• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sound-transparent anisotropic media for backscattering-immune wave manipulation

    2022-08-31 09:57:18WeiWeiKan闞威威QiuYuLi李秋雨andLeiPan潘蕾
    Chinese Physics B 2022年8期
    關(guān)鍵詞:秋雨

    Wei-Wei Kan(闞威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾)

    School of Science,Nanjing University of Science and Technology,Nanjing 210094,China

    Keywords: sound-transparent anisotropic media,acoustic bending waveguide,transformation acoustics

    1. Introduction

    Acoustic metamaterials are usually periodically arranged subwavelength structures[1–11]with acoustic properties that do not exist in nature, such as negative bulk modulus[2,12]and anisotropic mass density.[13–18]A metamaterial with anisotropic mass density is often named a metafluid[19–22]and implemented by periodically arranging subwavelength anisotropic structures in the matrix medium. Due to their possible applications in acoustic invisibility,[22]waveguiding,[23,24]and beam-splitting,[25]metafluids have attracted increasing attention. Acoustic invisibility, the technique to prevent incident waves from being affected by scattering objects,is one of the most discussed topics in this field.Coordinate transformation[26–28]is the most popular method to design such an invisibility cloak. Nevertheless, the required extreme material parameters are usually difficult to implement in broadband. Acoustic invisibility in free space is often limited to a narrow bandwidth or only effective along a specific direction, especially for large targets. On the other hand, important experimental demonstrations of invisibility cloaks have already been given for cloaking under different circumstances[29–35]such as ground cloaks, often composed of metafluids with anisotropic mass density.[17,18]

    Other manners of wave manipulation,e.g.,wave-guiding and beam-steering,can be achieved similarly with coordinate transformation and metafluids. Previously, acoustic signals were usually transmitted with a straight waveguide in many applications,otherwise the wave would be reflected with a distorted wavefront due to diffraction or scattering. To guide an acoustic signal along a non-straight path[36]with low loss,one feasible manner is to construct a line defect in a phononic crystal. However, the waveguide mode corresponds to the defect modes of the phononic crystal,indicating the operating bandwidth is limited. A numerical demonstration of a metamaterial waveguide composed of alternating layered structures[37]was reported using a negative-index medium, but this is difficult to implement for broadband operation in practice. The metafluid-based waveguide[24]allowing for broadband operation is based on a radically different framework. The theoretical underpinning is applicable to other metafluid applications such as beam-shifting or beam-steering devices.[26]

    As acoustic metafluids show potential significance in various wave manipulation approaches, the impedance modulating method of such an anisotropic medium is worthy of further study. Because the velocity distribution plays a more important role in wave manipulation,[32,38]reduced parameters by scaling the desired values are often used to simplify the implementation,which has proven successful in many experimental results[31,32]and sometimes is even valid at quite high frequency ranges where the medium dispersion is already obvious,[38]but generally, the impedance mismatch inevitably affects the desired wave manipulation effect due to impedance mismatch.[34]In this case,the introduced subwavelength structures scatter the sound waves while leading the wave along a specific path. Sound-transparent anisotropic structure[38]was proposed to deal with this problem, but to date,the experimental implementation of such an artificial material with exactly the required acoustic parameters in a broad operating bandwidth still remains a challenge.

    In this paper, we analyze the scattering behavior of such anisotropic materials, and experimentally demonstrate the acoustic wave routing in 9 kHz–11 kHz through the anisotropic layers with negligible backscattering loss. The effective mass density and bulk modulus of the acoustic subwavelength anisotropic structures are independently modulated by tuning the unit configurations in proper order. The effective parameter range of the structures is broadened, so that the acoustic impedance of the anisotropic structure can be matched to the background medium to create an abnormal anisotropic sound-transparent effect. The anisotropic soundtransparent medium is implemented by properly arranging the subwavelength structures,and the sound-transparent effect is numerically and experimentally demonstrated in a bending waveguide, where the incident Gaussian pulse is allowed to transmit with its envelope and the wavefront nearly unchanged.

    2. Scattering behavior analysis

    For realizing the desired wave manipulation, the structures are usually designed with the technique of coordinate transformation and effective medium theory(EMT).As shown in Fig. 1(a), a cylinder composed of the metafluid is radiated by a plane acoustic wave with wavelength equal to the cylinder radius. If the actual parameters of the manufactured material strictly comply with the design requirements, acoustic waves could enter such an anisotropic medium with no reflection. It is assumed that the anisotropic medium is well coupled to the background and the anisotropy of its mass density is 2; then,according to transformation acoustics, the bulk modulus and the anisotropic mass density should beκ=κ0,ρx=1.4ρ0,andρy=0.7ρ0,to ensure the wave is not reflected at the interface.The numerical simulations in Fig.1 are performed by illuminating this anisotropic object with an incident acoustic plane wave from different directions,and the scattering pattern in the far-field is obtained using the exterior field calculation.The results(blue line)shown in Fig.1(b)reveal that the backscattering is nearly eliminated for the ideal medium with impedance matched to the background. This means the wave enters the medium with no scattering, but when it goes out from the anisotropic medium,strong forward scattering is observed due to phase mismatch between the sound fields inside and outside the metafluid. The corresponding results for other incident directions are calculated and shown in Figs. 1(c)–1(f), from which the same conclusion can be drawn. The backscattering(blue line)along the opposite direction of wave incidence is hardly observed for all the cases,indicating the unexpected feature of the metafluid that the impedance of the anisotropic medium has nothing to do with the direction. When the parameters are scaled by a factor of 2, the backscattering, although not strong, can be obviously observed (green lines),which means an extra scattered wave caused by impedance mismatch is added to the strong forward-scattered wave due to phase mismatch. There are two ways to deal with this forward scattering: guide the wave along a bent path without any scattering, i.e., by decreasing the beam width to a dimension much smaller than the metafluid, or transmit the signal in a waveguide, to avoid the phase mismatch at the interfaces of the metafluid and background when the wave exits.

    Fig.1. Scattered wave field for incident angles of 90?(a),45?(c),and 0?(e);and the far-field scattering pattern for incident angles of 90?(b),45?(d),and 0?(f). The incident direction is indicated with arrows.

    3. Sound-transparent anisotropic structures

    In order to demonstrate this effect, the following study is carried out in a waveguide. By proper design, an ideal bent waveguide made of sound-transparent anisotropic structures could guide incident sound waves through it without any scattering or reflection,and keep the wavefront unchanged as shown in Fig. 2. The acoustic field is calculated by solving a general partial differential equation with the density anisotropy taken into account. A 10 kHz plane wave is radiated at the leftmost end of the waveguide. The bent part is assumed to be symmetric and each half is composed of five segments with different bending angles. The bending angles can be arbitrary values only if the metafluid filled in the waveguide is properly designed according to the corresponding geometry configurations.When the waveguide is only filled with air,due to the scattering effect at the bent part,the sound wave will be reflected and the wavefront will be distorted.

    To eliminate the reflection and restore the plane wave field, the required effective parameter distribution is derived using coordinate transformation.[22,27]Suppose there is a straight waveguide as the mimicked target, with a 10 kHz plane wave traveling through, generating the desired plane wave fieldp1(r). However, in the real bent waveguide in the laboratory, the metafluid is required to manipulate the field into the mimicked one. Taking the second segment,for example, with a new coordinater′=q1u1+q2u2, due to the invariant feature of the Hamiltonian under coordinate transformation,[28]the desired sound field and wave equations in the bent waveguide can be mathematically rewritten. By properly choosing the new coordinates according to the geometric relations, the mathematical form of the two different acoustic systems can be the same, and the field in the virtual straight waveguidep1(r) can be mimicked by the metafluid in the bent waveguide. Then, by implementing the coordinate transformationr′→r,the required parameters in the bent waveguide under Cartesian coordinates are

    whereρ0andκ0are the mass density and bulk modulus of the air, which are assumed to be 1.29 kg/m3and 0.15 MPa,respectively.Q1andQ2are the metric factors defined asQi= (?x/?qi)+(?y/?qi). In this case, the two different systems will appear the same under detection. According to the geometric relationship betweenp1(r)andp1(r′),the vectors corresponding to the new coordinates areu1=cos(α)i+sin(α)j,u2=j,whereαis the bending angle.

    The parameter distribution for other segments can be similarly obtained as described above. The acoustic field obtained by numerical calculation is given in Fig. 2, indicating that plane waves can pass through the bent waveguide without reflection,and the wavefront remains unchanged parallel to they-axis. It can also be observed that in this special medium,the direction of the wave vector and the phase velocity, given by the pressure gradient,is the same as the group velocity direction in the background medium.[27],and can be written asc0i,while the group velocity in the metafluid isc0(i+tan(α)j).

    Fig. 2. Pressure field for the 10 kHz acoustic plane wave traveling through the desired low-reflection bent waveguide and the illustration of coordinate transformation.

    Fig. 3. (a) Unit with the rotated local axis; effective acoustic parameters of the anisotropic units when changing (b) l1, (c) temperature, and (d) frequency.

    In order to generate the temperature distribution in the waveguide as shown in Fig. 4(a), there are two possible methods.[38,40]One is to use thin tungsten wire to form a sound-transparent mesh to increase the temperature in a specific area,but it is difficult to form a stable temperature distribution.Here we adopt the water bath method.The central segments of the quasi-two-dimensional bent waveguide(the third dimension is much smaller than the wavelength)is immersed in hot water in a rectangular container,as shown in Fig.4(b).The required temperature(blue line)does not change smoothly at the interface of different segments, which is difficult to achieve in practice. However,fortunately,the acoustic parameters of the medium are not very sensitive to the temperature within a certain range, so the desired piecewise temperature distribution can be approximated with a gradually varied temperature distribution, as shown in Fig. 4(a). The numerical simulation is performed by radiating the 10 kHz plane wave from one end of the waveguide, and the results are given respectively in Figs.4(c)and 4(d). The pressure field is demonstrated when the 10 kHz plane wave passes through the designed system and an air-filled bent waveguide. In the absence of the sound-transparent medium,the wave field near the bent part is distorted and reflected as expected. After the designed structure is arranged in the bent part of the waveguide and immersed in hot water, the desired plane wave field is restored,and the undisturbed wavefront in Fig. 4(c) demonstrates that the impedance of the designed structure is well matched to air.The results are in good agreement with Fig.2. The wavefront guided by the designed structure is still parallel to they-axis.The wave vector and phase velocity are in the same direction as in the background medium, while the group velocity and the direction of the acoustic energy flow are parallel to the rigid wall of the waveguide.

    Fig.4. (a)Desired temperature distribution(blue)and simulated temperature distribution(red)in the waveguide with the water bath. (b)Schematic of the waveguide with the hot water container. Pressure field in the bent waveguide filled with metafluid(c)and air(d).

    In addition, the time-domain simulation results in Fig. 5 also demonstrate the sound-transparent feature of the designed metafluid and the abnormal transmission effect. The incident acoustic signal is assumed to be a 0.8 ms Gaussian pulse modulated by a 10 kHz sinusoidal signal. The transmitted signals of the bent waveguide filled with sound-transparent medium and filled with air are recorded at the four positions a–d marked in Fig. 4(c). As shown in Fig. 5, with the designed sound-transparent media (red), the scattered signal is suppressed, and the transmitted signal is maintained similar to the incident signal. As the detection position changes, the transmitted signal may be different, e.g., the scattered signal(blue) at point c is comparatively small due to the small amplitude of the scattering mode at this point. However, for all the cases, the delayed scattered signal always remains significantly smaller (red) than the results for the bent waveguide without the metafluid (blue) at the same location, indicating that the metafluid can lead the sound wave through the bent waveguide without obvious wave scattering or distortion. The averaged transmission spectrum calculated from the time domain results by Fourier transform is shown in Fig.5(b). Several minima of transmission (blue) can be observed at frequencies around 9 kHz and 11 kHz when no structures are filled in the waveguide,while the fluctuation of transmission is much smaller after the designed structures are arranged there(red). The valley in the transmission at around 9 kHz suggests that the acoustic wave in this frequency is reflected by the bending waveguide. This reflection is avoided after arranging the metafluid in the waveguide,suggesting the medium works well in the corresponding frequency range.

    The performance of the structures described above is also experimentally verified. The anisotropic structures, the waveguide, and the water container are fabricated with 3D printing as shown in Fig. 6. The photo in Fig. 6(b) is taken from one side of the waveguide to show the inside anisotropic structures. The signals are measured at the same positions as described above in Fig. 4. The 1/8 inch microphone is mounted in 3D printed shells fabricated with different mounting holes and filled with sound-absorbing foam. Changing the measuring position is done by changing different mounting shells. Still two cases are considered: the bent waveguide filled with air,and filled with the designed metafluid as shown in Figs.6(b)–6(c).Water at 318 K is pumped from the thermostat water bath to form water circulation through the container around the waveguide, so the water filled in the rectangular container surrounding the central part of the waveguide is expected to generate the desired temperature distribution in the waveguide. After the temperature in the waveguide becomes steady, the sinusoidal modulated 0.8 ms Gaussian pulse with 10 kHz central frequency is excited with an aluminum ribbon tweeter speaker at one end of the waveguide. The transmitted signal is received by the inserted microphone. the signals are then preamplified and recorded by the digital oscilloscope. A scheme and photo of the experimental setup are given in Figs. 6(a)–6(c), and the measured signals are shown in Fig.6(d).

    From the results shown in Fig.6(d),it can be seen that the waveguide filled with the designed metafluid(red)has a significantly reduced scattering signal compared with the waveguide without any structure inserted (blue), proving that the structure can guide the acoustic wave as expected, along the bent waveguide without distorting the signals. With the designed metafluid, the transmitted signals remain almost the same as the incident Gaussian pulse, while the signal pulse is obviously distorted and broadened by the bent part of the waveguide without metafluid. As shown in Fig. 6(e), the averaged spectral response is calculated from the measured signals in Fig.6(d).Through spectrum analysis,it is also verified that the sound energy at around 9 kHz is blocked by the bent waveguide with only air(blue)while the fluctuation of transmission becomes smaller after the designed metafluid is arranged(red).The difference between experiment and simulation is caused by some practical facts; e.g., the speaker is not an ideal line source,which is easy to implement in simulation but difficult to generate in practice. For all the cases, the eliminated scattering and the abnormal transmission effect demonstrate the good performance of the designed anisotropic structure in the bent waveguide.

    Fig.5. (a)Time domain simulation results: the transmitted signals at different positions of the bent waveguide filled with air(blue),and filled with the sound transparent metafluid(red). (b)Averaged transmission spectrum.

    Fig. 6. (a) Scheme of the experimental setup; (b) photo of the anisotropic structures and (c) setup; (d) measured signals at different positions of the bent waveguide filled with air(blue),and filled with the metafluid(red);(e)averaged spectral response calculated from the measured time-domain signals.

    4. Conclusion and perspectives

    In conclusion, we analyzed the scattering behavior of anisotropic subwavelength structures,and designed and experimentally implemented a sound-transparent metafluid by arranging the highly anisotropic structures in a bent waveguide.All the effective acoustic parameters of the medium were independently modulated by tuning the geometry of the anisotropic unit and the temperature distribution. Abnormal transmission of sound pulses in this sound-transparent metafluid was observed, showing that a 9 kHz–11 kHz wave can be guided along a bent path nearly uninfluenced with negligible scattering compared with the bent waveguide only filled with air.The ability to guide sound waves along a given path makes this design of practical value in applications such as sound wave steering and invisibility.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11974186, 11604153, and 61975080), the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20160818 and BK20200070),and the Open Research Foundation of Key Laboratory of Modern Acoustics,Ministry of Education.

    猜你喜歡
    秋雨
    秋雨
    長(zhǎng)城秋雨夕(節(jié)選)
    秋雨
    牡丹(2020年14期)2020-08-31 14:54:11
    秋雨
    秋雨
    這場(chǎng)秋雨有點(diǎn)甜
    秋雨
    秋雨
    記得告別時(shí)秋雨淅瀝
    黃河之聲(2017年19期)2017-12-16 16:25:23
    国产精品自产拍在线观看55亚洲 | 大片电影免费在线观看免费| 久久精品亚洲熟妇少妇任你| 精品国产一区二区三区四区第35| 久久99一区二区三区| 99久久精品国产亚洲精品| 午夜免费鲁丝| 欧美日韩亚洲高清精品| www.999成人在线观看| 99riav亚洲国产免费| 亚洲综合色网址| 午夜福利影视在线免费观看| 亚洲欧美色中文字幕在线| 久久久国产精品麻豆| 一级作爱视频免费观看| 日日摸夜夜添夜夜添小说| 亚洲中文字幕日韩| 精品一品国产午夜福利视频| 久久中文看片网| 欧美黑人精品巨大| 国产91精品成人一区二区三区| 欧美黄色片欧美黄色片| 亚洲,欧美精品.| 国产不卡av网站在线观看| 国产深夜福利视频在线观看| videos熟女内射| 久久久久久久国产电影| 伊人久久大香线蕉亚洲五| 国产成人欧美| 成人av一区二区三区在线看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品1区2区在线观看. | 99riav亚洲国产免费| 精品久久蜜臀av无| 亚洲欧美精品综合一区二区三区| 在线观看免费视频网站a站| а√天堂www在线а√下载 | 一本一本久久a久久精品综合妖精| 亚洲精品自拍成人| 免费av中文字幕在线| 国产乱人伦免费视频| 成年动漫av网址| 久久久久久久精品吃奶| 人人妻人人澡人人看| 午夜免费鲁丝| 黑人巨大精品欧美一区二区蜜桃| 久久人妻福利社区极品人妻图片| 国产单亲对白刺激| 免费在线观看视频国产中文字幕亚洲| avwww免费| 国产成人精品久久二区二区91| 久久久久久亚洲精品国产蜜桃av| 9热在线视频观看99| 精品视频人人做人人爽| 国产成人精品无人区| 大码成人一级视频| 少妇 在线观看| 另类亚洲欧美激情| 久久精品亚洲av国产电影网| 国产成人免费无遮挡视频| 日韩免费av在线播放| 国产三级黄色录像| 国产成人av教育| 看黄色毛片网站| 99久久人妻综合| 91成年电影在线观看| 亚洲人成伊人成综合网2020| 亚洲午夜理论影院| 黄网站色视频无遮挡免费观看| 嫩草影视91久久| 精品人妻1区二区| 精品人妻1区二区| 国产日韩欧美亚洲二区| 自线自在国产av| 精品久久久久久,| 亚洲国产精品sss在线观看 | 在线观看www视频免费| 成人av一区二区三区在线看| 纯流量卡能插随身wifi吗| 欧美+亚洲+日韩+国产| 久久亚洲精品不卡| a在线观看视频网站| 精品第一国产精品| 欧美日韩黄片免| 日韩三级视频一区二区三区| 在线观看日韩欧美| 不卡av一区二区三区| 日韩 欧美 亚洲 中文字幕| 欧美在线一区亚洲| www.熟女人妻精品国产| 久久久久久免费高清国产稀缺| 日本精品一区二区三区蜜桃| 午夜老司机福利片| 手机成人av网站| 国产免费av片在线观看野外av| a在线观看视频网站| 人人澡人人妻人| 不卡一级毛片| 香蕉丝袜av| 中出人妻视频一区二区| 麻豆乱淫一区二区| 国产亚洲欧美在线一区二区| 大片电影免费在线观看免费| 国产一区二区三区视频了| avwww免费| 精品久久久久久久毛片微露脸| 国产97色在线日韩免费| 久久香蕉精品热| 亚洲av美国av| 十分钟在线观看高清视频www| 亚洲专区字幕在线| 欧美激情 高清一区二区三区| 欧美色视频一区免费| xxxhd国产人妻xxx| 天天影视国产精品| 男人的好看免费观看在线视频 | 欧美日韩亚洲高清精品| 午夜福利在线免费观看网站| 欧美另类亚洲清纯唯美| 少妇粗大呻吟视频| 国产成人精品无人区| 正在播放国产对白刺激| 男人舔女人的私密视频| 亚洲欧美一区二区三区黑人| 精品第一国产精品| 婷婷精品国产亚洲av在线 | 精品少妇一区二区三区视频日本电影| 视频区欧美日本亚洲| 99热网站在线观看| 久久国产精品影院| 日韩视频一区二区在线观看| 久久久久精品国产欧美久久久| 亚洲精品国产区一区二| 18禁美女被吸乳视频| 国产精品免费大片| 日韩中文字幕欧美一区二区| 99国产综合亚洲精品| 国产亚洲欧美精品永久| 老汉色∧v一级毛片| 黑丝袜美女国产一区| 成熟少妇高潮喷水视频| 一进一出抽搐gif免费好疼 | 亚洲欧洲精品一区二区精品久久久| 久久久久久免费高清国产稀缺| 色94色欧美一区二区| 亚洲第一欧美日韩一区二区三区| 国产视频一区二区在线看| 日韩三级视频一区二区三区| 欧美黄色淫秽网站| 国产无遮挡羞羞视频在线观看| 久久香蕉国产精品| 校园春色视频在线观看| 伊人久久大香线蕉亚洲五| 亚洲欧美一区二区三区黑人| 成人影院久久| 国产野战对白在线观看| 如日韩欧美国产精品一区二区三区| 在线观看免费高清a一片| videos熟女内射| av超薄肉色丝袜交足视频| 亚洲情色 制服丝袜| 亚洲av成人不卡在线观看播放网| 又大又爽又粗| 高清欧美精品videossex| 欧美午夜高清在线| 很黄的视频免费| 亚洲午夜精品一区,二区,三区| 欧美午夜高清在线| 老司机午夜十八禁免费视频| 色老头精品视频在线观看| 一区二区日韩欧美中文字幕| 精品国产一区二区久久| 亚洲中文字幕日韩| 亚洲国产精品一区二区三区在线| 91精品国产国语对白视频| 搡老岳熟女国产| 国产精品偷伦视频观看了| 在线国产一区二区在线| 久久精品国产清高在天天线| 在线观看午夜福利视频| 国产aⅴ精品一区二区三区波| 黄色毛片三级朝国网站| 久久久久久免费高清国产稀缺| 午夜免费观看网址| 视频区欧美日本亚洲| 亚洲av日韩在线播放| 99精品久久久久人妻精品| 777米奇影视久久| 两个人看的免费小视频| 亚洲中文日韩欧美视频| 中文亚洲av片在线观看爽 | 日本撒尿小便嘘嘘汇集6| 熟女少妇亚洲综合色aaa.| 国产1区2区3区精品| 成人特级黄色片久久久久久久| 在线观看免费视频网站a站| 在线看a的网站| 国产精品免费大片| 久热爱精品视频在线9| 老熟妇仑乱视频hdxx| 人妻丰满熟妇av一区二区三区 | av免费在线观看网站| 精品久久久久久,| 亚洲性夜色夜夜综合| 女人精品久久久久毛片| 亚洲在线自拍视频| 12—13女人毛片做爰片一| 欧美日韩亚洲高清精品| 国产97色在线日韩免费| 一区二区三区国产精品乱码| 日本黄色视频三级网站网址 | 免费在线观看黄色视频的| 777米奇影视久久| 欧美 亚洲 国产 日韩一| 成人av一区二区三区在线看| 99在线人妻在线中文字幕 | 国产成人欧美| 在线免费观看的www视频| 最近最新免费中文字幕在线| av福利片在线| 亚洲综合色网址| 久久人妻av系列| 欧美乱码精品一区二区三区| 亚洲中文字幕日韩| 99国产极品粉嫩在线观看| 国产欧美日韩精品亚洲av| 天堂中文最新版在线下载| 最新的欧美精品一区二区| 黄片大片在线免费观看| 欧美亚洲 丝袜 人妻 在线| 成人18禁在线播放| 九色亚洲精品在线播放| 99re在线观看精品视频| 亚洲欧美激情综合另类| 欧美 日韩 精品 国产| 免费人成视频x8x8入口观看| 成人精品一区二区免费| 十八禁网站免费在线| av网站在线播放免费| 日韩免费av在线播放| 亚洲五月天丁香| 咕卡用的链子| 美女高潮喷水抽搐中文字幕| 国产精品永久免费网站| 在线视频色国产色| 极品人妻少妇av视频| 激情视频va一区二区三区| 免费观看人在逋| 9色porny在线观看| 日韩欧美一区二区三区在线观看 | 亚洲精品国产区一区二| 在线观看午夜福利视频| 一边摸一边抽搐一进一出视频| 黄色视频不卡| 9色porny在线观看| 热99久久久久精品小说推荐| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕制服av| 一边摸一边抽搐一进一小说 | 亚洲一区二区三区欧美精品| 亚洲午夜精品一区,二区,三区| 90打野战视频偷拍视频| 亚洲精品av麻豆狂野| 国产免费av片在线观看野外av| 国产97色在线日韩免费| 国产精品影院久久| 中文欧美无线码| 一本综合久久免费| 精品人妻在线不人妻| 狠狠婷婷综合久久久久久88av| 在线观看免费视频网站a站| 精品久久久久久久毛片微露脸| 青草久久国产| 免费在线观看日本一区| 日韩欧美国产一区二区入口| 女性生殖器流出的白浆| 一级片免费观看大全| 色尼玛亚洲综合影院| 韩国av一区二区三区四区| 少妇被粗大的猛进出69影院| 欧美日韩福利视频一区二区| 免费av中文字幕在线| 无限看片的www在线观看| 亚洲 国产 在线| 捣出白浆h1v1| 中国美女看黄片| 欧美中文综合在线视频| www日本在线高清视频| 婷婷精品国产亚洲av在线 | 欧美日韩亚洲国产一区二区在线观看 | 99国产极品粉嫩在线观看| 日韩三级视频一区二区三区| 99精品久久久久人妻精品| 亚洲在线自拍视频| 欧美成人午夜精品| 天天添夜夜摸| 免费看十八禁软件| 丰满迷人的少妇在线观看| 天堂俺去俺来也www色官网| 亚洲av美国av| 国产国语露脸激情在线看| 丁香六月欧美| 999久久久国产精品视频| 国产有黄有色有爽视频| 久久这里只有精品19| 国产成人精品久久二区二区免费| 国产又爽黄色视频| 十八禁人妻一区二区| 国产99久久九九免费精品| 激情视频va一区二区三区| 亚洲性夜色夜夜综合| 50天的宝宝边吃奶边哭怎么回事| 大型黄色视频在线免费观看| 日本黄色日本黄色录像| 日本五十路高清| 精品国产一区二区三区久久久樱花| 中文字幕色久视频| 欧美日韩av久久| 在线免费观看的www视频| 中文欧美无线码| 怎么达到女性高潮| 午夜视频精品福利| 成在线人永久免费视频| 在线av久久热| 黄色成人免费大全| 男女床上黄色一级片免费看| 国产精品美女特级片免费视频播放器 | netflix在线观看网站| 搡老岳熟女国产| 青草久久国产| 国产免费男女视频| 天堂中文最新版在线下载| 欧美日韩国产mv在线观看视频| 久久久久久久午夜电影 | 国产无遮挡羞羞视频在线观看| 国产精品久久视频播放| 久久国产精品影院| 高清毛片免费观看视频网站 | 老熟女久久久| 午夜老司机福利片| 女人高潮潮喷娇喘18禁视频| 十分钟在线观看高清视频www| 人人妻,人人澡人人爽秒播| 人人妻人人澡人人看| 飞空精品影院首页| 女警被强在线播放| 99国产极品粉嫩在线观看| 热99re8久久精品国产| 18禁观看日本| 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三区在线| 热99re8久久精品国产| 天天躁夜夜躁狠狠躁躁| 国产熟女午夜一区二区三区| 亚洲精品国产区一区二| av福利片在线| av线在线观看网站| 亚洲成a人片在线一区二区| 成人国产一区最新在线观看| 日本wwww免费看| 男人舔女人的私密视频| 国产麻豆69| 伊人久久大香线蕉亚洲五| 女警被强在线播放| 纯流量卡能插随身wifi吗| 在线观看日韩欧美| 99久久人妻综合| 免费在线观看亚洲国产| 午夜福利视频在线观看免费| 老司机福利观看| 午夜福利欧美成人| 法律面前人人平等表现在哪些方面| 亚洲片人在线观看| 国产aⅴ精品一区二区三区波| 18禁国产床啪视频网站| 怎么达到女性高潮| videosex国产| 99久久99久久久精品蜜桃| 五月开心婷婷网| 亚洲精品久久午夜乱码| 深夜精品福利| 91精品国产国语对白视频| videosex国产| 女人爽到高潮嗷嗷叫在线视频| 黑丝袜美女国产一区| 亚洲欧美一区二区三区久久| 叶爱在线成人免费视频播放| 亚洲va日本ⅴa欧美va伊人久久| 狠狠狠狠99中文字幕| 成年人午夜在线观看视频| 欧美精品人与动牲交sv欧美| 亚洲中文字幕日韩| 久久精品成人免费网站| 美国免费a级毛片| 国产一区二区三区综合在线观看| 精品午夜福利视频在线观看一区| 热re99久久精品国产66热6| 极品教师在线免费播放| 熟女少妇亚洲综合色aaa.| www.自偷自拍.com| 最新的欧美精品一区二区| 国产在视频线精品| 日本黄色日本黄色录像| 校园春色视频在线观看| 国产精品综合久久久久久久免费 | 在线观看66精品国产| 国产有黄有色有爽视频| 亚洲情色 制服丝袜| 亚洲国产看品久久| 国产成人av教育| 侵犯人妻中文字幕一二三四区| 中文字幕人妻丝袜制服| 黑人欧美特级aaaaaa片| tube8黄色片| 在线观看日韩欧美| 亚洲五月色婷婷综合| 欧美激情高清一区二区三区| 丰满迷人的少妇在线观看| 久久精品熟女亚洲av麻豆精品| 很黄的视频免费| 建设人人有责人人尽责人人享有的| 91av网站免费观看| 黄色a级毛片大全视频| av在线播放免费不卡| 国产麻豆69| 动漫黄色视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 人妻久久中文字幕网| 成人国产一区最新在线观看| 亚洲色图 男人天堂 中文字幕| 日韩中文字幕欧美一区二区| 日本一区二区免费在线视频| 波多野结衣av一区二区av| 国产亚洲欧美精品永久| 精品乱码久久久久久99久播| 99国产精品99久久久久| 国产有黄有色有爽视频| 国产精品1区2区在线观看. | 黄色成人免费大全| 波多野结衣一区麻豆| 亚洲av成人不卡在线观看播放网| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久人人做人人爽| 国产在线精品亚洲第一网站| 国产精品一区二区在线观看99| 高清欧美精品videossex| 啪啪无遮挡十八禁网站| 国产精品久久久久久精品古装| 热99re8久久精品国产| 欧美av亚洲av综合av国产av| 中出人妻视频一区二区| 女人被狂操c到高潮| 成人黄色视频免费在线看| 亚洲专区中文字幕在线| 大码成人一级视频| 亚洲成人国产一区在线观看| 在线观看免费高清a一片| 精品国产一区二区三区久久久樱花| 久久久久国产精品人妻aⅴ院 | 国产精品98久久久久久宅男小说| 欧美成狂野欧美在线观看| 精品电影一区二区在线| 99久久综合精品五月天人人| 精品乱码久久久久久99久播| 精品卡一卡二卡四卡免费| 亚洲一码二码三码区别大吗| 一级黄色大片毛片| 国产精品美女特级片免费视频播放器 | 男人操女人黄网站| 水蜜桃什么品种好| 午夜福利在线观看吧| 欧美日韩瑟瑟在线播放| 黑丝袜美女国产一区| 亚洲色图综合在线观看| 99精品欧美一区二区三区四区| 午夜成年电影在线免费观看| 久久精品熟女亚洲av麻豆精品| 中文字幕色久视频| 波多野结衣av一区二区av| 很黄的视频免费| ponron亚洲| 一级作爱视频免费观看| 欧美日韩黄片免| 成年人黄色毛片网站| 成人特级黄色片久久久久久久| 久久精品成人免费网站| 国产精品99久久99久久久不卡| 99国产精品一区二区蜜桃av | 黄色视频,在线免费观看| 久久 成人 亚洲| 亚洲中文av在线| 黄色毛片三级朝国网站| 大香蕉久久网| 亚洲色图综合在线观看| 久久香蕉国产精品| 久久国产亚洲av麻豆专区| 久久香蕉国产精品| 亚洲成人手机| 天天操日日干夜夜撸| 超碰97精品在线观看| 最新在线观看一区二区三区| 亚洲成人国产一区在线观看| 在线观看舔阴道视频| 一级,二级,三级黄色视频| 免费在线观看影片大全网站| 在线av久久热| 亚洲av美国av| 成人永久免费在线观看视频| 大香蕉久久成人网| 精品亚洲成国产av| 国产日韩一区二区三区精品不卡| 成在线人永久免费视频| 国产精品亚洲一级av第二区| 日韩一卡2卡3卡4卡2021年| 国产av一区二区精品久久| 日日摸夜夜添夜夜添小说| 男女下面插进去视频免费观看| 欧美日韩黄片免| 亚洲成国产人片在线观看| 日韩欧美三级三区| 久久精品亚洲精品国产色婷小说| 大香蕉久久成人网| 波多野结衣av一区二区av| 精品第一国产精品| 少妇裸体淫交视频免费看高清 | 亚洲专区中文字幕在线| 欧美中文综合在线视频| 亚洲av日韩精品久久久久久密| 下体分泌物呈黄色| 后天国语完整版免费观看| 国产在线观看jvid| 久久影院123| 国产三级黄色录像| 777久久人妻少妇嫩草av网站| av福利片在线| 久久精品aⅴ一区二区三区四区| 免费一级毛片在线播放高清视频 | 中文字幕人妻丝袜制服| 妹子高潮喷水视频| 亚洲成国产人片在线观看| 男女床上黄色一级片免费看| 欧美性长视频在线观看| 69精品国产乱码久久久| 一区福利在线观看| 热re99久久国产66热| 亚洲精品自拍成人| 免费看a级黄色片| 亚洲精品国产色婷婷电影| 成人亚洲精品一区在线观看| 黑人巨大精品欧美一区二区mp4| 无人区码免费观看不卡| 国产欧美日韩一区二区三| 在线观看舔阴道视频| 18禁裸乳无遮挡免费网站照片 | 女警被强在线播放| 国产免费av片在线观看野外av| 丝袜美足系列| 超色免费av| 亚洲国产毛片av蜜桃av| 久久青草综合色| 亚洲黑人精品在线| 丝瓜视频免费看黄片| 欧美精品av麻豆av| 欧美激情高清一区二区三区| 欧美亚洲日本最大视频资源| 熟女少妇亚洲综合色aaa.| 亚洲av日韩精品久久久久久密| 亚洲专区国产一区二区| 国产成人免费观看mmmm| 亚洲成av片中文字幕在线观看| 757午夜福利合集在线观看| 操出白浆在线播放| 国产高清激情床上av| 亚洲午夜理论影院| 青草久久国产| av在线播放免费不卡| 一区二区三区国产精品乱码| 这个男人来自地球电影免费观看| 亚洲少妇的诱惑av| 久久热在线av| 大型av网站在线播放| 久久久久久久国产电影| 正在播放国产对白刺激| 少妇裸体淫交视频免费看高清 | 啦啦啦免费观看视频1| 丁香六月欧美| 18在线观看网站| 欧美精品高潮呻吟av久久| 日日爽夜夜爽网站| 又大又爽又粗| 天天影视国产精品| 亚洲avbb在线观看| 国产欧美亚洲国产| 亚洲国产精品合色在线| 国产精品美女特级片免费视频播放器 | 国产成人免费无遮挡视频| 亚洲精品自拍成人| 欧美av亚洲av综合av国产av| 日日爽夜夜爽网站| 最新的欧美精品一区二区| 在线观看一区二区三区激情| 国内久久婷婷六月综合欲色啪| 老司机影院毛片| 999精品在线视频| svipshipincom国产片| 国内毛片毛片毛片毛片毛片| 少妇粗大呻吟视频| 国产人伦9x9x在线观看| 男女免费视频国产| 99久久人妻综合| 怎么达到女性高潮| 中亚洲国语对白在线视频| 极品少妇高潮喷水抽搐| 脱女人内裤的视频| 久久久久国内视频|