• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect

    2022-08-31 09:55:54YuZhou周雨ChunZhou周淳YangWang汪洋YiFeiLu陸宜飛MuShengJiang江木生XiaoXuZhang張曉旭andWanSuBao鮑皖蘇
    Chinese Physics B 2022年8期
    關(guān)鍵詞:汪洋

    Yu Zhou(周雨) Chun Zhou(周淳) Yang Wang(汪洋) Yi-Fei Lu(陸宜飛)Mu-Sheng Jiang(江木生) Xiao-Xu Zhang(張曉旭) and Wan-Su Bao(鮑皖蘇)

    1Henan Key Laboratory of Quantum Information and Cryptography,SSF IEU,Zhengzhou 450001,China

    2Synergetic Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    Keywords: high-dimensional,time-bin,finite-key analysis,intensity fluctuations,afterpulse effect

    1. Introduction

    The unpredictable development of quantum computation undoubtedly threatens the security of classical cryptographic systems. Alternative cryptosystems must be found to safely transmit sensitive data and confidential information under serious threat of quantum computer. Quantum key distribution (QKD) is an efficient and reliable technique to resist high-performance computing attacks. It enables two legitimate parties, Alice and Bob, to share common secret key under the interference of noise and eavesdropper (Eve).[1]Basic principles of quantum mechanics including measurement-collapse theory, the Heisenberg uncertainty principle and quantum no-cloning theorem guarantee the unconditional security of QKD.[2]In recent years, the experiment of QKD has developed rapidly and made a lot of progress. The world’s first quantum satellite “Mozi” was launched in 2016[3]and a 2000-km quantum link from Beijing to Shanghai was built in 2017,[4]which initially formed a prototype of the space-ground integration quantum network.The measurement-device-independent network scheme was also proposed to connect untrusted node networks.[5]In addition, the latest experimental quantum key distribution system can reach a safe distance of 833.8 kilometers,[6]which is a breakthrough in building quantum network. However,the secret key rate of engineering prototype of QKD systems is still low. How to promote the key rate and broaden the application fields of QKD public issues requiring urgent solutions. Hardware constraints of QKD systems such as optical state generation speed, photon-counting rates and detecting dead time limit the key rate. Besides, a large fraction of photons is lost in the quantum channel due to optical absorption and scattering. Such physical and practical limitations drive researchers to seek new QKD protocols that can outperform two-dimensional protocols in both secure key rate and distance. Recent years, several high-dimensional QKD (HD-QKD) schemes has been proposed.[7–10]Photonic degrees of freedom such as position–momentum,[11]time–energy,[12]and orbital angular momentum[13,14]are proven to have a high-dimensional information loading capability,which can immensely improve the secret key rate of QKD. Generally,QKD systems using high-dimensional qudits have several superiorities than the ones using classical two-dimensional qubits. Firstly, they can effectively increase the secret key rate.n=log2(d) bits of information can be safely encoded on each single photon in HD-QKD systems.[15]Secondly,HD-QKD systems have higher resistance to quantum channel noise, which means they can tolerate a higher quantum bit error rate.[16]An attractive implementation has been proposed and its security analysis was given based on entropic uncertainty relations by Islamet al.[17]They use temporal and phase states to realize thed-dimensional protocol, in which temporal states are used to generate the key and phase states are used to guarantee the security of QKD system. The first challenge is how to prepare and measure the phase states under certain experimental resources. An equivalent protocol based on entanglement was proposed which simplifies the detector requirements for measurement.[18]Lately, another alternative scheme for four-dimensional QKD with time-bin and phase encoding was presented[19]with a simplified and compact detecting system, which presents an efficient performance than previous HD-QKD schemes and appears a broad prospects in future application.

    However,the condition of its theoretical security can not be well satisfied in practical engineering conditions. Several quantum hacking attacks have been proposed by exploiting the imperfections of photoelectric devices.[22–29]Since the ideal single photon source is difficult to realize,the weak coherentstate (WCS) source is usually used in practical systems. The WCS source contains multiphoton part, which may be used by Eve through the photon-number-splitting(PNS)attack.[21]The decoy-state method[30–32]is one of means to tackle the multi-photon in WCS source. This method can estimate the counting rate and bit error of the single photon part of the WCS source, so as to estimate the secure key rate. Besides,the equipment defects of practical systems will lead to the leakage of information. The existing set-ups use the imperfect WCS source, and the intensity fluctuations[33,34]caused by intensity modulation is a nonnegligible imperfection. The avalanche photodiode single photon detectors(APD)have the nonnegligible afterpulse effect,which is created by former ignition avalanche and related to the avalanche duration time,hold-off time,lifetime of detrapping carriers. Several schemes that analyze the impact of afterpulse on QKD have also been proposed.[35–37]

    Since the secret key rate in the practical protocol is limited, it is necessary to reconsider the security bound of the asymptotic region,and several methods based on finite-length key have been given.[38–40]These imperfections will lead to the correlation of detection results. Therefore, in the case of finite key and related random samples,[41]how to comprehensively take both the afterpulse and the intensity fluctuations into account in the security proof of high-dimensional schemes remains to be solved. Here,we limit the intensity fluctuations of the sources to a certain range by setting the intensity fluctuations parameters. We also introduce the afterpulse probabilities into the formula of secret key rate with different dimensions. Considering finite-length effects,we apply Azuma’s inequality to tackle the statistical fluctuations of relevant random samples in the security bound.[42]

    In this paper, we give the implementation process of the four-dimensional time-bin protocol and extend it to the eightdimensional protocol in Section 2. Then we analyze the impact of the afterpulse effect and the intensity fluctuations on the secret key rate in practical protocols in Section 3. In addition,the simulations of key rates for the different afterpulse effect and intensity fluctuations in two schemes are provided in Section 4.

    2. Protocol description

    Firstly, we introduce the four-dimensional scheme based on time-phase states. The eight states of four-dimensional(4D) scheme and the experimental setup have been given in Ref.[19]. Time-bin qudits can be easily created by weak coherent pulses. Pulses in different time slots form the different bases and the superposition among these pulses is devised by controlling the relative phase of the pulses. The analysis of one-decoy protocol has been given and it has been proved that the one-decoy protocol has better performance in the practical protocol.[20]Let the choesn probabilities ofZandXbases arepZandpXrespectively. The secret key is extracted only when two parties both selectZbasis,while the information leakage is estimated from the events when two parties both selectXbasis. The specific protocol process is shown below.(iii)Basis reconciliation

    Fig.1. Experimental setup for measurement.[19] PC:polarization controller;BS:beam splitter;PBS:polarizing beam splitter. After the qudit is polarized,it interfered at BS2. The delay (τ or 2τ) of the interference depends on the polarization. The specific interference results are shown in Fig.2.

    Fig.2. τ is the time-bin duration. Alice and Bob both select Z basis and here is the interference of the four states respectively. We can distinguish the four states by the response of detectors and the arrival time. For example,the SPAD 1 responds in the second time slot,we believe that the state received by Bob at this time is|t1〉.

    Alice and Bob announce their bases and intensity choices over an authenticated public channel. Then they record the number of the detected pulses underkintensity when they choose the same basis, wherenZ,kandnX,kcorrespond to theZbasis and theXbasis,respectively.[41]

    (iv)Parameter estimation

    Alice and Bob calculate the bit errorsmX,kfor intensitykwhen they both choose theXbasis. Then they calculate the lower bound of single-photon eventssZ,1,sX,1, the lower bound of vacuum photon eventssZ,0and the upper bound of the errorscZ,1for the single-photon events in theZbasis.If the phase error rateφ=cZ,1/sZ,1is lower than the predetermined phase error rate ˉφ, Alice and Bob accept the the raw key and perform post-processing,or they abandon the protocol.

    (v)Postprocessing

    Alice and Bob carry out the error correction,which consumes at most LeakECbits.Then they carry out the error verification and privacy amplification to obtain the secret key length?.

    The protocol can be extended to higher level. We realize the protocol expansion from four-dimension to eightdimension without adding detectors and other devices and here are the eight qudits ofZbasis(see Fig.3). In the preparation,we expand two photonic wave packets within a frame of four contiguous time bins to four photonic wave packets within a frame of eight contiguous time bins, and two sets of random numbers are required to edit the phases of adjacent photonic wave packets. In order to ensure that the eight qudits are perfectly orthogonal, we assume that the ratio of time-bin duration to pulse width is greater than 7.7[43]and we neglect the problem of time jitter in this situation. Also,the time-bin duration should be adjusted to ensure that the dead time of the SPADs is shorter than the time slot between two peaks.[44]realizes the minimum dead time of avalanche photodiode of 12.4 ns, so we can set the minimum dead time as the duration between two peaks ideally. Therefore, the minimum duration of each qudit can reach approximately 24.8 ns. Here,we have analyzed the scheme that the qudit have 6 or 7 time bins. When there are 6 or 7 time bins per qudit,it is possible for the eight states belonging to any basis orthogonal to each other. However, it cannot satisfy the condition that the two bases are mutually unbiased. Therefore,we coding the qudits in eight contiguous time bins.

    Fig.3. The eight states of Z basis belonging to the eight-dimensional(8D)protocol,0 and π specify the relative phase between the different time bins occupied by the photon. When two SPADs response twice in total,we can distinguish the current state according to the response of the two detectors and the arrival time of clicks. The specific process is similar to the fourdimensional protocol.

    Table 1. The method of distinguishing eight signal states in measurement.

    In the measurement,we distinguish the eight states by the response of the two detectors and arrival time of the clicks(see Table 1).

    3. Security analyses

    The security analysis is based on the composable security definition,we say our protocol isε-secure meansεsec+εcor≤ε, whereεcoris the correctness parameter andεsecis the secrecy parameter.[45]The length of secret key per privacy amplification block in theZbasis can be given by[17]

    The error rate of then-photon states and the overall quantum bit error rate(QBER)is given by[46]

    whereedis the baseline system error rate,e0is the error rate of the background. We assume thee0of four-dimensional scheme to be random ande0=3/4.

    Then we consider the afterpulse effect. Considering the dead time of SPADs,not all afterpulse can be detected. Based on the previous work,[35]we propose another method to calculate the afterpulse probability. Letpirepresent the probability that the nexti-th gate triggers an avalanche after an avalanche trigger. Here,we no longer consider the high-order afterpulse,but directly counting the probability of generating clicks in a period of time after a trigger. Then,we can obtain the overall probability of the afterpulse

    Next,combined with the obtained the overall probability of the afterpulse,we can characterize the count rateQμand the overall QBEREμ. Here, we assume that the triggers caused by the background count also cause the afterpulse, and it can be expressed as follows:

    In practical time-bin HD-QKD system, the imperfections of practical devices should be considered. The laser sources and the intensity modulators will bring the intensity fluctuations.[47,48]In this work, we take the intensity fluctuationsk ∈{μ1,μ2,μ3}into account. Assuming that the intensity fluctuations of source is within a certain range and we can

    4. Simulation

    In this section,the QKD schemes are tested over different channel lengths of standard single-mode fiber. In simulation,we traverse theZbasis selection probabilities, the emission proportions of signal light and the intensities of signal(decoy)light to obtain a optimal secret key rate. The values of parameters are listed in Table 2.

    Table 2. The parameters values of simulation. N is the total number of pulses, fe is the error-correction efficiency,εsec and εcor are the security parameters,Y0 is the background counting rate, ed is the misalignment-error probability.

    For the case with the intensity fluctuations,we simulated the effect of the different intensity fluctuation parametersδon the secure key rate of one-decoy protocol. The generation of key rate decreases evidently with the intensification of source intensity fluctuations. The secure key rate decreases sharply when the parameter exceeds 20%, and almost no key is generated when the parameterδexceeds 25%. In practical QKD system, the afterpulse of detectors also affects the secure key rate. The afterpulse effect will lead to bit error, and each detected afterpulse in the 4D protocol will bring 75%error bit.The increase of afterpulse probability and transmission distance will directly lead to the increase of overall QBER in Eq. (10). And the longer the transmission distance, the more sensitive the QBER is to the afterpulse probability. Therefore,the afterpulse indirectly raise the upper bound of the phase error rateφUZin Eq.(1). Figure 4 shows the curve of secure key rate with the different afterpulse probability. As shown in the figure that the maximum transmission distance decreases with the increase of the afterpulse probability. When the afterpulse probability reaches 3%,the key rate decreases rapidly,and the intense afterpulse of detectors will lead to a sharp reduction in key rate.

    According to Fig. 5, the line represents the 4D scheme and the dotted line represents the 8D scheme,we provide the key rate curves of the two schemes under different parameters.The eight-dimensional scheme generates more secure keys under normal attenuation, the key rate of 8D scheme is at least 1.5 times higher than that of 4D scheme. However,in the case of extreme attenuation,the performance of 8D scheme is gradually inferior to that of 4D scheme. When we consider the two parameters on the key rate,it will aggravate the decline of the key rate. As shown in Fig.4,when only the afterpulse effect is considered in the 4D scheme,there will be a significant attenuation of the transmission distance whenpap=3%. However,when the intensity fluctuations is considered at the same time,the tolerance for the afterpulse effect is greatly weakened and the sharp reduction occurs whenpap=2%.

    Fig. 4. Optimal secure key rate (per pulse) of one-decoy approach for different values of the afterpulse probability with no intensity fluctuations.The key rate and the longest transmission distance decrease sharply after the afterpulse probability exceeds 2.5%.

    Fig. 5. The solid line represents the 4D scheme and the dotted line represents the eight-dimensional scheme,we provide the changes of the key rate curves of the two schemes under the strength fluctuations parameter δ=0%,15%and the afterpulse probability pap=0%,1.3%,2%.

    In addition, we compare the effects of the intensity fluctuations and the afterpulse effect to schemes in different dimensions. We propose the ratiosθintandθpapto characterize them, whereθintis the ratio before and after considering the strength fluctuations andθpapis the ratio before and after considering the afterpulse effect(see Fig.6). As can be seen from the figure,the key rate reduction of the 8D scheme before and after considering the strength fluctuations is obviously better than that of the 4D scheme,while 4D scheme performs better only considering the afterpulse effect. This is because the 8D scheme’s error rate of the backgrounde0is greater than the 4D ones. From Eq.(10),we know that the 8D scheme has greater overall QBER considering the afterpulse. The stronger the afterpulse effect,the greater the overall QBER,which increases the estimation of phase error rateφUZ. Therefore,the tolerance of 8D scheme to afterpulse effect is not as good as that of 4D scheme. In conclusion,the 8D protocol has stronger tolerance to the intensity fluctuations,but is more sensitive to the afterpulse.

    Fig.6. The two ratios to characterize the effects of the intensity fluctuations and afterpulse. (a)Efficiency of the intensity fluctuations θint, and δ is the fluctuations parameter. (b) Efficiency of the afterpulse θpap, and pap is the overall probability of the afterpulse.

    5. Conclusion

    For the practical HD-QKD, the flaws of source and detector restrict the key rate of practical high-dimensional protocols. In this paper, we extended the 4D time-bin protocol,and the effect of the intensity fluctuations and afterpulse have been mainly considered. We utilized parameters to limit the intensity and applied Azuma’s inequality to establish the relationship between the expected and practical value. Besides,the afterpulse probability is introduced to quantify its effect to the generation of secure key rate. In numerical simulation,we simulated the effect of two flaws to schemes with different dimensions. It is found that both two flaws will reduce the key rate, but the 8D scheme is more sensitive to the afterpulse and has better robustness than the 4D scheme. Form the simulation, our results emphasized the significance of the stable source and high-performance detector in practical HDQKD. In conclusion, we derived an analytical model to the variant practical time-bin QKD protocol considering the intensity fluctuations and the afterpulse effect.It provides a theoretical reference for secure analysis of practical high-dimensional protocols.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2020YFA0309702),the National Natural Science Foundation of China (Grant Nos. 62101597, 61605248, 61675235, and 61505261),the China Postdoctoral Science Foundation (Grant No. 2021M691536), the Natural Science Foundation of Henan Province, China (Grant Nos. 202300410534 and 202300410532), and the Anhui Initiative Fund in Quantum Information Technologies.

    猜你喜歡
    汪洋
    New DDSCR structure with high holding voltage for robust ESD applications?
    汪洋作品
    Theoretical framework for geoacoustic inversion by adjoint method?
    中國(guó)人民政治協(xié)商會(huì)議第十三屆全國(guó)委員會(huì)主席汪洋簡(jiǎn)歷
    渡過語(yǔ)言的汪洋
    汪洋:繼續(xù)向革命老區(qū)傾斜
    亙貫古今的汪洋臺(tái)
    汪洋之中一條船
    難忘的教誨:緬懷原吉林省關(guān)工委主任汪洋湖
    時(shí)代先鋒楷模典型汪洋湖
    久久久久久大精品| 真实男女啪啪啪动态图| a级一级毛片免费在线观看| 三级经典国产精品| 午夜福利在线在线| 久久人人爽人人爽人人片va| 在线免费十八禁| av黄色大香蕉| 国产老妇女一区| 在线观看一区二区三区| 午夜亚洲福利在线播放| 免费在线观看成人毛片| 国产精品麻豆人妻色哟哟久久 | 国产精品国产三级国产av玫瑰| 青青草视频在线视频观看| 日本一二三区视频观看| 女的被弄到高潮叫床怎么办| 99久久九九国产精品国产免费| 久久国产乱子免费精品| 久久久精品欧美日韩精品| 可以在线观看的亚洲视频| 欧美一级a爱片免费观看看| 成年女人看的毛片在线观看| 99在线人妻在线中文字幕| 最近手机中文字幕大全| 国产精品永久免费网站| 日本熟妇午夜| 一区福利在线观看| av在线播放精品| 成人二区视频| 国产毛片a区久久久久| 2021天堂中文幕一二区在线观| 91久久精品国产一区二区三区| 简卡轻食公司| 免费一级毛片在线播放高清视频| 又粗又爽又猛毛片免费看| 床上黄色一级片| 久久久色成人| 欧美变态另类bdsm刘玥| 边亲边吃奶的免费视频| 精品午夜福利在线看| 国产精华一区二区三区| 欧美高清性xxxxhd video| 成人午夜精彩视频在线观看| h日本视频在线播放| 亚洲精品日韩在线中文字幕 | 国产亚洲欧美98| 欧美变态另类bdsm刘玥| 中文字幕av成人在线电影| 长腿黑丝高跟| 一级黄片播放器| 小蜜桃在线观看免费完整版高清| 中文欧美无线码| av在线天堂中文字幕| 少妇熟女欧美另类| 午夜免费男女啪啪视频观看| 91aial.com中文字幕在线观看| 亚洲最大成人av| 少妇熟女欧美另类| 国产伦理片在线播放av一区 | 99在线视频只有这里精品首页| 国内精品久久久久精免费| 色哟哟哟哟哟哟| 哪里可以看免费的av片| 精品一区二区三区视频在线| 日韩成人伦理影院| 免费看a级黄色片| 18禁在线播放成人免费| 国产成人a∨麻豆精品| 麻豆乱淫一区二区| 级片在线观看| 白带黄色成豆腐渣| 热99在线观看视频| 精品久久久久久久末码| 亚洲美女搞黄在线观看| 亚洲图色成人| 免费人成视频x8x8入口观看| 精品午夜福利在线看| 亚洲av中文av极速乱| 美女黄网站色视频| 性插视频无遮挡在线免费观看| 干丝袜人妻中文字幕| 国产午夜精品一二区理论片| 欧美日韩一区二区视频在线观看视频在线 | 免费搜索国产男女视频| 久久久国产成人免费| 中出人妻视频一区二区| 蜜桃久久精品国产亚洲av| 精品久久久久久久久久免费视频| 国产激情偷乱视频一区二区| 18+在线观看网站| 九九在线视频观看精品| 深夜a级毛片| 国产一区亚洲一区在线观看| 六月丁香七月| 男人狂女人下面高潮的视频| 免费av不卡在线播放| 热99在线观看视频| 一本久久精品| 在线国产一区二区在线| 国产av在哪里看| 日本av手机在线免费观看| 亚洲av电影不卡..在线观看| 永久网站在线| 我要搜黄色片| 一卡2卡三卡四卡精品乱码亚洲| 色综合色国产| 国产国拍精品亚洲av在线观看| 乱系列少妇在线播放| 一级毛片aaaaaa免费看小| 亚洲精品日韩在线中文字幕 | 色综合色国产| 免费电影在线观看免费观看| 精品欧美国产一区二区三| 成人欧美大片| 少妇丰满av| 欧美成人a在线观看| 一本精品99久久精品77| av在线蜜桃| 亚洲精品国产成人久久av| 麻豆av噜噜一区二区三区| 久久鲁丝午夜福利片| 亚洲欧美成人综合另类久久久 | 又黄又爽又刺激的免费视频.| 不卡一级毛片| 日本免费a在线| 久久草成人影院| 亚洲av二区三区四区| 国产一区亚洲一区在线观看| 狂野欧美白嫩少妇大欣赏| 国产伦在线观看视频一区| 欧美潮喷喷水| 国产爱豆传媒在线观看| 欧美一区二区亚洲| 国产91av在线免费观看| 人体艺术视频欧美日本| 国产av不卡久久| 一级黄片播放器| 亚洲国产精品合色在线| 菩萨蛮人人尽说江南好唐韦庄 | 久久99热6这里只有精品| 国产毛片a区久久久久| 国产精品,欧美在线| 午夜爱爱视频在线播放| 欧美日韩国产亚洲二区| 一区福利在线观看| 亚洲欧美日韩高清专用| 亚洲国产日韩欧美精品在线观看| av免费在线看不卡| 亚洲成人久久爱视频| 中文字幕久久专区| 久久久久久久久久成人| 女的被弄到高潮叫床怎么办| 久久久久久久久久成人| 欧美bdsm另类| 国产黄片视频在线免费观看| 麻豆成人午夜福利视频| 蜜桃亚洲精品一区二区三区| 亚洲精品国产av成人精品| 中文字幕人妻熟人妻熟丝袜美| 黄色日韩在线| 日日撸夜夜添| 99久国产av精品国产电影| 午夜久久久久精精品| 国产精品一区二区三区四区免费观看| av免费观看日本| 亚洲欧洲日产国产| 午夜激情福利司机影院| 亚洲av成人精品一区久久| 三级男女做爰猛烈吃奶摸视频| 黄片wwwwww| 国产黄色小视频在线观看| 国产一级毛片在线| 啦啦啦韩国在线观看视频| 欧美区成人在线视频| 久久人人精品亚洲av| 亚洲无线在线观看| 亚洲欧美日韩高清专用| 中文字幕人妻熟人妻熟丝袜美| 国产毛片a区久久久久| 久久久午夜欧美精品| 97在线视频观看| 99久国产av精品国产电影| 尤物成人国产欧美一区二区三区| 少妇熟女aⅴ在线视频| 自拍偷自拍亚洲精品老妇| 国产精品三级大全| 久久午夜亚洲精品久久| 国产 一区 欧美 日韩| 日本成人三级电影网站| 久久久久久国产a免费观看| 午夜爱爱视频在线播放| 亚洲av成人精品一区久久| 久久人人精品亚洲av| 亚洲精品国产成人久久av| 久久人人爽人人片av| 婷婷亚洲欧美| 嫩草影院精品99| 国内久久婷婷六月综合欲色啪| 男的添女的下面高潮视频| 欧美激情在线99| 青春草视频在线免费观看| 亚洲精品日韩av片在线观看| 可以在线观看的亚洲视频| 国产精品国产高清国产av| 床上黄色一级片| 精品99又大又爽又粗少妇毛片| 永久网站在线| 美女内射精品一级片tv| 免费一级毛片在线播放高清视频| 婷婷六月久久综合丁香| 可以在线观看的亚洲视频| 成年版毛片免费区| 国产视频首页在线观看| 国产乱人偷精品视频| 神马国产精品三级电影在线观看| 午夜精品在线福利| 精品少妇黑人巨大在线播放 | 国国产精品蜜臀av免费| 乱系列少妇在线播放| 午夜视频国产福利| 中文字幕制服av| 久久精品91蜜桃| 淫秽高清视频在线观看| 人妻久久中文字幕网| 一区二区三区高清视频在线| 最后的刺客免费高清国语| 91狼人影院| 日韩三级伦理在线观看| 国产一级毛片在线| 国产高潮美女av| 性插视频无遮挡在线免费观看| 国产成人午夜福利电影在线观看| 亚洲18禁久久av| 精品日产1卡2卡| 国产女主播在线喷水免费视频网站 | 久久欧美精品欧美久久欧美| 国产精品嫩草影院av在线观看| 九草在线视频观看| 丰满人妻一区二区三区视频av| 麻豆成人午夜福利视频| 国产精品人妻久久久久久| 久久久午夜欧美精品| 美女xxoo啪啪120秒动态图| 中文字幕精品亚洲无线码一区| 99久久精品一区二区三区| 伦理电影大哥的女人| 久久这里只有精品中国| 嫩草影院入口| 国产乱人偷精品视频| 你懂的网址亚洲精品在线观看 | 亚洲四区av| 日韩,欧美,国产一区二区三区 | 精品久久久久久久末码| 赤兔流量卡办理| 国内揄拍国产精品人妻在线| 久久久久性生活片| 午夜精品国产一区二区电影 | 精品久久国产蜜桃| 亚洲美女搞黄在线观看| 欧美又色又爽又黄视频| 好男人视频免费观看在线| 91精品一卡2卡3卡4卡| 久久精品国产清高在天天线| 极品教师在线视频| 亚洲电影在线观看av| 天美传媒精品一区二区| 级片在线观看| 91av网一区二区| 久久久色成人| av.在线天堂| 最近中文字幕高清免费大全6| 精品久久久噜噜| 黄片wwwwww| 国产人妻一区二区三区在| 亚洲国产精品合色在线| 久久精品综合一区二区三区| 99久久成人亚洲精品观看| 欧美又色又爽又黄视频| 美女cb高潮喷水在线观看| 日韩,欧美,国产一区二区三区 | 少妇猛男粗大的猛烈进出视频 | 非洲黑人性xxxx精品又粗又长| 亚洲人成网站在线观看播放| 午夜福利高清视频| 综合色丁香网| 91精品一卡2卡3卡4卡| 又粗又硬又长又爽又黄的视频 | 亚洲精品成人久久久久久| 51国产日韩欧美| 成年女人看的毛片在线观看| 欧美成人a在线观看| 搞女人的毛片| 成人特级av手机在线观看| 精品久久久噜噜| 色综合亚洲欧美另类图片| 又爽又黄无遮挡网站| 日韩精品青青久久久久久| 一本一本综合久久| 插逼视频在线观看| 毛片一级片免费看久久久久| 亚洲色图av天堂| 欧美日韩乱码在线| 免费av观看视频| 亚洲精品粉嫩美女一区| 国产 一区 欧美 日韩| 精品国产三级普通话版| 99久国产av精品| 2022亚洲国产成人精品| 熟女人妻精品中文字幕| 国产精品一区二区性色av| 在线观看午夜福利视频| 色综合色国产| 成人午夜高清在线视频| 欧美日韩国产亚洲二区| 狂野欧美激情性xxxx在线观看| 亚洲三级黄色毛片| 爱豆传媒免费全集在线观看| 国内久久婷婷六月综合欲色啪| eeuss影院久久| 又爽又黄无遮挡网站| 国产极品天堂在线| 乱系列少妇在线播放| 精品一区二区三区人妻视频| 在现免费观看毛片| 免费观看在线日韩| videossex国产| 少妇高潮的动态图| 最近中文字幕高清免费大全6| 91精品一卡2卡3卡4卡| 男女边吃奶边做爰视频| 日韩大尺度精品在线看网址| eeuss影院久久| 一边摸一边抽搐一进一小说| 91狼人影院| 精品不卡国产一区二区三区| 搞女人的毛片| 久久精品人妻少妇| 久久久久久久午夜电影| 国产成人精品一,二区 | 舔av片在线| 亚洲图色成人| 日本成人三级电影网站| a级毛片免费高清观看在线播放| 欧美高清性xxxxhd video| 成人永久免费在线观看视频| 人人妻人人澡欧美一区二区| 久久久久九九精品影院| 99热这里只有是精品50| 国产三级在线视频| 97热精品久久久久久| 成人欧美大片| 日韩欧美一区二区三区在线观看| 欧美zozozo另类| 99热精品在线国产| av免费观看日本| 日日干狠狠操夜夜爽| 免费av观看视频| 亚州av有码| 日本黄色片子视频| 日韩一区二区视频免费看| 最新中文字幕久久久久| 午夜激情欧美在线| 人体艺术视频欧美日本| 亚洲av.av天堂| 亚洲精品456在线播放app| 国产一级毛片七仙女欲春2| 中文字幕熟女人妻在线| 在线播放国产精品三级| 国产精品久久久久久亚洲av鲁大| 欧美成人a在线观看| 色吧在线观看| 日本撒尿小便嘘嘘汇集6| 欧美日韩综合久久久久久| 九九热线精品视视频播放| 精品日产1卡2卡| 成人毛片a级毛片在线播放| 亚洲av一区综合| 天堂影院成人在线观看| 久久99精品国语久久久| 成人无遮挡网站| 一级毛片aaaaaa免费看小| 国产成人91sexporn| 国产单亲对白刺激| 国产精品综合久久久久久久免费| 天堂中文最新版在线下载 | 九九在线视频观看精品| 中文精品一卡2卡3卡4更新| 成人二区视频| 国产老妇女一区| 亚洲精品国产成人久久av| 久久精品国产鲁丝片午夜精品| 深夜a级毛片| 免费观看的影片在线观看| 少妇的逼水好多| www.色视频.com| 国产中年淑女户外野战色| 国产老妇女一区| 久久久久久大精品| 在线播放国产精品三级| ponron亚洲| 性插视频无遮挡在线免费观看| 人人妻人人看人人澡| 丰满人妻一区二区三区视频av| 久久精品国产99精品国产亚洲性色| 国产 一区精品| 欧美日韩精品成人综合77777| 精品久久久久久成人av| 久久精品国产清高在天天线| 联通29元200g的流量卡| 色综合站精品国产| 日日摸夜夜添夜夜添av毛片| 九色成人免费人妻av| 老师上课跳d突然被开到最大视频| av免费观看日本| 午夜激情福利司机影院| av在线蜜桃| 一个人观看的视频www高清免费观看| 国内精品久久久久精免费| 男人舔女人下体高潮全视频| 午夜爱爱视频在线播放| 99视频精品全部免费 在线| 免费看美女性在线毛片视频| 久久这里有精品视频免费| 国产精品一及| 欧美成人免费av一区二区三区| 午夜福利在线在线| 麻豆成人午夜福利视频| 日本成人三级电影网站| 两个人视频免费观看高清| 在线播放无遮挡| 变态另类丝袜制服| 国产大屁股一区二区在线视频| 久久精品久久久久久噜噜老黄 | 午夜精品国产一区二区电影 | 亚洲av免费高清在线观看| 国产午夜精品论理片| 亚洲av成人av| 免费黄网站久久成人精品| 黄片无遮挡物在线观看| 亚洲欧美中文字幕日韩二区| 国产老妇女一区| 欧美在线一区亚洲| 日日摸夜夜添夜夜添av毛片| 亚洲欧洲日产国产| 亚洲人成网站高清观看| 搡女人真爽免费视频火全软件| 性欧美人与动物交配| 91久久精品电影网| 男女视频在线观看网站免费| 国产成人freesex在线| 成人漫画全彩无遮挡| 看片在线看免费视频| 床上黄色一级片| 欧美一级a爱片免费观看看| 丰满的人妻完整版| 色尼玛亚洲综合影院| 日韩中字成人| 蜜桃亚洲精品一区二区三区| av在线观看视频网站免费| 久久精品夜色国产| 欧美一区二区精品小视频在线| 久久久久九九精品影院| 国产精品1区2区在线观看.| 99国产精品一区二区蜜桃av| 国产探花极品一区二区| 最近视频中文字幕2019在线8| av专区在线播放| 亚洲av成人av| 久久久精品大字幕| 在线免费观看的www视频| 欧美最黄视频在线播放免费| 国产黄色小视频在线观看| 国产老妇女一区| 可以在线观看的亚洲视频| 久久国产乱子免费精品| 国产又黄又爽又无遮挡在线| 丰满乱子伦码专区| 少妇熟女aⅴ在线视频| 欧美xxxx黑人xx丫x性爽| 成人午夜精彩视频在线观看| 欧美zozozo另类| 日本-黄色视频高清免费观看| 国产亚洲精品久久久com| 在线天堂最新版资源| 男插女下体视频免费在线播放| 国产老妇女一区| 午夜福利在线观看吧| 三级经典国产精品| 日日摸夜夜添夜夜爱| 欧美+日韩+精品| 欧美性猛交╳xxx乱大交人| 欧美高清成人免费视频www| 亚洲精品粉嫩美女一区| 中文字幕久久专区| 一边亲一边摸免费视频| 中文字幕久久专区| 国产亚洲91精品色在线| 亚洲欧美日韩高清在线视频| 免费不卡的大黄色大毛片视频在线观看 | ponron亚洲| 最近2019中文字幕mv第一页| 22中文网久久字幕| 乱系列少妇在线播放| 天天躁夜夜躁狠狠久久av| 最近2019中文字幕mv第一页| 日本免费一区二区三区高清不卡| 国产美女午夜福利| 欧美+亚洲+日韩+国产| 一级黄片播放器| 亚洲精品日韩av片在线观看| 99热这里只有是精品50| 一个人免费在线观看电影| 日本黄色视频三级网站网址| 美女高潮的动态| 我的女老师完整版在线观看| kizo精华| 国产成人影院久久av| 欧美又色又爽又黄视频| 99久久成人亚洲精品观看| 91久久精品国产一区二区三区| 久久久久久久久久久免费av| 亚洲人与动物交配视频| www日本黄色视频网| 亚洲在线观看片| 亚洲av一区综合| 亚洲电影在线观看av| 欧美丝袜亚洲另类| 久久这里只有精品中国| 中文字幕av在线有码专区| 亚洲高清免费不卡视频| 亚洲av中文av极速乱| 国产av一区在线观看免费| 麻豆国产97在线/欧美| 在线播放无遮挡| 日韩成人av中文字幕在线观看| 日本熟妇午夜| 男人舔奶头视频| 六月丁香七月| 变态另类成人亚洲欧美熟女| 亚洲五月天丁香| 九九在线视频观看精品| 最近手机中文字幕大全| 身体一侧抽搐| 国产真实乱freesex| 亚洲精品亚洲一区二区| 国产日本99.免费观看| 人人妻人人澡欧美一区二区| 国产精品久久久久久久久免| 最新中文字幕久久久久| 高清在线视频一区二区三区 | 人体艺术视频欧美日本| 亚洲四区av| 国产爱豆传媒在线观看| 日韩一区二区三区影片| 久久国产乱子免费精品| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久伊人网av| 十八禁国产超污无遮挡网站| 国产黄a三级三级三级人| 国产精品野战在线观看| 综合色av麻豆| 日本熟妇午夜| 一区二区三区免费毛片| 亚洲电影在线观看av| 亚洲国产色片| 日本五十路高清| 一级av片app| 亚洲av男天堂| 99热这里只有是精品50| 成人午夜高清在线视频| 91午夜精品亚洲一区二区三区| 一区福利在线观看| 人人妻人人看人人澡| 久久久久九九精品影院| 精华霜和精华液先用哪个| 美女被艹到高潮喷水动态| 亚洲婷婷狠狠爱综合网| 欧美日本亚洲视频在线播放| 国产色婷婷99| 夜夜爽天天搞| 最好的美女福利视频网| 啦啦啦观看免费观看视频高清| 免费搜索国产男女视频| 久久99精品国语久久久| 黄色欧美视频在线观看| 男女视频在线观看网站免费| 日韩精品青青久久久久久| 如何舔出高潮| 日韩欧美一区二区三区在线观看| 国产探花在线观看一区二区| 国语自产精品视频在线第100页| 免费看美女性在线毛片视频| 国产高清不卡午夜福利| 亚洲最大成人手机在线| 精品不卡国产一区二区三区| 色播亚洲综合网| 国产精品一区二区三区四区免费观看| 久久6这里有精品| 久久精品国产亚洲av涩爱 | 欧洲精品卡2卡3卡4卡5卡区| 高清日韩中文字幕在线| 日韩一区二区视频免费看| 国产精品女同一区二区软件| 三级经典国产精品| 99在线视频只有这里精品首页| av天堂在线播放| 亚洲精品乱码久久久v下载方式| 久久久久久久久久黄片| 欧美高清成人免费视频www| 免费人成视频x8x8入口观看| 亚洲中文字幕一区二区三区有码在线看| 秋霞在线观看毛片| 搡女人真爽免费视频火全软件| 国产探花在线观看一区二区|