• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Drop impact on substrates with heterogeneous stiffness

    2022-08-31 09:57:26YangCheng成陽JianGenZheng鄭建艮ChenYang楊晨SongLeiYuan袁松雷GuoChen陳果andLiYuLiu劉靂宇
    Chinese Physics B 2022年8期
    關(guān)鍵詞:楊晨陳果

    Yang Cheng(成陽) Jian-Gen Zheng(鄭建艮) Chen Yang(楊晨)Song-Lei Yuan(袁松雷) Guo Chen(陳果) and Li-Yu Liu(劉靂宇)

    1Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials,College of Physics,

    Chongqing University,Chongqing 400044,China

    2School of Optoelectronic Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China

    Keywords: drop impact,stiffness-patterned substrate,splash

    1. Introduction

    Drop impact often occurs in daily life. When a drop hits a solid substrate, depending on impact condition, the drop can exhibit different behaviors such as spreading,[1–3]bouncing,[4–6]or splashing.[7–9]The impact of drops has been actively studied in the last decade and is of great significance in areas such as printing,[10,11]agriculture,[12]and forensic medicine.[13]

    Extensive studies have been performed to control the impact behavior of a drop by optimizing the droplet properties,[14]including, but not limited to, droplet composition,[15,16]droplet shape,[17,18]and liquid properties of drops.[19]For instance, Liu and Tran demonstrated that a compound droplet consisting of water and silicone oil exhibits a transition from spreading to splashing by varying the volumetric oil ratio in the droplet.[15]Some other research groups attempted to investigate drop impact by changing the environment conditions.[20–22]Xuet al.observed a striking phenomenon, whereby splashing can be completely suppressed by reducing the pressure of the surrounding gas.[21]Of all the approaches, changing the surface properties of substrates is usually used most and is the most efficient in regulating drop impact in practical applications.[23–26]For example, Liet al.showed that the translational motion of an impacting droplet can be converted into gyration, with a maximum gyratory speed exceeding 7300 gyrations per min, through heterogeneous surface wettability regulations.[25]In addition to the surface hydrophobicity, a recent study revealed that the substrate stiffness can also play an important role in drop impact by changing the splashing threshold.[27]In their work, Howlandet al. released ethanol droplets onto uniform silicone or acrylic substrates with stiffness varying from 5 kPa to 500 kPa,and they showed that droplets on the softest substrates require over 70% more kinetic energy to splash than on rigid substrates. Inspired by this work, we proposed that a substrate composed of the same material, but distributed with different stiffness (heterogeneous stiffness) regions, would likely experience a splashing behavior of the drop, which behavior is different from what happens to a substrate with uniform stiffness.

    In this study, we introduce a simple preparation scheme for substrates with heterogeneous stiffness, and successfully produce a group of stiffness-patterned substrates consisting of soft spirals surrounded by a rigid region as shown in Fig.1(a).The design of this spiral heterogeneous structure was also inspired by the work of Liet al.[25]The scanning electron microscope(SEM)image in Fig.1(b)demonstrates that the surface is flat and smooth. The red dashed line points to the boundary between the soft region and the rigid region, and no gap can be observed in between. An ethanol drop with a diameter of 2.00 mm±0.10 mm(R=1 mm)subsequently impacts one of these substrates and its splash behavior is studied. We find that the splash of a drop on a heterogeneous substrate exhibits significantly different characteristics from those on a homogeneous substrate,The critical impact velocity for prompt splash is the smallest on substrate with the greatest heterogeneity of stiffness. Moreover, the splash intensity of droplets on the heterogeneous substrate is generally much stronger than that on the corresponding homogeneous substrates, which is reflected in its higher splash velocity,especially at a higher impact velocity.The difference in drop splashing between homogeneous substrate and heterogeneous substrate is largely due to the stiffness heterogeneity of the substrate, rather than the variation of overall stiffness. The use of spiral shape provides a feasible solution for introducing stiffness heterogeneity of substrate. Our study enriches the understanding of drop impact on complex substrates, may provide some guidance on drop splash optimization based on substrate design, and can find useful applications in industries related to drop impact.

    2. Experimental methods

    To achieve different stiffnesses,the polydimethylsiloxane(PDMS) prepolymer and crosslinker were mixed with different mass fractions, and cured for 12 h at 70?C. The specific mass ratios of prepolymer to crosslinker were 4:1,30:1,40:1,50:1, 60:1, and 80:1, and the corresponding substrates were named HO-4,HO-30,HO-40,HO-50,HO-60,and HO-80,respectively.

    Fig. 1. (a) Picture of the stiffness-patterned substrates consisting of soft spirals surrounded by a rigid region. The scale bar is 1 mm. (b) SEM-view image showing that the surface is flat and smooth. The red dashed line points to the boundary between the soft region and the rigid region, and no gap can be observed in between. The scale bar is 250μm. (c)Modulus results of the homogeneous substrates. (d)Contact angles of ethanol drop on two homogeneous substrates(HO-4 and HO-80),and one heterogeneous substrate(HE-4–80). The scale bar is 1 mm. (e)Side-view snapshots of drop impact on heterogeneous substrate HE-4–60,and no splash is observed at an impact velocity of 1.91 m/s;the scale bar is 1 mm. (f)Side-view snapshots of drop impact on heterogeneous substrate HE-4–40,and prompt splash occurs when the impact velocity is 2.25 m/s.The red arrow points to the emitted droplet. (g)Side-view snapshots of drop impact on homogeneous substrate HO-4,and corona splash occurs at an impact velocity of 3.32 m/s.

    The stiffness of the substrate was characterized by measuring its modulus with dynamic thermomechanical analyzer(DMAQ850,TA Instruments,USA),and the results are shown in Fig. 1(c). When the mass ratio of the crosslinker is lower,the modulus decreases accordingly, and even reaches a difference of two orders of magnitude. The HO-4 has a significantly larger modulus than that of the other four substrates and was therefore selected as the rigid part of the heterogeneous substrate. Spiral patterns were carved into the HO-4 substrate with a laser engraver,which were subsequently filled with the uncured PDMS mixture of a lower crosslinker mass ratio (40:1, 60:1, and 80:1). The substrates of heterogeneous stiffness were then obtained after curing for 12 h at 70 °C.The corresponding heterogeneous substrates were named HE-4–40,HE-4–60,and HE-4–80,respectively. For instance,the HE-4–40 represents the mass ratios of the PDMS prepolymer to crosslinker for the rigid and soft region of the heterogenous substrate are 4:1 and 40:1,respectively.

    The liquid used in the experiment was ethanol, and the ambient temperature was 28?C.The densityρ,surface tensionγ,and viscosityμof ethanol at this temperature are 789 kg/m3,22.1 mN/m, and 1.2 mPa·s, respectively. Figure 1(d) shows the wettability of ethanol drop on two homogeneous substrates(HO-4 and HO-80), and one heterogeneous substrate (HE-4–80). The similar contact angle data demonstrate that there is no significant difference in the alcohol wettability between all soft substrates and rigid substrates. In the drop impact experiment,the drops were released through a needle connected to an injection pump (Longer Pump LSP01-2A, China). When the drops fell freely from different heights above the substrate,the impact velocity varied from 0.80 m/s to 3.32 m/s. The instant impact of millimeter-sized ethanol drops was directly visualized with a fast camera(Phantom V7.3),at a frame rate of 6500 s?1, and the exposure time of image was 50 μs. In order to make sure that our results are generally valid,the experiments with identical conditions were repeated at least three times to ensure the repeatability and accuracy of the results.

    3. Results and discussion

    Three kinds of impact phenomena are identified under different values of impact velocity(vi). When the impact velocityviis low,the drop spreads rapidly along the substrate to reach its maximum spreading distance, and then stops after a slight retraction.No splash occurs in this situation as shown by the side-view snapshots of drop impact on heterogeneous substrate HE-4–60 at an impact velocity of 1.91 m/s in Fig.1(e).However, when the impact velocity increases to more than a certain value, the drop exhibits splash which can be split into two categories,prompt and corona. In the prompt splash regime,the droplets are ejected from small finger-like jets directly at the surface[28]as shown by the side-view snapshots of drop impact on heterogeneous substrate HE-4–40 at an impact velocity of 2.25 m/s in Fig. 1(f). The red arrow points to the ejected droplets. In the corona splash regime, the spreading liquid separates from the surface,forming a crown-like lamella that subsequently breaks up into secondary droplets[28]as illustrated by the side-view snapshots of drop impact on homogeneous substrate HO-4 at an impact velocity of 3.32 m/s in Fig.1(g). Compared with prompt splash,corona splash occurs under the condition of higher impact velocity. We also notice that the drop splashing on our stiffness-patterned substrate is still axisymmetric in experiment. This is not in discrepancy with the results of Liet al.’s work,[25]because the rotation of the droplet bouncing found by Liet al. is caused by the asymmetric surface wettability on its spiral structure,whereas in this work, the drop wettability exhibits no significant difference on surfaces with different stiffness as demonstrated by the contact angle characterization in Fig.1(d).

    Fig.2. (a)Splashing behavior of ethanol drops on all substrates at different impact velocities of the drop. The black crosses, red stars, and blue circus represent no splash,prompt splash,and corona splash,respectively. (b)Different splash behaviors on HE-4–80 and HO-4 substrates at the same impact velocity. The red arrow points to the emitted droplet. The scale bar is 1 mm.(c)Estimated percentage of drop energy remaining after impact and spreading on homogeneous and heterogeneous substrates at an impact velocity of 0.80 m/s. The remaining energy of a drop on the substrate with the largest stiffness heterogeneity (HE-4–80) is clearly higher than that on the other substrates.

    All splash results are summarized in Fig. 2(a). At a low impact velocity,no splash of the ethanol drop appears on any of the seven substrates. The critical impact velocity at which splash starts to occur becomes different on different substrates.By comparing the splash results of HO-4,HO-40,HO-60,and HO-80, it is found that for a homogeneous substrate, the impact velocity required for splash is smaller if the substrate is more rigid. This conclusion is qualitatively consistent with a previous study.[27]Specifically,when the impact velocity is 2.25 m/s,prompt splash already occurs on HO-4 and HO-40,but no splash is observed on HO-60 and HO-80. It should also be noted that the splash intensity of a drop on HO-4 is much stronger than that on other homogenous surfaces at the same impact velocity, which is reflected in a larger splash amount and higher splash velocity. Similarly,corona splash is also the first to be found on HO-4 and HO-40,when the impact velocity reaches 3.32 m/s.

    A noticeable phenomenon occurs on the heterogeneous substrate HE-4–80, which has the greatest heterogeneity of stiffness. When the impact velocity is 1.91 m/s,prompt splash starts to appear on HE-4–80,but no splash is observed on other substrates,even on the most rigid homogeneous substrate HO-4 as demonstrated in Fig. 2(b). Hence, we attempt to understand this phenomenon from the perspective of energy dissipation. The energy of a drop just before touching the substrate includes kinetic energy and surface energy, which can be expressed asWi=2πR3ρv2i/3+4πR2γ. The gravitational potential energy of the drop before the contact can be ignored since it has already been converted into the kinetic energy of the drop(2πR3ρv2i/3). Some energy is dissipated during impact and spreading, and this part of energy is converted into the interfacial energy between the drop and the substrate, the elastic energy of the substrate, heat energy,etc. The dissipated energy is not easy to calculate straightforward, but can be estimated by calculating the surface energy of the drop at its maximum spreading radiusRmax. At this point,the kinetic energy of the drop is approximately zero, and its surface energy approximately equals 2γπR2max.By comparing the energy differences of the drop itself between these two moments,we can analyze how much energy the drop dissipates through the substrate during the impact process. We measure the percentage of energy remaining after impacting and spreading at an impact velocity of 0.8 m/s, since there is no need to consider the energy taken away by the ejected micro-droplets at this sufficiently low impact velocity, and the results are shown in Fig. 2(c). Although the energy dissipations on all substrates vary by only a few percent,it can still be found that the remaining energy of the drop on HE-4–80 is the highest, indicating that the drop has the smallest energy dissipation on HE-4–80.Therefore,this slight advantage of energy dissipation may be the reason why the prompt splash first occurs on HE-4–80.Liquid drops are more prone to splashing on a stiff heterogeneous substrate than on a homogeneous one. This finding may provide guidance for the optimization of drop splash based on structural design.

    Fig. 3. (a) Variations of splash velocity of ejected droplets (vs) versus impact velocity (vi) on homogeneous substrates. The inset shows two images at adjacent moments (time interval is 0.15 ms), and the red arrows point to the outermost edges of the elliptic secondary droplet that has just been splashed out. The scale bar is 1 mm. (b)Plots of vs versus v1/2i for homogeneous substrates,showing a good linear relationship with a slope of 12.54.(c) Variations of splash velocity of the ejected droplets (vs) with impact velocity (vi) on stiffness-patterned substrates. (d) Plot of vs versus v1/2i on heterogeneous substrates. All data fit well a straight line with a slope of 12.37.

    Although there is no essential difference between the underlying physical connotations of drop splash on homogeneous substrate and heterogeneous substrate,the splash intensity of a drop on heterogeneous substrate is significantly enhanced. To clarify this conclusion,we study the splash velocities of droplets on different substrates under the same impact velocity of drop. Figures 4(a)and 4(b)show the splash velocities of droplets at impact velocities of 2.57 m/s and 2.73 m/s,respectively. The splash intensity of drop on heterogeneous surface is generally higher than that on homogeneous surface, which cannot be explained simply by the difference in overall stiffness. We attribute this difference to the stiffness heterogeneity of the substrate. For a drop hitting a homogeneous substrate, the splash velocity of the emitted droplets is reduced with stiffness decreasing. This finding is consistent with the previous conclusion that the splash is reduced on soft substrate.[27]

    Fig.4. Splash velocities of ejected droplets on all homogeneous and heterogeneous substrates at impact velocities of(a)2.57 m/s and(b)2.73 m/s,respectively. The splash velocity of droplets on stiffness-patterned substrates is significantly higher than that on their corresponding homogeneous substrates.

    A more interesting result occurs on heterogeneous substrate. When a drop impacts a heterogeneous substrate composed of the same material,the splash velocity of ejected tiny droplet is unexpectedly higher than those on the two corresponding homogeneous substrates. For instance, when the impact velocity of a drop is 2.57 m/s, the splash velocity of droplet on HE-4–40 is approximately 12%higher than that on HO-4 and 19%higher than that on HO-40,respectively. This ratio increases to about 28%and 47%,respectively,at an impact velocity of 2.73 m/s. This finding suggests that although a softer substrate can reduce drop splash,a heterogeneous substrate consisting of two types of stiffness can significantly promote splash. This phenomenon can be comprehended through the results in Fig.2(c). As previously mentioned,the remaining energy of an impacting drop on a heterogeneous substrate is clearly higher than that on a homogeneous substrate,which means that the drop experiences less resistance when it spreads on a heterogeneous substrate. This may be the reason for the higher splash intensity of droplet on the heterogeneous substrate. Our work reveals the potential of using stiffnesspatterned substrates to control splash and may provide a guide for drop splash optimization based on substrate design.

    4. Conclusions

    In summary, we conceive and produce a group of stiffness-patterned substrates consisting of soft spirals surrounded by a rigid region. Millimeter-sized ethanol drops impact these stiff heterogeneous substrates and their splash behaviors on the substrates are studied. We find that the splash behavior of a drop on the heterogeneous substrate exhibits distinct characteristics from that on a homogeneous substrate.Prompt splash is more likely to appear on a substrate with a greater heterogeneity of stiffness, which is reflected at the lower critical impact velocity. Moreover, the splash velocity of emitted droplet is significantly larger on the heterogeneous substrate than that on the corresponding homogeneous substrate, especially at a higher impact velocity of drop, indicating the stronger splash intensity on heterogeneous substrate.The difference between drop splashing behaviors for homogeneous substrate and heterogeneous substrate is largely due to the stiffness heterogeneity of the substrate,rather than the difference of overall stiffness. The use of spiral shape provides a feasible solution for introducing stiffness heterogeneity of substrate.Our study generalizes the understanding of drop impact on homogeneous substrate to the case on heterogeneous substrate, reveals the potential of using stiffness-patterned substrates to control splash, and may find useful applications in industries related to drop impact.

    Acknowledgements

    The authors would like to thank the Analytical and Testing Center of Chongqing University for characterizing the samples.

    Project supported by the Natural Science Foundation Project of Chongqing, China (Grant No. CSTC2020jcyjmsxmX0106) and the Fundamental Research Funds for the Central Universities,China(Grant No.2020CDJ-LHSS-002).

    猜你喜歡
    楊晨陳果
    A Two-limb Explanation for the Optical-to-infrared Transmission Spectrum of the Hot Jupiter HAT-P-32Ab
    陳果和他的樹
    Wenzhou Woman’s Journey towards Grandmaster of Memory
    文化交流(2019年3期)2019-03-18 02:00:12
    夏日
    北方作家(2018年6期)2018-03-18 03:06:40
    調(diào)皮的魔術(shù)師
    解決中印領(lǐng)土爭端要打“持久戰(zhàn)”
    祖國(2017年14期)2017-09-04 13:32:49
    中國“不怕事”強(qiáng)大武器裝備是后盾
    祖國(2017年14期)2017-09-04 12:18:36
    強(qiáng)軍興軍應(yīng)當(dāng)重點(diǎn)關(guān)注的方向
    祖國(2017年14期)2017-09-04 12:14:43
    與冰淇淋相約在夏日
    美食(2016年7期)2016-10-20 11:12:30
    神秘的泥妖怪(2)
    久久精品91无色码中文字幕| 不卡一级毛片| 熟女少妇亚洲综合色aaa.| 99香蕉大伊视频| 又大又爽又粗| 一级片免费观看大全| 电影成人av| 丝袜人妻中文字幕| 高清毛片免费观看视频网站 | 欧美黄色淫秽网站| 最新在线观看一区二区三区| 大码成人一级视频| 夫妻午夜视频| 国产高清国产精品国产三级| 亚洲自偷自拍图片 自拍| 久久久久久人人人人人| 欧美老熟妇乱子伦牲交| 一区在线观看完整版| 国产片内射在线| 欧美激情久久久久久爽电影 | 成年人免费黄色播放视频| 黄片大片在线免费观看| 亚洲欧洲精品一区二区精品久久久| 欧美日韩瑟瑟在线播放| 巨乳人妻的诱惑在线观看| 久久中文字幕人妻熟女| 亚洲欧美激情综合另类| 欧美乱色亚洲激情| 国产一区在线观看成人免费| 交换朋友夫妻互换小说| 黑人猛操日本美女一级片| 欧美日韩瑟瑟在线播放| 国产精品香港三级国产av潘金莲| 久久精品成人免费网站| 国产日韩一区二区三区精品不卡| 999久久久精品免费观看国产| 亚洲第一青青草原| 成人手机av| 国产精品一区二区在线不卡| 欧美日韩黄片免| 精品乱码久久久久久99久播| 一区在线观看完整版| 黄色a级毛片大全视频| 九色亚洲精品在线播放| 99热只有精品国产| av福利片在线| 欧美日韩国产mv在线观看视频| ponron亚洲| 免费高清视频大片| 免费在线观看黄色视频的| 国产精品一区二区在线不卡| 国产无遮挡羞羞视频在线观看| 亚洲成人国产一区在线观看| 午夜精品在线福利| 精品高清国产在线一区| 纯流量卡能插随身wifi吗| 国产精品一区二区三区四区久久 | 精品国产一区二区三区四区第35| 国产伦人伦偷精品视频| www.精华液| 欧美不卡视频在线免费观看 | 久久伊人香网站| 欧美日韩av久久| 精品一区二区三卡| www.www免费av| 国产高清videossex| av免费在线观看网站| 男女做爰动态图高潮gif福利片 | 99热国产这里只有精品6| 国产精品电影一区二区三区| 新久久久久国产一级毛片| 亚洲性夜色夜夜综合| 老司机午夜十八禁免费视频| 日韩免费高清中文字幕av| 最好的美女福利视频网| 亚洲av熟女| 成年女人毛片免费观看观看9| 不卡av一区二区三区| 亚洲国产毛片av蜜桃av| 大型av网站在线播放| 一级片'在线观看视频| 国产精品国产高清国产av| 美女大奶头视频| 在线看a的网站| 免费久久久久久久精品成人欧美视频| 在线观看www视频免费| 亚洲,欧美精品.| 大香蕉久久成人网| 淫妇啪啪啪对白视频| 超碰97精品在线观看| 十八禁网站免费在线| 一区在线观看完整版| 国产1区2区3区精品| 亚洲全国av大片| 欧美激情极品国产一区二区三区| 精品欧美一区二区三区在线| 麻豆成人av在线观看| a级片在线免费高清观看视频| 中国美女看黄片| 欧美大码av| 少妇 在线观看| 18禁国产床啪视频网站| 制服诱惑二区| av电影中文网址| 99re在线观看精品视频| 青草久久国产| 精品久久久精品久久久| 在线永久观看黄色视频| 国产深夜福利视频在线观看| 国产成人精品在线电影| 熟女少妇亚洲综合色aaa.| 久久久久国产精品人妻aⅴ院| 国产成人系列免费观看| 高清毛片免费观看视频网站 | 精品国产一区二区三区四区第35| 国产黄色免费在线视频| netflix在线观看网站| 国产三级在线视频| 最近最新免费中文字幕在线| 日日摸夜夜添夜夜添小说| 久久久久亚洲av毛片大全| 久久人妻福利社区极品人妻图片| 夫妻午夜视频| 久久欧美精品欧美久久欧美| 51午夜福利影视在线观看| 久久久久国产一级毛片高清牌| a级毛片黄视频| 久热这里只有精品99| 丝袜人妻中文字幕| 一本综合久久免费| 天堂动漫精品| 欧美黄色淫秽网站| 不卡一级毛片| 久久99一区二区三区| 久久午夜综合久久蜜桃| 每晚都被弄得嗷嗷叫到高潮| 中文字幕人妻丝袜制服| 老司机午夜福利在线观看视频| 久久 成人 亚洲| 亚洲av成人不卡在线观看播放网| 久久人妻福利社区极品人妻图片| 黄片播放在线免费| 久久久久亚洲av毛片大全| 久久人妻熟女aⅴ| 国产精品久久电影中文字幕| 亚洲全国av大片| а√天堂www在线а√下载| 多毛熟女@视频| 侵犯人妻中文字幕一二三四区| 午夜福利,免费看| 18禁黄网站禁片午夜丰满| 超碰成人久久| 国产精品一区二区三区四区久久 | 19禁男女啪啪无遮挡网站| 满18在线观看网站| 热99re8久久精品国产| 国产黄色免费在线视频| 久久天躁狠狠躁夜夜2o2o| 99热国产这里只有精品6| 久久午夜亚洲精品久久| 久久久久国内视频| 夜夜夜夜夜久久久久| 欧美久久黑人一区二区| 日韩国内少妇激情av| www.自偷自拍.com| 国产欧美日韩精品亚洲av| 久久精品91无色码中文字幕| 成熟少妇高潮喷水视频| 在线观看免费高清a一片| 国产亚洲av高清不卡| 一a级毛片在线观看| 国内毛片毛片毛片毛片毛片| 精品国产一区二区久久| 欧美最黄视频在线播放免费 | 日本黄色视频三级网站网址| 亚洲自拍偷在线| 亚洲国产精品sss在线观看 | 午夜日韩欧美国产| 婷婷六月久久综合丁香| 老司机午夜十八禁免费视频| 妹子高潮喷水视频| 国产伦人伦偷精品视频| 窝窝影院91人妻| 无遮挡黄片免费观看| 国产精品久久视频播放| 国产亚洲精品综合一区在线观看 | 欧美久久黑人一区二区| 国产真人三级小视频在线观看| 国产色视频综合| 国产亚洲精品综合一区在线观看 | 亚洲精品久久午夜乱码| 久久狼人影院| 后天国语完整版免费观看| 男男h啪啪无遮挡| 日韩 欧美 亚洲 中文字幕| 欧美色视频一区免费| 国产成+人综合+亚洲专区| 欧美黑人精品巨大| 极品人妻少妇av视频| 亚洲一区中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 免费高清视频大片| 国产成人啪精品午夜网站| ponron亚洲| 亚洲黑人精品在线| 黑人操中国人逼视频| 国产欧美日韩一区二区三| 国产精品秋霞免费鲁丝片| 亚洲专区国产一区二区| 国内毛片毛片毛片毛片毛片| 日日爽夜夜爽网站| 在线永久观看黄色视频| 91麻豆av在线| 免费看a级黄色片| 久久久久国内视频| 色婷婷久久久亚洲欧美| 久久久久久大精品| 黄色a级毛片大全视频| 丁香欧美五月| x7x7x7水蜜桃| 在线观看www视频免费| 性色av乱码一区二区三区2| 黄色a级毛片大全视频| 日本欧美视频一区| 三级毛片av免费| 麻豆成人av在线观看| 亚洲性夜色夜夜综合| 国产日韩一区二区三区精品不卡| 在线观看免费视频网站a站| 99精品久久久久人妻精品| 成年版毛片免费区| 精品国产乱码久久久久久男人| 国产精品永久免费网站| 国产又爽黄色视频| 日本wwww免费看| 在线观看66精品国产| 极品教师在线免费播放| 国产精品一区二区免费欧美| 黄色女人牲交| 老司机午夜福利在线观看视频| 亚洲国产欧美日韩在线播放| 久久精品成人免费网站| 美女国产高潮福利片在线看| 极品教师在线免费播放| 91精品国产国语对白视频| 精品国产美女av久久久久小说| 欧美日韩视频精品一区| 国产视频一区二区在线看| 极品教师在线免费播放| 男男h啪啪无遮挡| 国产精品免费一区二区三区在线| 久久久久久亚洲精品国产蜜桃av| 欧美+亚洲+日韩+国产| 18美女黄网站色大片免费观看| 丝袜美足系列| 黄色视频不卡| 精品一区二区三区av网在线观看| 国产av一区二区精品久久| 一进一出抽搐动态| 少妇粗大呻吟视频| 午夜精品在线福利| 国产亚洲精品久久久久久毛片| 丝袜美腿诱惑在线| 一级毛片高清免费大全| 男女床上黄色一级片免费看| 国产激情久久老熟女| 婷婷精品国产亚洲av在线| 桃红色精品国产亚洲av| 亚洲五月色婷婷综合| 国产精品av久久久久免费| 黄片播放在线免费| 精品国产美女av久久久久小说| 成年女人毛片免费观看观看9| 精品电影一区二区在线| 午夜精品久久久久久毛片777| 亚洲精品一卡2卡三卡4卡5卡| 91av网站免费观看| 午夜91福利影院| 亚洲精品美女久久av网站| 午夜成年电影在线免费观看| 一级a爱片免费观看的视频| 99热国产这里只有精品6| 亚洲三区欧美一区| 一边摸一边抽搐一进一小说| 国产精品1区2区在线观看.| 免费高清在线观看日韩| 中文字幕av电影在线播放| 亚洲视频免费观看视频| 日韩欧美在线二视频| 亚洲欧美日韩无卡精品| 亚洲欧美激情综合另类| 亚洲伊人色综图| 午夜精品在线福利| 999久久久精品免费观看国产| 日韩人妻精品一区2区三区| 成人永久免费在线观看视频| 国产免费现黄频在线看| 久久人妻av系列| 精品一区二区三卡| 欧美日韩亚洲国产一区二区在线观看| 黑人巨大精品欧美一区二区蜜桃| 精品福利永久在线观看| 国产97色在线日韩免费| 男人操女人黄网站| 麻豆一二三区av精品| 国产三级在线视频| 桃红色精品国产亚洲av| 韩国av一区二区三区四区| 欧美午夜高清在线| 一区在线观看完整版| 色播在线永久视频| 宅男免费午夜| 日韩一卡2卡3卡4卡2021年| 亚洲欧美日韩另类电影网站| 亚洲,欧美精品.| 中文字幕色久视频| av免费在线观看网站| 国产精品一区二区三区四区久久 | 国产主播在线观看一区二区| 国产精华一区二区三区| 国产亚洲精品一区二区www| 午夜免费观看网址| 日韩有码中文字幕| 免费在线观看视频国产中文字幕亚洲| 国产精品二区激情视频| 日本一区二区免费在线视频| 亚洲欧美激情在线| 久久人妻熟女aⅴ| 人人澡人人妻人| 巨乳人妻的诱惑在线观看| 精品国产一区二区久久| 亚洲熟女毛片儿| 性色av乱码一区二区三区2| 亚洲色图综合在线观看| 啦啦啦免费观看视频1| 黄色片一级片一级黄色片| 一区二区三区国产精品乱码| 国产av在哪里看| 一级片免费观看大全| 黄色毛片三级朝国网站| 久久亚洲精品不卡| 亚洲人成电影免费在线| 又黄又粗又硬又大视频| 最好的美女福利视频网| 国产成人精品在线电影| 欧美另类亚洲清纯唯美| 新久久久久国产一级毛片| 十八禁人妻一区二区| 黄色毛片三级朝国网站| 另类亚洲欧美激情| 性欧美人与动物交配| 妹子高潮喷水视频| 免费搜索国产男女视频| 亚洲国产欧美网| 在线免费观看的www视频| 国产成人一区二区三区免费视频网站| 日日爽夜夜爽网站| 欧美黑人精品巨大| 99精品久久久久人妻精品| 超碰成人久久| 宅男免费午夜| 精品一区二区三区四区五区乱码| 欧美精品亚洲一区二区| 俄罗斯特黄特色一大片| 两个人看的免费小视频| 搡老岳熟女国产| 性少妇av在线| 12—13女人毛片做爰片一| 母亲3免费完整高清在线观看| 男男h啪啪无遮挡| 男人舔女人下体高潮全视频| 久久这里只有精品19| 亚洲一区二区三区色噜噜 | 亚洲成a人片在线一区二区| 女同久久另类99精品国产91| 淫秽高清视频在线观看| 脱女人内裤的视频| 一区二区日韩欧美中文字幕| 两人在一起打扑克的视频| 999久久久精品免费观看国产| av超薄肉色丝袜交足视频| 国产精品久久久久成人av| 嫩草影院精品99| 日韩欧美在线二视频| 久久国产精品男人的天堂亚洲| 国产熟女午夜一区二区三区| 亚洲色图av天堂| 中文字幕人妻丝袜制服| 在线国产一区二区在线| 88av欧美| 成人18禁在线播放| 成人三级黄色视频| 日本一区二区免费在线视频| 黑人巨大精品欧美一区二区mp4| 99国产精品一区二区蜜桃av| 国产高清国产精品国产三级| 国产成人系列免费观看| bbb黄色大片| 午夜两性在线视频| 男女下面插进去视频免费观看| 色播在线永久视频| 国产一区二区激情短视频| 制服人妻中文乱码| 免费看a级黄色片| 免费人成视频x8x8入口观看| 中文字幕高清在线视频| 国产精品久久久人人做人人爽| 日韩一卡2卡3卡4卡2021年| 1024视频免费在线观看| 国产人伦9x9x在线观看| 日本五十路高清| 亚洲色图 男人天堂 中文字幕| 在线观看舔阴道视频| 成人三级黄色视频| 亚洲aⅴ乱码一区二区在线播放 | 久久伊人香网站| 亚洲自拍偷在线| 免费在线观看黄色视频的| 午夜两性在线视频| 亚洲aⅴ乱码一区二区在线播放 | 国产无遮挡羞羞视频在线观看| cao死你这个sao货| 精品久久久精品久久久| 五月开心婷婷网| 精品一区二区三区av网在线观看| 久久亚洲精品不卡| 国产亚洲欧美98| 麻豆久久精品国产亚洲av | 国产亚洲精品一区二区www| 亚洲av成人av| 免费av中文字幕在线| a级片在线免费高清观看视频| 怎么达到女性高潮| 国产精品爽爽va在线观看网站 | 精品久久蜜臀av无| 精品国产美女av久久久久小说| 国产成人av激情在线播放| 99在线人妻在线中文字幕| 在线观看免费高清a一片| 久久人妻福利社区极品人妻图片| 97人妻天天添夜夜摸| 最近最新免费中文字幕在线| 丝袜在线中文字幕| 最新在线观看一区二区三区| 午夜福利一区二区在线看| 淫妇啪啪啪对白视频| 久久久久久久午夜电影 | www.www免费av| 悠悠久久av| 色婷婷av一区二区三区视频| 亚洲片人在线观看| 国产成人欧美在线观看| 亚洲激情在线av| 国产在线精品亚洲第一网站| 一个人免费在线观看的高清视频| 超碰成人久久| 黄片大片在线免费观看| www.自偷自拍.com| 国产亚洲欧美精品永久| 男女床上黄色一级片免费看| 亚洲少妇的诱惑av| 中文欧美无线码| 亚洲熟女毛片儿| a级毛片在线看网站| 日韩精品中文字幕看吧| 露出奶头的视频| av欧美777| 十分钟在线观看高清视频www| 伊人久久大香线蕉亚洲五| 成人黄色视频免费在线看| 精品少妇一区二区三区视频日本电影| av网站免费在线观看视频| 91九色精品人成在线观看| 国产精品一区二区三区四区久久 | 亚洲精品久久午夜乱码| 天天躁狠狠躁夜夜躁狠狠躁| a级毛片在线看网站| av电影中文网址| 亚洲av日韩精品久久久久久密| 在线播放国产精品三级| 亚洲国产精品sss在线观看 | 欧美乱色亚洲激情| 露出奶头的视频| 国产成人免费无遮挡视频| 欧美老熟妇乱子伦牲交| 高清在线国产一区| 国产又色又爽无遮挡免费看| 桃色一区二区三区在线观看| 欧美日韩黄片免| 青草久久国产| 免费看a级黄色片| 夫妻午夜视频| 琪琪午夜伦伦电影理论片6080| 国产成+人综合+亚洲专区| 18美女黄网站色大片免费观看| 久久久久久人人人人人| 自拍欧美九色日韩亚洲蝌蚪91| 另类亚洲欧美激情| 看黄色毛片网站| 满18在线观看网站| 免费在线观看影片大全网站| 久久草成人影院| 精品乱码久久久久久99久播| 搡老熟女国产l中国老女人| 麻豆av在线久日| 欧美日韩亚洲高清精品| 亚洲成国产人片在线观看| 国产91精品成人一区二区三区| 热re99久久国产66热| av网站免费在线观看视频| 亚洲成人久久性| 国产精品亚洲av一区麻豆| 亚洲成人国产一区在线观看| 黑人操中国人逼视频| a级毛片在线看网站| 精品电影一区二区在线| 免费久久久久久久精品成人欧美视频| 在线天堂中文资源库| 老司机亚洲免费影院| 国产精品偷伦视频观看了| 亚洲精品在线观看二区| 成人影院久久| 午夜福利在线免费观看网站| 777久久人妻少妇嫩草av网站| 久99久视频精品免费| 一级a爱片免费观看的视频| 91老司机精品| 少妇裸体淫交视频免费看高清 | 国产乱人伦免费视频| 一边摸一边抽搐一进一小说| 一区二区三区激情视频| 亚洲五月婷婷丁香| 午夜激情av网站| 99国产极品粉嫩在线观看| 欧美日韩一级在线毛片| 亚洲美女黄片视频| 国产单亲对白刺激| 一进一出好大好爽视频| av国产精品久久久久影院| 99精国产麻豆久久婷婷| 精品久久久精品久久久| 亚洲aⅴ乱码一区二区在线播放 | 成人国产一区最新在线观看| 99久久精品国产亚洲精品| 啦啦啦免费观看视频1| 级片在线观看| 天堂√8在线中文| 一本综合久久免费| 色精品久久人妻99蜜桃| 欧美日韩黄片免| 桃色一区二区三区在线观看| 日韩精品免费视频一区二区三区| 国产精品一区二区免费欧美| 成人免费观看视频高清| 99国产精品一区二区三区| 视频在线观看一区二区三区| 又紧又爽又黄一区二区| 十八禁人妻一区二区| 国产精品综合久久久久久久免费 | 99久久国产精品久久久| 亚洲少妇的诱惑av| 欧洲精品卡2卡3卡4卡5卡区| 国产91精品成人一区二区三区| 亚洲av成人一区二区三| 90打野战视频偷拍视频| 久久久久国产精品人妻aⅴ院| 最近最新免费中文字幕在线| 免费在线观看影片大全网站| 操美女的视频在线观看| 午夜a级毛片| 精品国产乱子伦一区二区三区| 视频区欧美日本亚洲| 91九色精品人成在线观看| 国产精品久久久久久人妻精品电影| 日本黄色视频三级网站网址| 午夜老司机福利片| 一级a爱片免费观看的视频| 黑人猛操日本美女一级片| 岛国视频午夜一区免费看| 午夜91福利影院| a级毛片在线看网站| 亚洲国产欧美日韩在线播放| 女人精品久久久久毛片| 在线观看一区二区三区激情| 中文字幕最新亚洲高清| 亚洲第一青青草原| 久久青草综合色| 国产三级黄色录像| 99国产精品99久久久久| 国产一区二区激情短视频| 久久精品国产综合久久久| 欧美激情高清一区二区三区| 老司机亚洲免费影院| 最近最新免费中文字幕在线| 亚洲欧美激情在线| 欧美人与性动交α欧美精品济南到| 日本五十路高清| 精品久久久久久成人av| 88av欧美| 9191精品国产免费久久| 狠狠狠狠99中文字幕| 黄网站色视频无遮挡免费观看| 女警被强在线播放| 国产真人三级小视频在线观看| 国产aⅴ精品一区二区三区波| 国产精品九九99| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av电影在线进入| 亚洲一区中文字幕在线| 国产精品偷伦视频观看了| 搡老岳熟女国产| 看黄色毛片网站| 香蕉国产在线看| 午夜a级毛片| 女人爽到高潮嗷嗷叫在线视频|