• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive semi-empirical model for non-contact atomic force microscopy

    2022-08-31 09:59:42XiChen陳曦JunKaiTong童君開andZhiXinHu胡智鑫
    Chinese Physics B 2022年8期
    關(guān)鍵詞:陳曦

    Xi Chen(陳曦) Jun-Kai Tong(童君開) and Zhi-Xin Hu(胡智鑫)

    1Center for Joint Quantum Studies and Department of Physics,Institute of Science,Tianjin University,Tianjin 300350,China

    2State Key Laboratory of Precision Measuring Technology and Instruments,Tianjin University,Tianjin 300072,China

    Keywords: semi-empirical model,atomic force microscopy,density functional theory,functionalized tips

    1. Introduction

    The invention of atomic force microscopy(AFM)opened a new way to detect the surface geometry of solids.[1]The submolecular resolution of organic molecules was achieved by using CO-functionalized tip and qPlus technique.[2,3]The high performance of topography imaging enables its application in atomic recognition,[4,5]surface manipulation,[6,7]bond order recognition,[8–10]self-assembly,[11]and tracing reactions on surfaces.[12]The terminating CO molecule is chemically inert,which reduces the manipulation or bonding with the sample molecule. As the CO molecule is weakly attached to the tip apex, it could be deflected laterally when approaching the sample. The deflection of tip termination causes the distorted image for organic molecules, such as the shifted C–C bond length for the top ring of C60molecule,[13]the enlargement of fluorinated carbon ring,[14]and the asymmetric image for a CO molecule.[15]The tip of non-contact AFM(nc-AFM)can also be functionalized by picking up Cl,Br,Xe or O atoms,[16–19]in which the chemical reactivity and the structural stability of the tip apex is responsible for the performance of imaging.

    Theoretical simulations are needed to explain the contrast mechanism of nc-AFM.The interaction between tip and sample contains the short-range Pauli repulsion and the long-range attractions including electrostatic and van der Waals (vdW)forces. The former is responsible for the sub-molecular resolution while the later is dominant in the cases with long or medium tip-sample distances.[20–22]Density functional theory calculation is reliable to estimate the force between tip and sample,but the computational cost is not affordable for reproducing a high-resolution image. In order to reduce the cost,Mollet al.proposed a simple model in which a power law relation is assumed between the Pauli repulsion and the sample charge density.[23]The model works well for repulsive tip apex such as CO-functionalized tips,but the tip bending and attractive forces are absent. Hapalaet al. introduced tip relaxation to the simulation and successfully reproduced the sharp submolecular contrast in nc-AFM observation.[24]Another way to accelerate the simulation is adding approximations to the DFT calculation, which could be achieved by implement of pseudopotential[25,26]or an efficient approach called frozen density embedding theories.[27,28]There are also methods that can simulate AFM images, such as Fourier expansion,[29]higher harmonic methods,[30]virtual tip methods,[31]and the method that can only be applied with graphene and graphite characterization.[32]The previous methods give results qualitatively similar to the experiment with affordable computational effort. The estimated tip-sample interaction still quantitatively differs from full DFT calculations.

    In the present work,we develop an approach called force assisted simulation tool for atomic force microscopy (FASTAFM)that combines a semi-empirical model with DFT calculation. The estimated tip-sample interaction forces are quantitatively comparable to DFT calculation, but the cost is much lower. This tool is applied to simulate the nc-AFM images of pentacene molecule on Cu(111)with CuCO,Cu,CuCl and CuOxtips. The tool shows robust performance for all considered tips. It also achieves clear element identification while simulating the image of 4-bromo-3′′-iodo-p-terphenyl (BrITP)molecule on Cu(111)and dicoronylene(DCLN)molecule on Cu(110).

    2. Model and method of calculation

    2.1. Formulation of the FAST-AFM

    The force between tip and sample is contributed by different types of interaction, such as Pauli repulsion, coulomb interaction, bonding effect, van der Waals interactions. To make the model simple, we divide the force into the repulsive part and attractive part. The repulsive part is described with a modified Moll model, while the attractive part is proportional to the power of tip-sample distance. The Moll model uses the double atom system to describe the Pauli repulsion between tip and sample.[23]The kinetic energy decreases almost exponentially with tip-sample distances. The increase of kinetic energy is approximated to a simple model with two parameters and the sample charge density ?Ekin(R)=Aρs(R)B.The Pauli repulsion energy is given by the increase of kinetic energy,in which fitting parametersiandjcan be estimated from a less accurate charge density mesh. Combine Eqs.(2)–(4),the total force can be expressed as

    whereZ′shifts the height that makesZ′?hequal to the tipmolecule distance in the molecular region. The implementation ofhis essential to better reproduce the force,the necessity will be discussed in the next section.

    The values forBandhare tested to get the best performance. It is found that settingBto 0.83 and the charge density iso-surface forhto 0.016e/?A3is proper in the simulation.Other global parameters are optimized with the DFT calculated force curves.

    The steps of simulation using this model are as follows:

    (1)Get the sample charge density with DFT calculations.Build a tip model and calculate the force between tip and sample for several positions on the plane, which is used as the input force curve for the model.

    (2) Functionalizing charge density using Eq. (4), get parametersi,j,hfor each point.

    (3)Fit Eq.(6)to theF(Z)data acquired in step(1). Get global parametersA,C,M,andN.

    (4)Build a mesh grid for the 2D contour of AFM simulation. Forces at each grid point can be calculated using Eq.(6).

    We have programmed a toolbox to complete steps(2)–(4).What the user needs to do is running the initial DFT calculations and set a few tags. They are the charge density exponentB(can set to 0.83), the level of iso-surfaceρ(can set to 0.016e/?A3), tip sample distanceZ(can use multiple values if not sure), resonance frequency of the tipf0(according to the experiment set up),force constant inzdirection,k0,(from Hessian matrix or references),and the lateral force constantk(from Hessian matrix or references).

    2.2. Density function theory calculations

    The DFT simulations were performed with the Viennaab initiosimulation package (VASP) code with the Perdew–Burke–Ernzerhof (PBE) approximation for the exchange and correlation functional.[33]The dispersion correction was implemented using the DFT-D3 method.[34]Wavefunctions were described with a plane wave basis and the projector augmented wave method.[35]The cutoff energy for the plane wave basis was set as 400 eV. The first Brillouin zone was sampled by gamma point only for structural relaxation and force calculation,verified by a 2×3×1k-mesh. The charge density is calculated with the 2×3×1k-mesh for all systems,the 2×3×1 mesh for the pentacene/Cu(111) system, and it is reduced to gamma-only sampling for DCLN and BrI-TP systems. For the sample system,a 4-layer slab model was built to simulate the substrate with a vacuum space of 35 ?A. The size of the supercell is chosen to ensure 6 ?A spacing between adsorbed molecules. The tip model was built with a tetrahedra cluster containing about 20 atoms. All atoms except for the bottom two layers of tip and substrate were fully relaxed until the residual force is less than 0.02 eV/?A per atom. Static calculations were performed to obtain the force curve. The charge density file is generated with the energy convergence set to 10?8eV.

    3. Results and discussion

    The pentacene molecule adsorbed on the Cu(111)surface is a well-studied system in experiments. It contains the most common elements in organic molecules and various bonds such asσandπbonds. Two sides of the molecule are slightly lifted up after the adsorption [Fig. S4(a)], making both sides slightly brighter than the middle in the AFM image. With this model,we first simulate the frequency shift image of the system and made a comparison with the experimental observation.

    DFT calculations can produce a mesh grid of charge density. Figure 1(a) is the 2D map of sample charge density for the plane 3.2 ?A above the molecule. The charge density plot has a dumbbell-shaped appearance due to the bending of the molecule. As mentioned in the method section, the charge density distribution is functionalized to an exponential form to ease the calculation. Some crucial positions such as C-top,Chollow,H-top,and substrate were selected to judge the performance of the approximation,as shown in Fig.1(b). It is clear that the exponential approximation fits the calculated charge density well for every curve. The detailed values ofiandjare listed in Table S1.

    The parameterhis introduced to consider the fluctuation of the sample surface. The pentacene/Cu(111)system is used again to run the test. Figure 2(a) shows the distribution ofhwith the iso-surface valueρ=0.016e/?A3. The tip-sample interaction forces are calculated for a 2×3 mesh with DFT.The tip is modeled by a tetrahedra-shaped Cu cluster with CO on the termination, as shown in Fig.2(b). The fitted force curve for the model using Eq. (5) and (6) is shown in Fig. 3. The curves do not fit the DFT results well for points 4–6 without parameterhwhile the error is greatly reduced after addinghto the equation. This comparison proves the necessity of considering the surface fluctuation in the model.

    Fig. 1. Charge density for the pentacene molecule. (a) Twodimensional map of the DFT calculated charge density above the pentacene molecule. The circles are the positions of atoms. (b) Charge density curves at crucial positions.The red circle,black square,blue triangle,and green diamond indicate the DFT results for C-top,C-hollow,H-top, and substrate, respectively. Solid lines are corresponding the functionalized values.

    Fig.2. The h profile and atomic structure of the tip-sample model. (a)Topand side-view for the distribution of parameter h. The black line shows the cleaved slice of the side-view. (b)Atomic structure and the distribution for the 2×3 mesh used in the simulation. The orange,gray,red and white balls are copper, carbon, oxygen and hydrogen atoms, respectively. Points 1–3 of the mesh are away from the molecule while points 4–6 are within the molecular region.

    The tip termination can be functionalized to get better performance in AFM observation. Pure metal tips made by Cu, Ag, and Au are too reactive for imaging organic molecules.[16,36]The tip apex becomes chemically inert by attaching a CO molecule to the termination, which gives a better resolution of the atomic structure. However, the observed structure could be distorted as the terminating CO molecule is easily displaced by lateral forces.[13,14]Using halogen atoms to functionalize the tip can reduce the lateral distortion.[16]However, the resolution is worse than the COfunctionalized tip. Another good candidate for the functionalized tip is the oxidized copper tip. Harryet al.found that the CuOxtip gives a clear backbone of aromatic molecules without distortion.[19,37]The diversity of tip terminations is a great challenge for AFM simulation.The FAST-AFM uses the DFT calculated force to optimize the parameters,which helps to adapt different tips.

    Fig. 3. DFT calculated forces (dots) and the simulated forces (curve)between CuCO tip and the pentacene/Cu(111). (a)Forces are simulated using Eq.(5). (b)Forces are simulated using Eq.(6). Black square,orange circle, green triangle, blue star, red triangle, and yellow rhombus indicates the 1-6 points,respectively.

    First, we use FAST-AFM to reproduce the AFM image of pentacene/Cu(111) with the CuCO tip. The structural model and selected positions for DFT calculation are shown in Fig. 2(b). The optimized parameters are listed in Table 1.Figure 4 gives the simulated frequency shift image. The tip height is set as 3.8 ?A to meet the range in the experiment. The simulated image shows clear carbon rings of the pentacene molecule. Two sides of the molecule are brighter than the middle due to the bending. The upper half of the middle ring is slightly darker than the lower half. The molecule is surrounded by a dark halo, which is thought to be caused by a diffuse attractive potential above the molecule.[16]As the CO molecule is loosely attached to the tip termination,it could be displaced laterally while probing the sample.[13–15]We modify the simulated image with a tip tilting correction,as shown in Fig.4(c). The lateral force constant of the tip termination is set ask=0.5 N/m.[8,24,38]Compared with the image without correction, the skeleton of the molecule becomes more sharp and bright elongation appears at C–H bonds. All of these features are consistent with the experimental observation shown in Fig. 4(b). These parameters in the equation are optimized using the DFT calculated forces for 2×3 mesh marked in Fig. 2(b). They are used without any further optimization to estimate force curves for crucial positions including C-top,Chollow,H-top,and substrate. It is amazing that the estimated forces are almost identical to the DFT calculation. Relative errors are shown in Table S2. Values for the two terms on the right side of Eq. (6) are plotted in Fig. S1 in the Supplementary information. Both terms quickly decay with the distance.It needs to clarify that they are not equal to real repulsive or attractive forces, as the FAST-AFM is only a semi-empirical model with its parameters optimized by total forces from DFT calculation.

    Fig.4. FAST-AFM simulations for pentacene/Cu(111)with CuCO tip.(a) Simulated frequency shift image without tilting correction. Tip height is 3.8 ?A.(b)Experimental image with CO-functionalized tip.[16](c)Simulated frequency shift image with tilting correction at Z=3.8 ?A.(d)Simulated force curves(dashed lines)verses DFT calculations(dots)at crucial positions.

    The FAST-AFM simulations were also applied to other tips including Cu, CuCl, and CuOx. The frequency shift image for the Cu tip is calculated at a tip height of 5 ?A,as shown in Fig.5(a). Metal tips are too reactive to distinguish the inner structure of the pentacene molecule.The simulated image only gives a dark outline of the molecule,similar to the experimental observation using Ag tip(Fig.5(b)). The reversed contrast of molecule and substrate indicates that the tip–sample interaction is attraction dominated. Successful reproduction of the attractive interaction is ascribed to the second term of Eq.(6),which is a reasonable supplement to the Moll model. For the CuCl tip,the 3p orbitals of the terminating Cl atom are almost filled after charge redistribution, making the CuCl tip less attractive than the pure Cu tip. The simulated AFM image in Fig.5(c)is similar to that with the CuCO tip. The Cl atom is more tolerant to the lateral force due to strong Cu–Cl interaction. Less distortion is found in both the simulated image and the experimental image(Fig.5(d)).The CuOxtip is reported to have the submolecular resolution for organic molecules.[37,39]

    Here we compare the simulated image to the AFM image of dicoronylene/Cu(110),as shown in Figs.5(e)and 5(f).The adsorption structure of the DCLN/Cu(110)system and the sampling sites for force curves are shown in Fig. S2. The DCLN is also an aromatic molecule with multiple carbon rings. The backbone of the molecule is bolder than the image produced by the CuCO tip. The negative frequency shift proves the attractive interaction between the CuOxtip and the molecule. The simulated image reproduced the backbone of the molecule,while the brightness of the edge is different from the AFM image. The inconsisitence is ascribed to the optimized structure in which not all edge atoms are lifted up.

    Fig.5. FAST-AFM simulations with other tips. (a)–(d)Images of the pentacene molecule. (a)Simulated image for the Cu tip. (b)The nc-AFM image with Ag tip.[16](c)Simulated image for the CuCl tip. (d)The nc-AFM image for pentacene/NaCl with CuCl tip.[16](e)Simulated image for DCLN/Cu(110)with CuOx tip. (f)The nc-AFM image for DCLN/Cu(110)with CuOx tip.[37] The atomic models of corresponding tips are inserted to panels(a),(c)and(e).

    The model is also applied to another molecule to test the performance for other elements.The nc-AFM images of the 4-bromo-3′′-iodo-p-terphenyl(BrI-TP)molecule on the Cu(111)substrate are simulated using this model, as shown in Fig. 6.The CuCO tip is selected according to the experiment. The triphenyl group is slightly distorted due to the steric hindrance between H atoms, which leads to asymmetric brightness of benzene rings.[40]The Br atom is slightly higher than the I atom in the simulated image,while in the nc-AFM image they have almost identical brightness. This deviation is ascribed to the higher position of the Br atom in the relaxed structure of BrI-TP(Fig.S4(b)).

    Fig. 6. FAST-AFM simulation and the experimental images for the BrITP/Cu(111)with CuCO tip.(a)Simulated image with Z=3.95 ?A.(b)Experimental image and the structure of BrI-TP molecule.[41] The purple,brown,gray,and white balls are I,Br,C,and H atoms,respectively. The 2×2 mesh is settled according to the shape of supercell.

    The fitting parametersA,C,MandNfor the previous simulation are listed in Table 1.AandCare scaling parameters for the repulsive and attractive terms,respectively.Larger value ofA/Cis related to a repulsive interaction between tip and sample. In our simulation theA/Cvalues for CuCO tip, CuCl tip,and Cu tip are 48.28,25.68,20.09 respectively,showing a transition from repulsive dominating to attractive dominating.For pentacene, the CuOxtip is abnormal with anA/Cvalue of 16.59, showing a strong attractive regime. However, the imaging performance of the CuOxtip is much better than the attractive Cu tip,the simulation image is shown in Fig.S5.The reason could be the high electronegativity of the oxygen atom,which creates a negatively charged termination and achieves the intramolecular resolution of the organic molecule.[37]The parametersMfor all tips are around?3.This indicates that the effect of the modified localized electron function does not vary much with the choice of tips. The last parameterNdecides the decay of attractive forces with the distance.A smaller value ofNmeans that the attractive force is close to electrostatic interaction, while larger values mean that the attraction is mainly contributed by other vdW interactions such as dipole interaction etc. The simulation for the BrI-TP molecule is also applied with the CuCO tip,which givesA/Cvalue similar to the pentacene case. As the charge distribution of halogen atoms is different from carbon or hydrogen atoms,the optimized values ofMandNdeviate from those for pentacene.

    In FAST-AFM the parameters are optimized using the DFT calculated force curves as they are thought to have good accuracy. It is also easy to determine tip positions in DFT calculation. The small standard deviations between our model and DFT calculated force curves proves that our model has the potential to achieve accuracy similar to DFT calculations.However, the DFT calculated results differ from experiment for many reasons. The simulated structures of tip terminations or the adsorbates are not identical to the real system. Tip vibration is ignored in the DFT calculated force. The calculated force may be inaccurate according to the selection of exchange-correlation functional and other calculation tags.All of these problems could cause the difference between the simulated image and the experimental observation.

    The FAST-AFM method avoids the direct calculation of massive data points in the 2D map with anab initioapproach.The cost of this method can be divided into the DFT calculation and the parameter optimization. In this work, it only needs to calculate six force curves with DFT. The simulated forces are very close to DFT calculation at positions away from the selected mesh,even if the number of sampling force curves is reduced to 3(Fig.S3).Taking the simulation for pentacene/Cu(111)as an example,which contains 228 atoms.The DFT calculation is conducted with 80 cores. It needs about two hours to get the charge density and 22 hours to get six force curves(15 min for each energy point). Then the FASTAFM generates the simulated image of 280×180 dots within several minutes. On the other hand, in a full DFT calculation at least three energy points are needed to estimate the frequency shift for each position. The estimated time would be 280×180×3×15 min≈37800 hours. The cost could be even higher if the tip-sample distance is unknown.

    4. Conclusions

    We have developed the FAST-AFM method to simulate nc-AFM images for organic molecules with limited cost and accuracy comparable to DFT calculations. This method is based on a semi-empirical model which describes repulsive and attractive interactions with the sample charge density. The parameters(A,C,M,N)are optimized with force curves from DFT calculation. By testing it on the pentacene/Cu(111)system, we find that the simulated images are highly consistent with the experiment for different functionalized tips,including the repulsive CuCO tip,less repulsive CuCl and CuOxtips,and even the attractive pure Cu tip.This simulation tool also shows good elemental identification for the imaging of the more complicated molecule BrI-TP. The high accuracy and wide-range adaption of FAST-AFM make it a reliable method to conduct nc-AFM simulations for various systems.

    Acknowledgements

    Project supported by the National Nature Science Foundation of China (Grant No. 11804247). VASP Calculations were performed at the High-Performance Computing Platform from Center for Joint Quantum Studies of Tianjin University.

    猜你喜歡
    陳曦
    Finite dimensional irreducible representations of Lie superalgebra D (2,1;α)
    Molecular beam epitaxy growth of iodide thin films?
    左和右
    Investigation of the hydrodynamic performance of crablike robot swimming leg *
    打雪仗
    踏浪青海湖
    善于總結(jié)化難為易
    The Influence of English Reform in China on English Teaching and Learning
    Analysis of View of Life and Death of Christianity on Western Culture
    塞根先生的山羊
    欧美黑人精品巨大| 久久久久久久久免费视频了| 一级黄色大片毛片| 日韩欧美一区视频在线观看| 国产成人精品无人区| 国产成人一区二区三区免费视频网站| 丁香六月欧美| 韩国精品一区二区三区| 亚洲av日韩精品久久久久久密| 午夜免费激情av| 美女扒开内裤让男人捅视频| 亚洲色图av天堂| 最好的美女福利视频网| 国产有黄有色有爽视频| 性欧美人与动物交配| 精品卡一卡二卡四卡免费| 国产精品九九99| 超色免费av| 精品欧美一区二区三区在线| 老熟妇乱子伦视频在线观看| 在线永久观看黄色视频| 久久天躁狠狠躁夜夜2o2o| av网站在线播放免费| 亚洲国产欧美网| 午夜精品国产一区二区电影| 在线天堂中文资源库| 在线观看免费日韩欧美大片| 人人澡人人妻人| 麻豆成人av在线观看| 精品一区二区三卡| av网站免费在线观看视频| 精品久久蜜臀av无| 日韩免费高清中文字幕av| 女人高潮潮喷娇喘18禁视频| 90打野战视频偷拍视频| 国产97色在线日韩免费| 欧美性长视频在线观看| 午夜福利一区二区在线看| 亚洲一码二码三码区别大吗| 欧洲精品卡2卡3卡4卡5卡区| 久久香蕉精品热| 久久精品aⅴ一区二区三区四区| 亚洲精品中文字幕一二三四区| 国产区一区二久久| www日本在线高清视频| 久久久国产欧美日韩av| 最近最新中文字幕大全免费视频| 国产精品 欧美亚洲| a级毛片黄视频| 国产真人三级小视频在线观看| 欧美激情高清一区二区三区| av网站在线播放免费| 又黄又爽又免费观看的视频| 精品国产美女av久久久久小说| 啪啪无遮挡十八禁网站| 国产在线精品亚洲第一网站| 亚洲一区二区三区色噜噜 | 大香蕉久久成人网| 淫妇啪啪啪对白视频| 在线观看www视频免费| 久久精品国产清高在天天线| 99香蕉大伊视频| 免费在线观看日本一区| 精品人妻1区二区| 久久久精品欧美日韩精品| 无人区码免费观看不卡| 亚洲精品av麻豆狂野| 每晚都被弄得嗷嗷叫到高潮| 久久久精品欧美日韩精品| 日本vs欧美在线观看视频| 午夜91福利影院| 人人妻,人人澡人人爽秒播| 国产成人精品在线电影| 91麻豆av在线| 亚洲五月色婷婷综合| 免费av毛片视频| 久久久久国内视频| 久久久久久久久免费视频了| 人人妻,人人澡人人爽秒播| 久久中文字幕人妻熟女| 欧洲精品卡2卡3卡4卡5卡区| 999精品在线视频| 免费高清视频大片| 97超级碰碰碰精品色视频在线观看| 99久久99久久久精品蜜桃| 国产三级在线视频| 亚洲黑人精品在线| 黄片播放在线免费| 欧美成人午夜精品| 国产高清视频在线播放一区| 亚洲成人精品中文字幕电影 | 女生性感内裤真人,穿戴方法视频| 精品免费久久久久久久清纯| 亚洲人成电影观看| 中文字幕人妻熟女乱码| 自拍欧美九色日韩亚洲蝌蚪91| 丰满人妻熟妇乱又伦精品不卡| 看片在线看免费视频| a级毛片黄视频| 成人av一区二区三区在线看| avwww免费| 99在线人妻在线中文字幕| 精品国产乱码久久久久久男人| www.www免费av| 国产精品亚洲av一区麻豆| 国产精品一区二区免费欧美| 亚洲av成人一区二区三| 精品国产国语对白av| 97超级碰碰碰精品色视频在线观看| 欧美丝袜亚洲另类 | 美女福利国产在线| 久久精品亚洲精品国产色婷小说| 国产精品亚洲一级av第二区| av天堂在线播放| 精品人妻在线不人妻| 国产免费现黄频在线看| 丝袜人妻中文字幕| 狂野欧美激情性xxxx| 黄色怎么调成土黄色| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看www视频免费| 啦啦啦 在线观看视频| 热99re8久久精品国产| 韩国av一区二区三区四区| 国产在线观看jvid| 成人手机av| 啦啦啦在线免费观看视频4| 久久久久亚洲av毛片大全| 免费女性裸体啪啪无遮挡网站| 少妇的丰满在线观看| 欧美精品亚洲一区二区| 国产亚洲欧美在线一区二区| 成熟少妇高潮喷水视频| 午夜视频精品福利| 天堂中文最新版在线下载| 亚洲精品国产一区二区精华液| 在线看a的网站| 很黄的视频免费| 热99国产精品久久久久久7| 国产av一区二区精品久久| 国产精品成人在线| 黄色怎么调成土黄色| 99国产极品粉嫩在线观看| 久久精品国产亚洲av高清一级| 在线播放国产精品三级| 乱人伦中国视频| 国产成人精品久久二区二区91| 制服人妻中文乱码| 免费看a级黄色片| 久久99一区二区三区| 在线播放国产精品三级| 国产男靠女视频免费网站| 啦啦啦免费观看视频1| 日本a在线网址| 成人18禁在线播放| 欧美+亚洲+日韩+国产| 天堂中文最新版在线下载| 伦理电影免费视频| 免费看a级黄色片| 国产精品 国内视频| 免费在线观看日本一区| 日本 av在线| 两性夫妻黄色片| 黑人操中国人逼视频| 一区福利在线观看| 三级毛片av免费| 色老头精品视频在线观看| 午夜福利,免费看| 精品一区二区三区四区五区乱码| 老司机深夜福利视频在线观看| 亚洲激情在线av| 99热国产这里只有精品6| 欧美乱色亚洲激情| 亚洲熟妇中文字幕五十中出 | 在线永久观看黄色视频| 国产精品美女特级片免费视频播放器 | 少妇 在线观看| 99在线人妻在线中文字幕| 最新在线观看一区二区三区| 黑人巨大精品欧美一区二区mp4| 国产亚洲欧美在线一区二区| 中文字幕最新亚洲高清| 亚洲成人精品中文字幕电影 | 又黄又爽又免费观看的视频| 亚洲中文av在线| 精品久久蜜臀av无| 国产欧美日韩一区二区三区在线| 久久99一区二区三区| 淫妇啪啪啪对白视频| 亚洲成人免费av在线播放| 国产精品 国内视频| 日日夜夜操网爽| 久久国产精品男人的天堂亚洲| 一边摸一边抽搐一进一小说| 亚洲专区字幕在线| 欧美日本中文国产一区发布| 欧美另类亚洲清纯唯美| 12—13女人毛片做爰片一| 中文字幕另类日韩欧美亚洲嫩草| 高潮久久久久久久久久久不卡| 国产三级在线视频| 99精品久久久久人妻精品| 色婷婷久久久亚洲欧美| 五月开心婷婷网| 一级片'在线观看视频| 身体一侧抽搐| 国产精品久久视频播放| 两性午夜刺激爽爽歪歪视频在线观看 | 精品久久久久久成人av| 老汉色∧v一级毛片| 国产一区二区三区综合在线观看| 别揉我奶头~嗯~啊~动态视频| 久久久久久久精品吃奶| 一本综合久久免费| 在线观看免费视频日本深夜| 久久精品国产亚洲av香蕉五月| 性色av乱码一区二区三区2| 99久久精品国产亚洲精品| 中文字幕av电影在线播放| 老司机在亚洲福利影院| 在线观看一区二区三区| 狠狠狠狠99中文字幕| 久久久国产成人精品二区 | 一区二区日韩欧美中文字幕| 日本免费a在线| 国产97色在线日韩免费| 美女福利国产在线| 波多野结衣高清无吗| 精品国产乱码久久久久久男人| 中文字幕最新亚洲高清| 日韩精品免费视频一区二区三区| 桃色一区二区三区在线观看| 亚洲专区中文字幕在线| a在线观看视频网站| 一本综合久久免费| 久久精品人人爽人人爽视色| 搡老乐熟女国产| 欧美av亚洲av综合av国产av| 国产成人av教育| 亚洲专区国产一区二区| 男女下面插进去视频免费观看| 一级毛片精品| 他把我摸到了高潮在线观看| 婷婷丁香在线五月| 亚洲成人免费av在线播放| 亚洲色图 男人天堂 中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 国产单亲对白刺激| 久久欧美精品欧美久久欧美| 欧美人与性动交α欧美精品济南到| 曰老女人黄片| 少妇裸体淫交视频免费看高清 | 欧美午夜高清在线| 婷婷丁香在线五月| 亚洲成人精品中文字幕电影 | 黄网站色视频无遮挡免费观看| 黄频高清免费视频| 搡老熟女国产l中国老女人| 99精品欧美一区二区三区四区| 91麻豆av在线| 久久国产乱子伦精品免费另类| 欧美色视频一区免费| 亚洲av五月六月丁香网| а√天堂www在线а√下载| 啦啦啦在线免费观看视频4| 国产精品久久久人人做人人爽| 性少妇av在线| 黄色 视频免费看| 国产熟女午夜一区二区三区| 亚洲成人免费电影在线观看| 麻豆av在线久日| 老司机深夜福利视频在线观看| 女性生殖器流出的白浆| av国产精品久久久久影院| 国产精品久久久人人做人人爽| 亚洲成国产人片在线观看| 老熟妇仑乱视频hdxx| 丝袜人妻中文字幕| 变态另类成人亚洲欧美熟女 | 可以免费在线观看a视频的电影网站| 女人被躁到高潮嗷嗷叫费观| 国产av又大| 欧美日韩av久久| 亚洲九九香蕉| 色播在线永久视频| 午夜福利免费观看在线| 久久国产亚洲av麻豆专区| 久久精品国产清高在天天线| 黄色丝袜av网址大全| 精品久久久久久,| 免费在线观看黄色视频的| 亚洲成人免费电影在线观看| 亚洲国产欧美一区二区综合| 日韩精品中文字幕看吧| 天堂中文最新版在线下载| 午夜免费鲁丝| 国产精品一区二区三区四区久久 | 久久久久国内视频| 一级黄色大片毛片| 久久精品91无色码中文字幕| av免费在线观看网站| 亚洲av第一区精品v没综合| 亚洲av成人一区二区三| 国产一区二区三区在线臀色熟女 | 免费观看人在逋| 在线观看免费高清a一片| 88av欧美| 国产精品一区二区免费欧美| 亚洲男人天堂网一区| svipshipincom国产片| 亚洲国产精品999在线| 精品一区二区三区四区五区乱码| 日韩精品青青久久久久久| 香蕉国产在线看| 又紧又爽又黄一区二区| a级毛片在线看网站| www日本在线高清视频| av在线天堂中文字幕 | 深夜精品福利| 最近最新中文字幕大全电影3 | 国产精品一区二区精品视频观看| 老鸭窝网址在线观看| 在线十欧美十亚洲十日本专区| 黄色视频,在线免费观看| 美女福利国产在线| 国产一区二区在线av高清观看| 国产成人av激情在线播放| 久久精品国产清高在天天线| 国产日韩一区二区三区精品不卡| 欧美老熟妇乱子伦牲交| 中文字幕最新亚洲高清| 亚洲第一青青草原| 亚洲情色 制服丝袜| 91麻豆精品激情在线观看国产 | 久久香蕉国产精品| 久久国产亚洲av麻豆专区| 日本黄色日本黄色录像| 一级毛片精品| 露出奶头的视频| 99国产精品99久久久久| 一个人免费在线观看的高清视频| 热re99久久国产66热| 国产一区二区三区综合在线观看| 日日爽夜夜爽网站| 欧美日本中文国产一区发布| 91精品国产国语对白视频| 在线天堂中文资源库| 精品国产乱子伦一区二区三区| 亚洲视频免费观看视频| 国产日韩一区二区三区精品不卡| 中文字幕人妻丝袜一区二区| 国产av一区在线观看免费| 亚洲 国产 在线| av有码第一页| 狠狠狠狠99中文字幕| 成人三级做爰电影| 亚洲欧美激情在线| 天堂中文最新版在线下载| 久久人人爽av亚洲精品天堂| 亚洲 国产 在线| 最近最新免费中文字幕在线| 中文字幕高清在线视频| 久久精品国产亚洲av香蕉五月| 波多野结衣一区麻豆| 亚洲成人免费电影在线观看| 男人操女人黄网站| 久久久久久人人人人人| 国产麻豆69| 成人国产一区最新在线观看| 日本撒尿小便嘘嘘汇集6| 97碰自拍视频| 免费不卡黄色视频| 波多野结衣av一区二区av| 国产亚洲欧美98| 嫩草影视91久久| 很黄的视频免费| 女人高潮潮喷娇喘18禁视频| 亚洲第一欧美日韩一区二区三区| 精品一品国产午夜福利视频| 高清在线国产一区| 男女床上黄色一级片免费看| 丁香六月欧美| 99国产综合亚洲精品| 国产成+人综合+亚洲专区| 国产精品自产拍在线观看55亚洲| 日韩免费高清中文字幕av| 午夜亚洲福利在线播放| 又黄又爽又免费观看的视频| 视频在线观看一区二区三区| 国产99白浆流出| 欧美日韩视频精品一区| 午夜精品国产一区二区电影| 女人精品久久久久毛片| 久久狼人影院| 中文字幕最新亚洲高清| 亚洲精品美女久久av网站| 欧美最黄视频在线播放免费 | 99久久精品国产亚洲精品| 色在线成人网| www.精华液| 亚洲激情在线av| 久久人人爽av亚洲精品天堂| 久久久久久久午夜电影 | 午夜福利在线观看吧| 在线观看免费视频日本深夜| 久久久国产成人免费| 天天躁夜夜躁狠狠躁躁| 成人国语在线视频| avwww免费| 高清在线国产一区| 长腿黑丝高跟| 在线观看舔阴道视频| 日本免费a在线| 亚洲午夜精品一区,二区,三区| 国产精品久久视频播放| 色哟哟哟哟哟哟| 久99久视频精品免费| 99久久人妻综合| 久久久国产成人精品二区 | 看免费av毛片| 黄色视频,在线免费观看| 超碰成人久久| 母亲3免费完整高清在线观看| 国产视频一区二区在线看| 国产av又大| 伊人久久大香线蕉亚洲五| 欧美黄色淫秽网站| 国产主播在线观看一区二区| 淫妇啪啪啪对白视频| 国产精品日韩av在线免费观看 | 波多野结衣av一区二区av| 一级片'在线观看视频| 免费av毛片视频| 欧美久久黑人一区二区| 两人在一起打扑克的视频| 久久久国产欧美日韩av| svipshipincom国产片| 88av欧美| 国产亚洲精品综合一区在线观看 | 国产一区二区三区视频了| 99热国产这里只有精品6| 免费看a级黄色片| 久久久国产一区二区| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区视频在线观看免费 | 人人妻人人添人人爽欧美一区卜| 美女高潮到喷水免费观看| 午夜91福利影院| 大型av网站在线播放| 少妇 在线观看| 国产欧美日韩一区二区精品| 午夜免费成人在线视频| 亚洲avbb在线观看| 另类亚洲欧美激情| 精品国内亚洲2022精品成人| 欧美激情高清一区二区三区| 麻豆成人av在线观看| 久久香蕉激情| 亚洲美女黄片视频| 久久久久精品国产欧美久久久| 一二三四社区在线视频社区8| 一级毛片高清免费大全| 国产成人精品久久二区二区91| 女同久久另类99精品国产91| 视频区图区小说| 亚洲成人精品中文字幕电影 | 日本欧美视频一区| xxx96com| av在线天堂中文字幕 | 日本免费a在线| 国产精品一区二区精品视频观看| 一级作爱视频免费观看| 国产精品久久久av美女十八| 最近最新中文字幕大全电影3 | 亚洲伊人色综图| 欧美另类亚洲清纯唯美| 亚洲av成人av| 国产免费男女视频| 在线观看午夜福利视频| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久电影中文字幕| 啦啦啦 在线观看视频| 无限看片的www在线观看| 电影成人av| 999精品在线视频| 操美女的视频在线观看| 免费av毛片视频| 真人做人爱边吃奶动态| 免费人成视频x8x8入口观看| 每晚都被弄得嗷嗷叫到高潮| 国产精品亚洲av一区麻豆| 国产欧美日韩一区二区三| 91精品国产国语对白视频| 满18在线观看网站| 老汉色∧v一级毛片| 成人国语在线视频| 亚洲,欧美精品.| 91在线观看av| 色精品久久人妻99蜜桃| 欧美+亚洲+日韩+国产| 人妻久久中文字幕网| 人人妻人人爽人人添夜夜欢视频| 亚洲一区二区三区不卡视频| 99riav亚洲国产免费| 波多野结衣高清无吗| 午夜成年电影在线免费观看| 国产精品日韩av在线免费观看 | 男女做爰动态图高潮gif福利片 | 午夜激情av网站| 别揉我奶头~嗯~啊~动态视频| 美女大奶头视频| 久久影院123| 一二三四社区在线视频社区8| 黄色怎么调成土黄色| 日本黄色日本黄色录像| 欧美精品啪啪一区二区三区| tocl精华| 天天躁夜夜躁狠狠躁躁| av片东京热男人的天堂| 国产一区在线观看成人免费| av国产精品久久久久影院| 亚洲国产精品一区二区三区在线| 丝袜在线中文字幕| 成熟少妇高潮喷水视频| 亚洲精品粉嫩美女一区| 成年版毛片免费区| 人人妻人人澡人人看| 一a级毛片在线观看| 欧美最黄视频在线播放免费 | 女人爽到高潮嗷嗷叫在线视频| 亚洲一区二区三区欧美精品| 精品人妻1区二区| 天堂影院成人在线观看| 午夜福利在线免费观看网站| 黄色成人免费大全| 日韩一卡2卡3卡4卡2021年| 精品国产美女av久久久久小说| 亚洲国产欧美网| 久久久久国内视频| 国产三级在线视频| 久久人人爽av亚洲精品天堂| 亚洲欧美一区二区三区黑人| 欧美日韩亚洲高清精品| 人妻久久中文字幕网| 啦啦啦 在线观看视频| 手机成人av网站| 欧美日韩福利视频一区二区| 国产主播在线观看一区二区| 色综合婷婷激情| www.www免费av| 午夜影院日韩av| 淫妇啪啪啪对白视频| 在线看a的网站| 一进一出抽搐gif免费好疼 | 五月开心婷婷网| 亚洲欧美精品综合一区二区三区| 视频区图区小说| 国产精品国产av在线观看| 咕卡用的链子| 欧美成狂野欧美在线观看| 国产精品久久久av美女十八| 亚洲色图综合在线观看| 日韩人妻精品一区2区三区| 伊人久久大香线蕉亚洲五| 国产高清videossex| 免费高清在线观看日韩| 日本黄色视频三级网站网址| 中文字幕色久视频| 19禁男女啪啪无遮挡网站| 手机成人av网站| x7x7x7水蜜桃| 88av欧美| 亚洲av五月六月丁香网| 日韩一卡2卡3卡4卡2021年| 亚洲男人天堂网一区| 欧美日韩瑟瑟在线播放| 国产成人av教育| 欧美老熟妇乱子伦牲交| 久久精品亚洲熟妇少妇任你| 欧美日韩一级在线毛片| av视频免费观看在线观看| 香蕉久久夜色| 欧美人与性动交α欧美精品济南到| 欧美黑人精品巨大| 欧美乱码精品一区二区三区| 成人黄色视频免费在线看| 在线观看免费视频网站a站| 黑人操中国人逼视频| 欧美成狂野欧美在线观看| 男女下面进入的视频免费午夜 | 在线av久久热| 啦啦啦 在线观看视频| 久久国产精品影院| 久久久国产成人精品二区 | 岛国在线观看网站| 国产精品秋霞免费鲁丝片| 宅男免费午夜| 久久久久国产精品人妻aⅴ院| 国产精品秋霞免费鲁丝片| 亚洲男人天堂网一区| 手机成人av网站| 操美女的视频在线观看| 天堂√8在线中文| av免费在线观看网站| 国产精品亚洲av一区麻豆| 国产精品九九99| 国产亚洲精品久久久久久毛片| 婷婷丁香在线五月| 一个人免费在线观看的高清视频| 999久久久精品免费观看国产| 欧洲精品卡2卡3卡4卡5卡区| 精品国产乱码久久久久久男人| ponron亚洲| 精品第一国产精品| 啪啪无遮挡十八禁网站|