一区二区精品久久| 欧美日韩精品成人综合77777| 色婷婷久久久亚洲欧美| 久久女婷五月综合色啪小说| 9色porny在线观看| 欧美在线黄色| 日本vs欧美在线观看视频| 少妇熟女欧美另类| 久久人妻熟女aⅴ| 国产精品欧美亚洲77777| 国产乱来视频区| 一级爰片在线观看| 久久精品国产亚洲av涩爱| 边亲边吃奶的免费视频| 色哟哟·www| 亚洲精品第二区| 秋霞伦理黄片| 大香蕉久久成人网| 夫妻午夜视频| av女优亚洲男人天堂| 国产免费又黄又爽又色| 久久久久久久久久久久大奶| 国产视频首页在线观看| 在现免费观看毛片| 免费黄频网站在线观看国产| 人体艺术视频欧美日本| 日日撸夜夜添| 亚洲精品久久午夜乱码| 久久精品久久久久久久性| 香蕉丝袜av| 久久人人爽av亚洲精品天堂| 80岁老熟妇乱子伦牲交| 亚洲精品乱久久久久久| 亚洲伊人色综图| 欧美日韩成人在线一区二区| 水蜜桃什么品种好| 国产成人精品久久久久久| 校园人妻丝袜中文字幕| 欧美老熟妇乱子伦牲交| 男女边吃奶边做爰视频| 一个人免费看片子| 日本色播在线视频| 久久人人爽人人片av| 欧美日韩一区二区视频在线观看视频在线| 国产一区亚洲一区在线观看| 午夜福利影视在线免费观看| 久久久久久久国产电影| 老汉色av国产亚洲站长工具| 国产极品天堂在线| 久久人人爽av亚洲精品天堂| 亚洲国产欧美日韩在线播放| 国产免费又黄又爽又色| 国产av精品麻豆| 亚洲一级一片aⅴ在线观看| 男人爽女人下面视频在线观看| 国产日韩欧美在线精品| 永久网站在线| 亚洲成国产人片在线观看| 日日爽夜夜爽网站| 美女视频免费永久观看网站| 国产xxxxx性猛交| 男女啪啪激烈高潮av片| 五月天丁香电影| 午夜福利在线免费观看网站| 国产日韩一区二区三区精品不卡| 久久久欧美国产精品| 久久久久国产一级毛片高清牌| 欧美成人午夜免费资源| 日韩伦理黄色片| 99热全是精品| 亚洲精品日韩在线中文字幕| 最近2019中文字幕mv第一页| 成人毛片60女人毛片免费| 精品国产国语对白av| 亚洲精品美女久久久久99蜜臀 | 国产精品一国产av| 国产精品免费视频内射| 90打野战视频偷拍视频| 亚洲成国产人片在线观看| 欧美国产精品va在线观看不卡| 国产乱人偷精品视频| 亚洲精品一二三| 欧美精品一区二区大全| 国产人伦9x9x在线观看 | 欧美精品一区二区大全| www.熟女人妻精品国产| 国产无遮挡羞羞视频在线观看| 亚洲中文av在线| 99热网站在线观看| 欧美国产精品va在线观看不卡| 日韩欧美一区视频在线观看| 天天操日日干夜夜撸| 国产一区亚洲一区在线观看| www日本在线高清视频| 亚洲国产看品久久| 亚洲精品乱久久久久久| 波多野结衣av一区二区av| 99热国产这里只有精品6| 免费看av在线观看网站| 午夜av观看不卡| 在线免费观看不下载黄p国产| 最近最新中文字幕大全免费视频 | 国产日韩一区二区三区精品不卡| 国产精品不卡视频一区二区| 国产视频首页在线观看| 18+在线观看网站| 日韩三级伦理在线观看| 免费少妇av软件| 菩萨蛮人人尽说江南好唐韦庄| 久久久精品区二区三区| 国产极品天堂在线| 国产精品一二三区在线看| 久久国产精品大桥未久av| 亚洲欧洲日产国产| 一级黄片播放器| 国产不卡av网站在线观看| 亚洲精品aⅴ在线观看| 亚洲国产精品一区三区| 老汉色∧v一级毛片| 亚洲精品美女久久av网站| 又大又黄又爽视频免费| 亚洲精品日本国产第一区| 老汉色av国产亚洲站长工具| 国产成人精品婷婷| 一边摸一边做爽爽视频免费| 国产成人一区二区在线| 精品国产乱码久久久久久小说| 婷婷色综合www| 久热这里只有精品99| 久久精品国产亚洲av高清一级| 午夜久久久在线观看| 精品亚洲成国产av| 十分钟在线观看高清视频www| 自线自在国产av| 免费观看a级毛片全部| 免费看av在线观看网站| 久久99蜜桃精品久久| 亚洲精品第二区| 1024视频免费在线观看| 日韩中文字幕欧美一区二区 | 欧美最新免费一区二区三区| 国语对白做爰xxxⅹ性视频网站| 在线天堂中文资源库| 亚洲 欧美一区二区三区| 欧美激情 高清一区二区三区| 欧美国产精品一级二级三级| 1024香蕉在线观看| 人人澡人人妻人| 国产免费又黄又爽又色| 女人高潮潮喷娇喘18禁视频| 永久免费av网站大全| 青春草亚洲视频在线观看| 亚洲精品中文字幕在线视频| 精品国产露脸久久av麻豆| 桃花免费在线播放| 97精品久久久久久久久久精品| 人妻一区二区av| 婷婷色综合大香蕉| 国产成人a∨麻豆精品| 亚洲欧美色中文字幕在线| 1024视频免费在线观看| 国产在视频线精品| 亚洲精华国产精华液的使用体验| 成人国产麻豆网| 欧美日韩精品网址| 国产在线视频一区二区| 大码成人一级视频| 人妻系列 视频| 人人妻人人爽人人添夜夜欢视频| 波多野结衣一区麻豆| 91精品伊人久久大香线蕉| 久久精品aⅴ一区二区三区四区 | 高清不卡的av网站| 久久毛片免费看一区二区三区| 美女国产视频在线观看| 熟妇人妻不卡中文字幕| 免费播放大片免费观看视频在线观看| av在线app专区| 一本色道久久久久久精品综合| 国产野战对白在线观看| 国产一区亚洲一区在线观看| 午夜免费观看性视频| 色哟哟·www| 欧美变态另类bdsm刘玥| 青青草视频在线视频观看| 国产在线视频一区二区| 精品一区在线观看国产| 女人高潮潮喷娇喘18禁视频| 寂寞人妻少妇视频99o| 成人影院久久| 国产精品麻豆人妻色哟哟久久| 国产精品无大码| 色婷婷久久久亚洲欧美| 亚洲成色77777| 各种免费的搞黄视频| 少妇 在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 天堂8中文在线网| 精品一品国产午夜福利视频| 日韩精品有码人妻一区| 亚洲精品第二区| 人体艺术视频欧美日本| 国产综合精华液| 男人添女人高潮全过程视频| 99热国产这里只有精品6| 亚洲国产色片| 看免费成人av毛片| 熟女少妇亚洲综合色aaa.| 免费黄网站久久成人精品| 汤姆久久久久久久影院中文字幕| 久久国内精品自在自线图片| 不卡视频在线观看欧美| 啦啦啦在线观看免费高清www| 精品一区二区三卡| 久久影院123| 国产一区二区三区综合在线观看| 丝袜美足系列| 免费女性裸体啪啪无遮挡网站| 免费日韩欧美在线观看| 男女边摸边吃奶| 啦啦啦啦在线视频资源| 亚洲国产av新网站| 青春草视频在线免费观看| 国产亚洲最大av| 免费在线观看完整版高清| 一区二区三区四区激情视频| 国产熟女欧美一区二区| 一二三四在线观看免费中文在| 日产精品乱码卡一卡2卡三| 久热久热在线精品观看| 精品久久久久久电影网| 国产精品香港三级国产av潘金莲 | 人人妻人人澡人人看| 免费黄频网站在线观看国产| 激情五月婷婷亚洲| 欧美激情极品国产一区二区三区| 大片电影免费在线观看免费| 2021少妇久久久久久久久久久| 成人亚洲精品一区在线观看| 久久热在线av| 青春草视频在线免费观看| 亚洲伊人久久精品综合| 免费看av在线观看网站| 亚洲精品日韩在线中文字幕| 在线 av 中文字幕| 性高湖久久久久久久久免费观看| 两个人看的免费小视频| 欧美在线黄色| 桃花免费在线播放| 伊人久久大香线蕉亚洲五| 欧美亚洲 丝袜 人妻 在线| 97人妻天天添夜夜摸| 久久精品国产亚洲av高清一级| 丰满少妇做爰视频| 亚洲经典国产精华液单| 免费观看性生交大片5| 日韩在线高清观看一区二区三区| 啦啦啦视频在线资源免费观看| 国产熟女欧美一区二区| 亚洲精品第二区| 欧美bdsm另类| 日韩视频在线欧美| 制服人妻中文乱码| 久久久久久久久久久免费av| 美女国产高潮福利片在线看| 欧美日韩视频精品一区| tube8黄色片| 伦理电影免费视频| 日韩熟女老妇一区二区性免费视频| 2021少妇久久久久久久久久久| 亚洲精品日韩在线中文字幕| 伊人久久大香线蕉亚洲五| 亚洲av福利一区| 久久国产精品男人的天堂亚洲| 少妇的丰满在线观看| 精品亚洲成a人片在线观看| 国产熟女午夜一区二区三区| 亚洲欧美一区二区三区国产| 久久久久久久久久久久大奶| 国产精品嫩草影院av在线观看| 精品国产乱码久久久久久男人| 一本大道久久a久久精品| 国产av码专区亚洲av| 中文字幕av电影在线播放| 熟女av电影| av天堂久久9| 宅男免费午夜| 久久热在线av| 亚洲在久久综合| 国产成人av激情在线播放| 亚洲成av片中文字幕在线观看 | 亚洲欧美一区二区三区国产| 伊人亚洲综合成人网| 亚洲国产色片| 亚洲av日韩在线播放| 亚洲一区中文字幕在线| 欧美日韩一区二区视频在线观看视频在线| 国产成人免费无遮挡视频| 国产成人精品福利久久| 精品少妇久久久久久888优播| 欧美+日韩+精品| 亚洲av电影在线观看一区二区三区| 考比视频在线观看| 日本猛色少妇xxxxx猛交久久| 久久这里有精品视频免费| 2018国产大陆天天弄谢| 久久这里有精品视频免费| 国产人伦9x9x在线观看 | 在线 av 中文字幕| 哪个播放器可以免费观看大片| 国产精品麻豆人妻色哟哟久久| 亚洲情色 制服丝袜| 久久久久久久久久人人人人人人| 亚洲五月色婷婷综合| 亚洲国产av影院在线观看| 91在线精品国自产拍蜜月| 国产免费福利视频在线观看| 国产精品久久久久久久久免| 又粗又硬又长又爽又黄的视频| 不卡视频在线观看欧美| 成年人午夜在线观看视频| 观看av在线不卡| 美女中出高潮动态图| 亚洲精品av麻豆狂野| 边亲边吃奶的免费视频| 国产爽快片一区二区三区| 色哟哟·www| 亚洲精品美女久久av网站| 免费在线观看视频国产中文字幕亚洲 | 国产一区二区激情短视频 | 老汉色∧v一级毛片| 少妇被粗大猛烈的视频| 韩国精品一区二区三区| 搡女人真爽免费视频火全软件| 亚洲图色成人| 爱豆传媒免费全集在线观看| h视频一区二区三区| 国产亚洲最大av| 人人妻人人爽人人添夜夜欢视频| 丰满迷人的少妇在线观看| 国产日韩欧美在线精品| 国产国语露脸激情在线看| 国产黄色视频一区二区在线观看| 国产高清不卡午夜福利| 青青草视频在线视频观看| 国产淫语在线视频| 精品一区二区免费观看| 一级a爱视频在线免费观看| 欧美日本中文国产一区发布| 色哟哟·www| 在线观看人妻少妇| 久久久国产一区二区| 久久这里有精品视频免费| 中国国产av一级| www.av在线官网国产| 丰满少妇做爰视频| 高清黄色对白视频在线免费看| 亚洲欧美精品综合一区二区三区 | 国产一区二区 视频在线| 日本黄色日本黄色录像| 大话2 男鬼变身卡| 九色亚洲精品在线播放| 欧美精品一区二区免费开放| 免费黄网站久久成人精品| 亚洲成国产人片在线观看| 日韩欧美一区视频在线观看| 久久人人爽av亚洲精品天堂| 国产免费现黄频在线看| 亚洲av免费高清在线观看| 视频在线观看一区二区三区| 亚洲国产欧美日韩在线播放| 国产成人91sexporn| 男女无遮挡免费网站观看| 成人漫画全彩无遮挡| av有码第一页| 99久国产av精品国产电影| 麻豆av在线久日| 欧美日韩亚洲高清精品| 国产成人91sexporn| www.自偷自拍.com| 欧美人与性动交α欧美精品济南到 | 精品一区二区三区四区五区乱码 | 日韩中文字幕欧美一区二区 | 亚洲第一av免费看| 自拍欧美九色日韩亚洲蝌蚪91| 秋霞伦理黄片| 久久综合国产亚洲精品| 99国产综合亚洲精品| 国产成人aa在线观看| av免费观看日本| 亚洲精品一区蜜桃| 欧美中文综合在线视频| 国产成人一区二区在线| 色播在线永久视频| 永久网站在线| 欧美成人午夜精品| 美女主播在线视频| 妹子高潮喷水视频| 欧美精品一区二区免费开放| 婷婷色av中文字幕| 观看av在线不卡| 久久久久久人妻|