• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sound-transparent anisotropic media for backscattering-immune wave manipulation

    2022-08-31 09:57:18WeiWeiKan闞威威QiuYuLi李秋雨andLeiPan潘蕾
    Chinese Physics B 2022年8期
    關(guān)鍵詞:秋雨

    Wei-Wei Kan(闞威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾)

    School of Science,Nanjing University of Science and Technology,Nanjing 210094,China

    Keywords: sound-transparent anisotropic media,acoustic bending waveguide,transformation acoustics

    1. Introduction

    Acoustic metamaterials are usually periodically arranged subwavelength structures[1–11]with acoustic properties that do not exist in nature, such as negative bulk modulus[2,12]and anisotropic mass density.[13–18]A metamaterial with anisotropic mass density is often named a metafluid[19–22]and implemented by periodically arranging subwavelength anisotropic structures in the matrix medium. Due to their possible applications in acoustic invisibility,[22]waveguiding,[23,24]and beam-splitting,[25]metafluids have attracted increasing attention. Acoustic invisibility, the technique to prevent incident waves from being affected by scattering objects,is one of the most discussed topics in this field.Coordinate transformation[26–28]is the most popular method to design such an invisibility cloak. Nevertheless, the required extreme material parameters are usually difficult to implement in broadband. Acoustic invisibility in free space is often limited to a narrow bandwidth or only effective along a specific direction, especially for large targets. On the other hand, important experimental demonstrations of invisibility cloaks have already been given for cloaking under different circumstances[29–35]such as ground cloaks, often composed of metafluids with anisotropic mass density.[17,18]

    Other manners of wave manipulation,e.g.,wave-guiding and beam-steering,can be achieved similarly with coordinate transformation and metafluids. Previously, acoustic signals were usually transmitted with a straight waveguide in many applications,otherwise the wave would be reflected with a distorted wavefront due to diffraction or scattering. To guide an acoustic signal along a non-straight path[36]with low loss,one feasible manner is to construct a line defect in a phononic crystal. However, the waveguide mode corresponds to the defect modes of the phononic crystal,indicating the operating bandwidth is limited. A numerical demonstration of a metamaterial waveguide composed of alternating layered structures[37]was reported using a negative-index medium, but this is difficult to implement for broadband operation in practice. The metafluid-based waveguide[24]allowing for broadband operation is based on a radically different framework. The theoretical underpinning is applicable to other metafluid applications such as beam-shifting or beam-steering devices.[26]

    As acoustic metafluids show potential significance in various wave manipulation approaches, the impedance modulating method of such an anisotropic medium is worthy of further study. Because the velocity distribution plays a more important role in wave manipulation,[32,38]reduced parameters by scaling the desired values are often used to simplify the implementation,which has proven successful in many experimental results[31,32]and sometimes is even valid at quite high frequency ranges where the medium dispersion is already obvious,[38]but generally, the impedance mismatch inevitably affects the desired wave manipulation effect due to impedance mismatch.[34]In this case,the introduced subwavelength structures scatter the sound waves while leading the wave along a specific path. Sound-transparent anisotropic structure[38]was proposed to deal with this problem, but to date,the experimental implementation of such an artificial material with exactly the required acoustic parameters in a broad operating bandwidth still remains a challenge.

    In this paper, we analyze the scattering behavior of such anisotropic materials, and experimentally demonstrate the acoustic wave routing in 9 kHz–11 kHz through the anisotropic layers with negligible backscattering loss. The effective mass density and bulk modulus of the acoustic subwavelength anisotropic structures are independently modulated by tuning the unit configurations in proper order. The effective parameter range of the structures is broadened, so that the acoustic impedance of the anisotropic structure can be matched to the background medium to create an abnormal anisotropic sound-transparent effect. The anisotropic soundtransparent medium is implemented by properly arranging the subwavelength structures,and the sound-transparent effect is numerically and experimentally demonstrated in a bending waveguide, where the incident Gaussian pulse is allowed to transmit with its envelope and the wavefront nearly unchanged.

    2. Scattering behavior analysis

    For realizing the desired wave manipulation, the structures are usually designed with the technique of coordinate transformation and effective medium theory(EMT).As shown in Fig. 1(a), a cylinder composed of the metafluid is radiated by a plane acoustic wave with wavelength equal to the cylinder radius. If the actual parameters of the manufactured material strictly comply with the design requirements, acoustic waves could enter such an anisotropic medium with no reflection. It is assumed that the anisotropic medium is well coupled to the background and the anisotropy of its mass density is 2; then,according to transformation acoustics, the bulk modulus and the anisotropic mass density should beκ=κ0,ρx=1.4ρ0,andρy=0.7ρ0,to ensure the wave is not reflected at the interface.The numerical simulations in Fig.1 are performed by illuminating this anisotropic object with an incident acoustic plane wave from different directions,and the scattering pattern in the far-field is obtained using the exterior field calculation.The results(blue line)shown in Fig.1(b)reveal that the backscattering is nearly eliminated for the ideal medium with impedance matched to the background. This means the wave enters the medium with no scattering, but when it goes out from the anisotropic medium,strong forward scattering is observed due to phase mismatch between the sound fields inside and outside the metafluid. The corresponding results for other incident directions are calculated and shown in Figs. 1(c)–1(f), from which the same conclusion can be drawn. The backscattering(blue line)along the opposite direction of wave incidence is hardly observed for all the cases,indicating the unexpected feature of the metafluid that the impedance of the anisotropic medium has nothing to do with the direction. When the parameters are scaled by a factor of 2, the backscattering, although not strong, can be obviously observed (green lines),which means an extra scattered wave caused by impedance mismatch is added to the strong forward-scattered wave due to phase mismatch. There are two ways to deal with this forward scattering: guide the wave along a bent path without any scattering, i.e., by decreasing the beam width to a dimension much smaller than the metafluid, or transmit the signal in a waveguide, to avoid the phase mismatch at the interfaces of the metafluid and background when the wave exits.

    Fig.1. Scattered wave field for incident angles of 90?(a),45?(c),and 0?(e);and the far-field scattering pattern for incident angles of 90?(b),45?(d),and 0?(f). The incident direction is indicated with arrows.

    3. Sound-transparent anisotropic structures

    In order to demonstrate this effect, the following study is carried out in a waveguide. By proper design, an ideal bent waveguide made of sound-transparent anisotropic structures could guide incident sound waves through it without any scattering or reflection,and keep the wavefront unchanged as shown in Fig. 2. The acoustic field is calculated by solving a general partial differential equation with the density anisotropy taken into account. A 10 kHz plane wave is radiated at the leftmost end of the waveguide. The bent part is assumed to be symmetric and each half is composed of five segments with different bending angles. The bending angles can be arbitrary values only if the metafluid filled in the waveguide is properly designed according to the corresponding geometry configurations.When the waveguide is only filled with air,due to the scattering effect at the bent part,the sound wave will be reflected and the wavefront will be distorted.

    To eliminate the reflection and restore the plane wave field, the required effective parameter distribution is derived using coordinate transformation.[22,27]Suppose there is a straight waveguide as the mimicked target, with a 10 kHz plane wave traveling through, generating the desired plane wave fieldp1(r). However, in the real bent waveguide in the laboratory, the metafluid is required to manipulate the field into the mimicked one. Taking the second segment,for example, with a new coordinater′=q1u1+q2u2, due to the invariant feature of the Hamiltonian under coordinate transformation,[28]the desired sound field and wave equations in the bent waveguide can be mathematically rewritten. By properly choosing the new coordinates according to the geometric relations, the mathematical form of the two different acoustic systems can be the same, and the field in the virtual straight waveguidep1(r) can be mimicked by the metafluid in the bent waveguide. Then, by implementing the coordinate transformationr′→r,the required parameters in the bent waveguide under Cartesian coordinates are

    whereρ0andκ0are the mass density and bulk modulus of the air, which are assumed to be 1.29 kg/m3and 0.15 MPa,respectively.Q1andQ2are the metric factors defined asQi= (?x/?qi)+(?y/?qi). In this case, the two different systems will appear the same under detection. According to the geometric relationship betweenp1(r)andp1(r′),the vectors corresponding to the new coordinates areu1=cos(α)i+sin(α)j,u2=j,whereαis the bending angle.

    The parameter distribution for other segments can be similarly obtained as described above. The acoustic field obtained by numerical calculation is given in Fig. 2, indicating that plane waves can pass through the bent waveguide without reflection,and the wavefront remains unchanged parallel to they-axis. It can also be observed that in this special medium,the direction of the wave vector and the phase velocity, given by the pressure gradient,is the same as the group velocity direction in the background medium.[27],and can be written asc0i,while the group velocity in the metafluid isc0(i+tan(α)j).

    Fig. 2. Pressure field for the 10 kHz acoustic plane wave traveling through the desired low-reflection bent waveguide and the illustration of coordinate transformation.

    Fig. 3. (a) Unit with the rotated local axis; effective acoustic parameters of the anisotropic units when changing (b) l1, (c) temperature, and (d) frequency.

    In order to generate the temperature distribution in the waveguide as shown in Fig. 4(a), there are two possible methods.[38,40]One is to use thin tungsten wire to form a sound-transparent mesh to increase the temperature in a specific area,but it is difficult to form a stable temperature distribution.Here we adopt the water bath method.The central segments of the quasi-two-dimensional bent waveguide(the third dimension is much smaller than the wavelength)is immersed in hot water in a rectangular container,as shown in Fig.4(b).The required temperature(blue line)does not change smoothly at the interface of different segments, which is difficult to achieve in practice. However,fortunately,the acoustic parameters of the medium are not very sensitive to the temperature within a certain range, so the desired piecewise temperature distribution can be approximated with a gradually varied temperature distribution, as shown in Fig. 4(a). The numerical simulation is performed by radiating the 10 kHz plane wave from one end of the waveguide, and the results are given respectively in Figs.4(c)and 4(d). The pressure field is demonstrated when the 10 kHz plane wave passes through the designed system and an air-filled bent waveguide. In the absence of the sound-transparent medium,the wave field near the bent part is distorted and reflected as expected. After the designed structure is arranged in the bent part of the waveguide and immersed in hot water, the desired plane wave field is restored,and the undisturbed wavefront in Fig. 4(c) demonstrates that the impedance of the designed structure is well matched to air.The results are in good agreement with Fig.2. The wavefront guided by the designed structure is still parallel to they-axis.The wave vector and phase velocity are in the same direction as in the background medium, while the group velocity and the direction of the acoustic energy flow are parallel to the rigid wall of the waveguide.

    Fig.4. (a)Desired temperature distribution(blue)and simulated temperature distribution(red)in the waveguide with the water bath. (b)Schematic of the waveguide with the hot water container. Pressure field in the bent waveguide filled with metafluid(c)and air(d).

    In addition, the time-domain simulation results in Fig. 5 also demonstrate the sound-transparent feature of the designed metafluid and the abnormal transmission effect. The incident acoustic signal is assumed to be a 0.8 ms Gaussian pulse modulated by a 10 kHz sinusoidal signal. The transmitted signals of the bent waveguide filled with sound-transparent medium and filled with air are recorded at the four positions a–d marked in Fig. 4(c). As shown in Fig. 5, with the designed sound-transparent media (red), the scattered signal is suppressed, and the transmitted signal is maintained similar to the incident signal. As the detection position changes, the transmitted signal may be different, e.g., the scattered signal(blue) at point c is comparatively small due to the small amplitude of the scattering mode at this point. However, for all the cases, the delayed scattered signal always remains significantly smaller (red) than the results for the bent waveguide without the metafluid (blue) at the same location, indicating that the metafluid can lead the sound wave through the bent waveguide without obvious wave scattering or distortion. The averaged transmission spectrum calculated from the time domain results by Fourier transform is shown in Fig.5(b). Several minima of transmission (blue) can be observed at frequencies around 9 kHz and 11 kHz when no structures are filled in the waveguide,while the fluctuation of transmission is much smaller after the designed structures are arranged there(red). The valley in the transmission at around 9 kHz suggests that the acoustic wave in this frequency is reflected by the bending waveguide. This reflection is avoided after arranging the metafluid in the waveguide,suggesting the medium works well in the corresponding frequency range.

    The performance of the structures described above is also experimentally verified. The anisotropic structures, the waveguide, and the water container are fabricated with 3D printing as shown in Fig. 6. The photo in Fig. 6(b) is taken from one side of the waveguide to show the inside anisotropic structures. The signals are measured at the same positions as described above in Fig. 4. The 1/8 inch microphone is mounted in 3D printed shells fabricated with different mounting holes and filled with sound-absorbing foam. Changing the measuring position is done by changing different mounting shells. Still two cases are considered: the bent waveguide filled with air,and filled with the designed metafluid as shown in Figs.6(b)–6(c).Water at 318 K is pumped from the thermostat water bath to form water circulation through the container around the waveguide, so the water filled in the rectangular container surrounding the central part of the waveguide is expected to generate the desired temperature distribution in the waveguide. After the temperature in the waveguide becomes steady, the sinusoidal modulated 0.8 ms Gaussian pulse with 10 kHz central frequency is excited with an aluminum ribbon tweeter speaker at one end of the waveguide. The transmitted signal is received by the inserted microphone. the signals are then preamplified and recorded by the digital oscilloscope. A scheme and photo of the experimental setup are given in Figs. 6(a)–6(c), and the measured signals are shown in Fig.6(d).

    From the results shown in Fig.6(d),it can be seen that the waveguide filled with the designed metafluid(red)has a significantly reduced scattering signal compared with the waveguide without any structure inserted (blue), proving that the structure can guide the acoustic wave as expected, along the bent waveguide without distorting the signals. With the designed metafluid, the transmitted signals remain almost the same as the incident Gaussian pulse, while the signal pulse is obviously distorted and broadened by the bent part of the waveguide without metafluid. As shown in Fig. 6(e), the averaged spectral response is calculated from the measured signals in Fig.6(d).Through spectrum analysis,it is also verified that the sound energy at around 9 kHz is blocked by the bent waveguide with only air(blue)while the fluctuation of transmission becomes smaller after the designed metafluid is arranged(red).The difference between experiment and simulation is caused by some practical facts; e.g., the speaker is not an ideal line source,which is easy to implement in simulation but difficult to generate in practice. For all the cases, the eliminated scattering and the abnormal transmission effect demonstrate the good performance of the designed anisotropic structure in the bent waveguide.

    Fig.5. (a)Time domain simulation results: the transmitted signals at different positions of the bent waveguide filled with air(blue),and filled with the sound transparent metafluid(red). (b)Averaged transmission spectrum.

    Fig. 6. (a) Scheme of the experimental setup; (b) photo of the anisotropic structures and (c) setup; (d) measured signals at different positions of the bent waveguide filled with air(blue),and filled with the metafluid(red);(e)averaged spectral response calculated from the measured time-domain signals.

    4. Conclusion and perspectives

    In conclusion, we analyzed the scattering behavior of anisotropic subwavelength structures,and designed and experimentally implemented a sound-transparent metafluid by arranging the highly anisotropic structures in a bent waveguide.All the effective acoustic parameters of the medium were independently modulated by tuning the geometry of the anisotropic unit and the temperature distribution. Abnormal transmission of sound pulses in this sound-transparent metafluid was observed, showing that a 9 kHz–11 kHz wave can be guided along a bent path nearly uninfluenced with negligible scattering compared with the bent waveguide only filled with air.The ability to guide sound waves along a given path makes this design of practical value in applications such as sound wave steering and invisibility.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11974186, 11604153, and 61975080), the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20160818 and BK20200070),and the Open Research Foundation of Key Laboratory of Modern Acoustics,Ministry of Education.

    猜你喜歡
    秋雨
    秋雨
    長(zhǎng)城秋雨夕(節(jié)選)
    秋雨
    牡丹(2020年14期)2020-08-31 14:54:11
    秋雨
    秋雨
    這場(chǎng)秋雨有點(diǎn)甜
    秋雨
    秋雨
    記得告別時(shí)秋雨淅瀝
    黃河之聲(2017年19期)2017-12-16 16:25:23
    在线免费十八禁| 国产精品av视频在线免费观看| 亚洲欧美精品自产自拍| 久久久久国产网址| 国产成人一区二区在线| 午夜精品一区二区三区免费看| 别揉我奶头 嗯啊视频| 久久久a久久爽久久v久久| 在线观看人妻少妇| 又黄又爽又刺激的免费视频.| 欧美成人午夜免费资源| 在线免费观看不下载黄p国产| 亚洲精品日本国产第一区| 熟女人妻精品中文字幕| 亚洲精品成人av观看孕妇| 99热6这里只有精品| 一级黄片播放器| 国产黄色视频一区二区在线观看| 啦啦啦中文免费视频观看日本| 中国国产av一级| 色综合站精品国产| 国产成年人精品一区二区| 亚洲精品色激情综合| 日本猛色少妇xxxxx猛交久久| 男女国产视频网站| 黑人高潮一二区| 亚洲熟妇中文字幕五十中出| 日本猛色少妇xxxxx猛交久久| 亚洲自偷自拍三级| 精品一区在线观看国产| 噜噜噜噜噜久久久久久91| 国产精品久久久久久精品电影| 久久久久久久久大av| 久久久久久伊人网av| 国产精品久久久久久精品电影| 免费av毛片视频| 亚洲怡红院男人天堂| 久久久久精品久久久久真实原创| 久久精品夜夜夜夜夜久久蜜豆| 自拍偷自拍亚洲精品老妇| 久久精品国产自在天天线| 婷婷色综合大香蕉| 国内揄拍国产精品人妻在线| 美女黄网站色视频| 国产亚洲5aaaaa淫片| 三级国产精品欧美在线观看| 天天躁夜夜躁狠狠久久av| 成人毛片a级毛片在线播放| 国产免费一级a男人的天堂| 国产精品一区二区在线观看99 | 久久久久性生活片| 青春草国产在线视频| 三级毛片av免费| 成年免费大片在线观看| 九九爱精品视频在线观看| 一级爰片在线观看| 国产精品人妻久久久久久| 人妻一区二区av| 欧美日本视频| 黄色配什么色好看| 成人亚洲欧美一区二区av| 国产精品国产三级专区第一集| 男女下面进入的视频免费午夜| 日韩av免费高清视频| 日韩av在线大香蕉| 国产中年淑女户外野战色| 亚洲av在线观看美女高潮| 丝袜喷水一区| 精品少妇黑人巨大在线播放| 大陆偷拍与自拍| 国产极品天堂在线| 色吧在线观看| 亚洲精品色激情综合| 亚洲欧美日韩无卡精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一二三四中文在线观看免费高清| av在线天堂中文字幕| 欧美成人一区二区免费高清观看| 大香蕉97超碰在线| 成人二区视频| 中文字幕人妻熟人妻熟丝袜美| 精品久久久噜噜| 80岁老熟妇乱子伦牲交| 成人亚洲精品一区在线观看 | 国产视频首页在线观看| 免费不卡的大黄色大毛片视频在线观看 | 国产午夜精品久久久久久一区二区三区| 中文字幕av成人在线电影| 国产一区二区三区av在线| 午夜福利在线观看免费完整高清在| 国产高潮美女av| 亚洲国产精品sss在线观看| 热99在线观看视频| 丰满人妻一区二区三区视频av| 国产视频首页在线观看| 亚洲最大成人av| 91在线精品国自产拍蜜月| 久久6这里有精品| 丰满少妇做爰视频| av女优亚洲男人天堂| 免费在线观看成人毛片| 成人亚洲精品av一区二区| 黄色欧美视频在线观看| 伦精品一区二区三区| 欧美激情久久久久久爽电影| 在线a可以看的网站| 中文字幕av成人在线电影| 日韩不卡一区二区三区视频在线| 777米奇影视久久| 久久精品久久精品一区二区三区| 免费观看的影片在线观看| 午夜激情福利司机影院| av黄色大香蕉| 成人一区二区视频在线观看| 国产一区二区三区综合在线观看 | 99久久中文字幕三级久久日本| av一本久久久久| 国产黄片视频在线免费观看| 精品久久久精品久久久| 国产中年淑女户外野战色| 99久国产av精品| 一级爰片在线观看| 久久久欧美国产精品| 欧美激情国产日韩精品一区| 亚洲成人av在线免费| 国产极品天堂在线| 亚洲美女视频黄频| 91久久精品国产一区二区三区| 少妇猛男粗大的猛烈进出视频 | 国产在视频线精品| 免费在线观看成人毛片| 亚洲天堂国产精品一区在线| 啦啦啦韩国在线观看视频| 麻豆成人av视频| 国产午夜福利久久久久久| 婷婷色麻豆天堂久久| 亚洲国产精品sss在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人毛片60女人毛片免费| 91aial.com中文字幕在线观看| xxx大片免费视频| 国产高清有码在线观看视频| 大香蕉97超碰在线| 国产精品美女特级片免费视频播放器| 狠狠精品人妻久久久久久综合| 天堂av国产一区二区熟女人妻| 80岁老熟妇乱子伦牲交| 日日摸夜夜添夜夜添av毛片| 亚洲第一区二区三区不卡| av播播在线观看一区| 777米奇影视久久| 久久韩国三级中文字幕| 简卡轻食公司| 亚洲美女搞黄在线观看| 可以在线观看毛片的网站| h日本视频在线播放| 熟女电影av网| 黄片无遮挡物在线观看| 国产一区亚洲一区在线观看| 偷拍熟女少妇极品色| 久久久久网色| 欧美高清性xxxxhd video| 久久精品熟女亚洲av麻豆精品 | 久久这里只有精品中国| 久久精品综合一区二区三区| 精品久久久精品久久久| 亚洲不卡免费看| 91精品一卡2卡3卡4卡| 国产成人精品久久久久久| eeuss影院久久| 搡老乐熟女国产| 2021少妇久久久久久久久久久| 内地一区二区视频在线| 久久精品国产亚洲av涩爱| 男女啪啪激烈高潮av片| 日韩三级伦理在线观看| 国语对白做爰xxxⅹ性视频网站| 蜜桃亚洲精品一区二区三区| 小蜜桃在线观看免费完整版高清| 精品熟女少妇av免费看| 久久久久久伊人网av| 亚洲精品久久午夜乱码| 国产黄色视频一区二区在线观看| 又黄又爽又刺激的免费视频.| 伦理电影大哥的女人| 日韩av不卡免费在线播放| 久久久久久久久久黄片| 毛片一级片免费看久久久久| 久久久久久久大尺度免费视频| 99久国产av精品| 中文字幕免费在线视频6| 小蜜桃在线观看免费完整版高清| h日本视频在线播放| 亚洲国产精品sss在线观看| 狂野欧美激情性xxxx在线观看| 在现免费观看毛片| 久久久a久久爽久久v久久| 波野结衣二区三区在线| 国产午夜精品久久久久久一区二区三区| 国产男人的电影天堂91| 好男人视频免费观看在线| 一级av片app| 国产伦一二天堂av在线观看| 日日啪夜夜撸| 一级片'在线观看视频| 性插视频无遮挡在线免费观看| 99热这里只有是精品在线观看| 18+在线观看网站| 亚洲第一区二区三区不卡| 热99在线观看视频| 欧美成人a在线观看| 极品教师在线视频| 91狼人影院| 亚洲精品,欧美精品| 亚洲精品国产成人久久av| 狂野欧美白嫩少妇大欣赏| 亚洲在线观看片| 国产av码专区亚洲av| 亚洲av男天堂| 国产成人a∨麻豆精品| 如何舔出高潮| 日韩国内少妇激情av| 久久国产乱子免费精品| 麻豆国产97在线/欧美| 在线 av 中文字幕| 国产精品麻豆人妻色哟哟久久 | 欧美日韩视频高清一区二区三区二| 在线免费十八禁| 亚洲丝袜综合中文字幕| 国产免费福利视频在线观看| 我的女老师完整版在线观看| 插阴视频在线观看视频| av黄色大香蕉| 国产精品1区2区在线观看.| 精品一区二区免费观看| 大片免费播放器 马上看| 欧美成人精品欧美一级黄| 熟妇人妻久久中文字幕3abv| 免费高清在线观看视频在线观看| av在线天堂中文字幕| 久久精品久久久久久久性| 亚洲欧美成人精品一区二区| 日韩av不卡免费在线播放| 精品久久久久久久久av| 禁无遮挡网站| 亚洲在线观看片| 免费观看av网站的网址| 我的女老师完整版在线观看| 高清欧美精品videossex| 国产精品麻豆人妻色哟哟久久 | 日韩av在线大香蕉| 丝瓜视频免费看黄片| 人人妻人人澡人人爽人人夜夜 | 欧美日韩国产mv在线观看视频 | 男女边吃奶边做爰视频| 三级毛片av免费| 少妇的逼水好多| 成人毛片a级毛片在线播放| 麻豆国产97在线/欧美| 午夜激情欧美在线| 色5月婷婷丁香| 91av网一区二区| 美女内射精品一级片tv| 亚洲av在线观看美女高潮| 久久久久久久久久人人人人人人| 亚洲怡红院男人天堂| 欧美xxⅹ黑人| eeuss影院久久| 亚洲国产最新在线播放| 国产探花在线观看一区二区| 一区二区三区高清视频在线| 亚洲伊人久久精品综合| 最后的刺客免费高清国语| 真实男女啪啪啪动态图| 免费av不卡在线播放| 美女国产视频在线观看| 2021少妇久久久久久久久久久| 欧美一级a爱片免费观看看| 永久免费av网站大全| 丰满乱子伦码专区| 少妇熟女欧美另类| 99re6热这里在线精品视频| 亚洲欧美日韩无卡精品| 久久精品久久精品一区二区三区| 蜜桃久久精品国产亚洲av| 亚洲电影在线观看av| 又粗又硬又长又爽又黄的视频| 精品欧美国产一区二区三| 国产午夜精品一二区理论片| 日韩一本色道免费dvd| 久久综合国产亚洲精品| 欧美丝袜亚洲另类| 日本一本二区三区精品| 久久热精品热| 超碰av人人做人人爽久久| 国产91av在线免费观看| 色网站视频免费| 国产精品人妻久久久影院| 简卡轻食公司| 国产又色又爽无遮挡免| 久久精品国产自在天天线| 成人无遮挡网站| 尤物成人国产欧美一区二区三区| 精品熟女少妇av免费看| 国产亚洲午夜精品一区二区久久 | 日韩 亚洲 欧美在线| 久久久欧美国产精品| 国产亚洲5aaaaa淫片| 少妇的逼好多水| 亚洲高清免费不卡视频| 亚洲天堂国产精品一区在线| av在线亚洲专区| 黄片无遮挡物在线观看| 91精品伊人久久大香线蕉| 亚洲在线观看片| 欧美区成人在线视频| 国产成人精品婷婷| a级毛色黄片| 人人妻人人澡人人爽人人夜夜 | 99久国产av精品国产电影| a级一级毛片免费在线观看| 亚洲精品乱码久久久久久按摩| 国产黄片视频在线免费观看| 又爽又黄a免费视频| 成人毛片60女人毛片免费| 乱人视频在线观看| 晚上一个人看的免费电影| 三级经典国产精品| 五月玫瑰六月丁香| 久久精品久久久久久久性| 日韩,欧美,国产一区二区三区| 一级毛片 在线播放| 99热6这里只有精品| 成人高潮视频无遮挡免费网站| 亚洲精品乱久久久久久| 国产黄色视频一区二区在线观看| 国产一区二区三区综合在线观看 | 亚洲成人久久爱视频| 亚洲性久久影院| 免费av毛片视频| 精品一区二区三区视频在线| 麻豆成人av视频| 亚洲国产精品专区欧美| 熟女人妻精品中文字幕| 看免费成人av毛片| 高清日韩中文字幕在线| 成年人午夜在线观看视频 | 午夜福利在线在线| 免费大片18禁| 中文字幕免费在线视频6| 永久免费av网站大全| 校园人妻丝袜中文字幕| 亚洲人成网站高清观看| 深夜a级毛片| 日日摸夜夜添夜夜爱| 中文在线观看免费www的网站| 日韩av在线免费看完整版不卡| 久久97久久精品| 又黄又爽又刺激的免费视频.| 久久久亚洲精品成人影院| 日韩av在线大香蕉| 国产免费又黄又爽又色| 深夜a级毛片| 美女cb高潮喷水在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲精品日韩av片在线观看| 好男人在线观看高清免费视频| 在线播放无遮挡| 亚洲国产精品专区欧美| 亚洲人与动物交配视频| h日本视频在线播放| 一边亲一边摸免费视频| 国产精品久久久久久久久免| 肉色欧美久久久久久久蜜桃 | 久久久精品94久久精品| 又爽又黄无遮挡网站| 免费观看av网站的网址| 成人漫画全彩无遮挡| videos熟女内射| 国产三级在线视频| 最近手机中文字幕大全| 赤兔流量卡办理| 亚洲国产精品专区欧美| 亚洲欧美一区二区三区国产| 中文资源天堂在线| 我的女老师完整版在线观看| 免费看日本二区| 国产女主播在线喷水免费视频网站 | 69av精品久久久久久| 久久久久久久亚洲中文字幕| 2021天堂中文幕一二区在线观| 日韩亚洲欧美综合| 久久久久免费精品人妻一区二区| 精品一区二区免费观看| 麻豆乱淫一区二区| 成人亚洲精品一区在线观看 | 国产精品伦人一区二区| 午夜福利在线观看免费完整高清在| 久久综合国产亚洲精品| 色综合亚洲欧美另类图片| 日韩欧美精品免费久久| 黄色欧美视频在线观看| 婷婷色综合大香蕉| 亚洲国产精品成人久久小说| 天天一区二区日本电影三级| 在线免费观看的www视频| 男人狂女人下面高潮的视频| .国产精品久久| 亚洲精品国产成人久久av| 国产大屁股一区二区在线视频| 美女大奶头视频| av女优亚洲男人天堂| 亚洲经典国产精华液单| 嫩草影院精品99| 精品久久久噜噜| 国内揄拍国产精品人妻在线| 熟女人妻精品中文字幕| 黄色配什么色好看| 国产一区二区亚洲精品在线观看| 干丝袜人妻中文字幕| 午夜福利网站1000一区二区三区| 青青草视频在线视频观看| videos熟女内射| 国产 一区精品| 亚洲精品第二区| 人体艺术视频欧美日本| 偷拍熟女少妇极品色| 大又大粗又爽又黄少妇毛片口| 久久久久精品性色| 国产亚洲精品久久久com| 国产精品不卡视频一区二区| 久久久成人免费电影| 色视频www国产| 国产爱豆传媒在线观看| 毛片一级片免费看久久久久| 中国美白少妇内射xxxbb| 亚洲精品乱久久久久久| 欧美 日韩 精品 国产| 精品人妻偷拍中文字幕| 日本一二三区视频观看| 黄色一级大片看看| 麻豆国产97在线/欧美| 亚洲精品一区蜜桃| 亚洲精品,欧美精品| 毛片女人毛片| 欧美激情国产日韩精品一区| 有码 亚洲区| 国产大屁股一区二区在线视频| 日韩伦理黄色片| 亚洲精品成人av观看孕妇| 欧美区成人在线视频| 一级二级三级毛片免费看| 国产淫语在线视频| 久久久久久伊人网av| 久久久久久久大尺度免费视频| 神马国产精品三级电影在线观看| 婷婷色综合www| 女人久久www免费人成看片| 国产亚洲最大av| 免费少妇av软件| 免费播放大片免费观看视频在线观看| 三级国产精品片| 一个人看的www免费观看视频| a级毛片免费高清观看在线播放| 国产综合懂色| 免费播放大片免费观看视频在线观看| 一级黄片播放器| 永久免费av网站大全| 亚洲婷婷狠狠爱综合网| 天天一区二区日本电影三级| av在线天堂中文字幕| 国产成人精品一,二区| 久久久久精品久久久久真实原创| 三级国产精品片| av在线蜜桃| 91精品伊人久久大香线蕉| 亚洲性久久影院| 国产精品三级大全| 中文字幕制服av| 午夜日本视频在线| 一级毛片我不卡| 欧美激情久久久久久爽电影| 国产精品日韩av在线免费观看| 高清在线视频一区二区三区| 91aial.com中文字幕在线观看| 51国产日韩欧美| 身体一侧抽搐| 国模一区二区三区四区视频| 搞女人的毛片| 激情 狠狠 欧美| 亚洲人成网站在线观看播放| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产精品国产精品| 97人妻精品一区二区三区麻豆| 国产麻豆成人av免费视频| 身体一侧抽搐| 最近手机中文字幕大全| 人人妻人人澡人人爽人人夜夜 | 如何舔出高潮| 成人毛片a级毛片在线播放| 国产精品熟女久久久久浪| 国产老妇女一区| av卡一久久| 国产白丝娇喘喷水9色精品| 色播亚洲综合网| 日本熟妇午夜| 午夜亚洲福利在线播放| 国产成人一区二区在线| av一本久久久久| 可以在线观看毛片的网站| 777米奇影视久久| 午夜久久久久精精品| 久久这里只有精品中国| 18禁动态无遮挡网站| freevideosex欧美| 久久人人爽人人片av| 你懂的网址亚洲精品在线观看| 国产精品久久久久久av不卡| 伊人久久精品亚洲午夜| 日本猛色少妇xxxxx猛交久久| 精品久久久噜噜| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产黄a三级三级三级人| 国产日韩欧美在线精品| 国产成年人精品一区二区| av黄色大香蕉| 亚洲美女视频黄频| 国产乱来视频区| 亚洲精品自拍成人| 狂野欧美白嫩少妇大欣赏| av网站免费在线观看视频 | 精品久久久噜噜| 久久这里只有精品中国| 久热久热在线精品观看| 日韩人妻高清精品专区| 国产麻豆成人av免费视频| 久久久久久九九精品二区国产| 欧美成人a在线观看| 伦理电影大哥的女人| 亚洲精品久久午夜乱码| 日韩国内少妇激情av| 超碰av人人做人人爽久久| 亚洲在久久综合| 日本爱情动作片www.在线观看| 91精品一卡2卡3卡4卡| 激情 狠狠 欧美| 日日摸夜夜添夜夜添av毛片| 三级毛片av免费| 欧美精品一区二区大全| 午夜免费激情av| 欧美xxⅹ黑人| 国产人妻一区二区三区在| 久久久亚洲精品成人影院| 国产麻豆成人av免费视频| 中文天堂在线官网| 水蜜桃什么品种好| 午夜福利高清视频| 亚洲国产色片| 1000部很黄的大片| 久久国内精品自在自线图片| 亚洲国产高清在线一区二区三| 欧美成人一区二区免费高清观看| 老司机影院毛片| 97热精品久久久久久| 高清午夜精品一区二区三区| 国产在视频线精品| 日本免费在线观看一区| 欧美xxxx黑人xx丫x性爽| 欧美不卡视频在线免费观看| 一个人观看的视频www高清免费观看| 国产成人精品福利久久| 深爱激情五月婷婷| 日韩成人伦理影院| 超碰av人人做人人爽久久| 久久精品国产亚洲av涩爱| 日日干狠狠操夜夜爽| 日韩国内少妇激情av| 最近中文字幕高清免费大全6| 欧美人与善性xxx| 中国国产av一级| 人妻一区二区av| 国产综合精华液| 国产精品一区二区三区四区免费观看| 午夜福利视频精品| 最近中文字幕2019免费版| 最近手机中文字幕大全| 精品一区二区三区人妻视频| 亚洲国产色片| 亚洲激情五月婷婷啪啪| a级毛色黄片| 日本色播在线视频| 亚洲人成网站在线播| 色综合亚洲欧美另类图片| 老女人水多毛片| 国产av不卡久久| 国产淫语在线视频| 嫩草影院精品99| 日韩国内少妇激情av| 卡戴珊不雅视频在线播放| 国产av码专区亚洲av| 2021少妇久久久久久久久久久| 中文字幕av成人在线电影| 久久精品久久久久久久性| 看非洲黑人一级黄片| 久久久久久久久久久丰满| 日韩三级伦理在线观看| 成人午夜精彩视频在线观看| 亚洲av一区综合| 黄色日韩在线| 亚洲四区av| 婷婷色麻豆天堂久久| 成年免费大片在线观看| av国产免费在线观看| 精品亚洲乱码少妇综合久久| 午夜激情久久久久久久|