• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers

    2022-08-31 09:55:28LeWang王樂(lè)ZhaoXuanJing荊照軒AoRanZhou周傲然andShanDongLi李山東
    Chinese Physics B 2022年8期
    關(guān)鍵詞:山東

    Le Wang(王樂(lè)) Zhao-Xuan Jing(荊照軒) Ao-Ran Zhou(周傲然) and Shan-Dong Li(李山東)

    1College of Physics,Qingdao University,Qingdao 266071,China

    2College of Electronics and Information,Qingdao University,Qingdao 266071,China

    Keywords: interlayer exchange coupling,optical mode resonance,acoustic mode resonance,component gradient sputtering

    1. Introduction

    In 1988, Heinrichet al. observed optical mode ferromagnetic resonance (FMR) caused by interlayer exchange coupling (IEC) in an ultrathin epitaxial single crystal Ni/Fe bilayer.[1]The IEC was widely used in magnetic devices,[2,3]such as magnetic recording devices, giant magnetoresistance effect, tunneling magnetoresistance effect,[4–8]etc. The materials currently used to study IEC are mainly composed of Fe,[9–11]Co,[12]FeCo,[13]NiFe,[14–17]and FeCo alloys,[18–34]separated by non-ferromagnetic materials, such as Cu,[14,35]Cr,[9,36]and Ru.[3,15–18,24–26,37]For the FM/NM/FM structure,the coupling strength and type of IEC are mainly related to the material compositions and the thickness value of FM layer and NM layer. However,the mechanism of IEC has not been completely understood so far, which still requires further studying. Very recently,an ultrahigh OM FMR was observed in the AFM coupled FM/NM/FM sandwich trilayers, where the antiferromagnetic IEC field,as a driving force,is responsible for the ultrahigh OM FMR frequency. Therefore, controlling the coupling type to obtain a strong AFM coupling is particularly important.Theoretically,McKinnonet al.[8]and Neel[38]systematically investigated the effect of the exchange coupling coefficientsJ1andJ2on the FMR frequency and intensity of thin films. In this study,FeCoB/Ru/FeCoB trilayers were prepared by a compositional gradient sputtering method. It was revealed that an ultrahigh FMR frequency over 20 GHz and an oscillation of IEC with Ru thickness were observed. The experimental results were simulated by the Layadi’s rigid model.The experimental and theoretical results were well consistent with each other.

    Usually, two resonance modes, the acoustic mode (AM,the two FM layers precessing in-phase)and the optical mode(OM)(the two FM layers precessing out-of-phase),appear in the FM/NM/FM systems whether the coupling type is FM or AFM.[36]However,the definitions of resonance modes are often inconsistent for different FM material systems. For an FM coupling system, the determination of the resonance mode is relatively simple. The frequency of the OM is higher than that of the AM.But the frequency dispersion is very complex for an AFM coupling system. It is not suitable to determine AM or OM simply from the relative frequency. Therefore,it is very important to judge the mode of resonance peak by other means. With the development of modern testing technology,we found that by combining transverse(T)and longitudinal (L) ferromagnetic resonance (FMR) tests, the modes of resonance peaks can be identified intuitively and effectively. It is also a useful method to evaluate the exchange coupling strengths for both FM and AFM coupled systems.[37]In the conventional transverse pumping FMR (T-mode), the microwave field ?his applied perpendicular to the external bias field (H) direction, which results in a strong coupling in the AM and a weak coupling in the OM [Fig. 1(b)]. The dynamic magnetization components parallel to ?hfrom both FM layers are added to each other in the case of in-phase precession in the transverse configuration. This leads to a strong absorption of the AM resonance. While for the OM,the dynamic magnetizations parallel to ?hcancel out due to the out-of-phase precession.[8]If the two ferromagnetic layers are exactly identical, the OM is perfectly canceled in the FMR spectra.[37]In comparison,the longitudinal pumping(Lmode)FMR,as reported by Zhang in 1994,is very sensitive to the OM resonance.[39]With longitudinal pumping, ?his along the external bias field direction and can couple with the OM to produce a noticeable absorption at resonance, especially when the magnetizations of the two FM layers are antiparallel to each other, while the in-phase dynamic magnetizations are canceled out[Fig.1(c)].This leads to enlarged OM and reduced AM resonance peaks.[27–35]The resonance mode can be easily identified from the relative intensities of the resonance peaks.

    2. Experiment

    The FeCoB (25 nm)/Ru (tRu?A)/FeCoB (25 nm) trilayers (defined as TL) were prepared by a composition gradient sputtering (CGS) through using RF magnetron sputtering at room temperature with a background vacuum better than 5×10?5Pa, using a (100) single crystal Si substrate with a dimension of 65 mm in length, 5 mm in width, and 0.5 mm in thickness. Several B-chips with 5 mm×5 mm wasplaced on the Fe70Co30target along the radial direction as shown in Fig.1(a). The Si substrate was pasted on the sample turntable with its length direction along the B arrangement direction.It should be mentioned here that the turntable does not rotate during the deposition of the FeCoB film. As a result,a B composition gradient with an increasing B composition from left to right will be formed along the length(R)direction[Fig.1(a).As for the preparation process of FeCoB/Ru/FeCoB trilayers,it can be described as follows. Firstly, a 25-nm-FeCoB film was deposited using the CGS method above with power of 60 W and Ar pressure of 0.5 Pa at an Ar flow rate of 60 sccm.Secondly,a uniform Ru spacer layer was deposited on the top of the 25-nm-FeCoB layer through using the turntable speed of 5-round per minute with the sputtering power of 45 W and pressure of 0.6 Pa at an Ar flow rate of 60 sccm. The Ru thickness was calculated using deposition time according to the Ru deposition rate. Finally, another 25-nm-FeCoB layer was deposited on the Ru layer under the same CGS conditions as that on the bottom FeCoB layer. As a control,a 50-nm FeCoB single layer (defined as SL) was prepared under the same CGS conditions. The SL and TL samples were cut into 13 segments each with length of 5 mm along the length direction,and were numbered sequentially according to sample positionsn=1–13(from left to right along the length direction).

    The static magnetic properties of the samples were investigated using an alternating gradient magnetometer(AGM,MicroMagTM Model 2900). The dynamic properties were investigated by a vector network analyzer (VNA, Agilent N5224A) with a co-planar waveguide transmission line fixture. The profiles of T- and L-mode FMR are schematically shown in Figs. 1(b) and 1(c). The in-plane magnetic field and angle dependence of FMR frequency and intensity for each film were measured using VNA-FMR.The magnetic field dependence was investigated along the EA direction,and the angle dependence was studied using the start angle from the width direction of the sample (i.e., the 0?of the angleθcorresponds to the direction perpendicular to the length direction). The compositions of the samples were detected by a field-emission electron probe microanalyzer(FE-EPMA,JOEL JXA-8530F).

    Fig. 1. Schematic diagram of (a) component gradient sputtering (CGS)method,and the profiles of(b)T-and(c)L-mode FMR measurements along EA direction.

    3. Results and discussion

    Figure 2 shows the plots of composition versus sample position of the single layer for Fe, Co, and B elements. As illustrated,a linear distribution of compositions is obtained by this CGS method. The Fe/Co atomic ratio is 2.12,corresponding to an Fe:Co atomic deposition ratio of 1:1.1. In contrast,a linearly increasing B compositionCBwith an increment ratio of 0.479 is achieved. According to the theory of ferromagnetism,magnetostriction energy is expressed as

    whereλSis the saturation magnetostriction coefficient andσis the stress. Positive sign and negative sign of stress are taken for tensile stress and compressive stress, respectively,andθis the angle between stress and magnetization. Based on Eq.(1),for a film with a positiveλS,the compressive stress results in the arrangement of magnetic moments perpendicular to the compressive stress direction. If the intrinsic stress orientation is arranged along one direction, a uniaxial magnetic anisotropy will be formed. For the investigated films, a uniaxial stress along theR-direction is induced by the B-gradient along theR-direction. Owing to the FeCoB film with a positiveλSand compressive stress direction along theR-direction,the magnetic moment is preferentially arranged perpendicular toR-direction. Like previous researches,[40–42]the B-gradient induced uniaxial magnetic anisotropy (UMA) with easy axis perpendicular to theR-direction will result in a self-biased high-frequency FMR.

    Fig.2. Distributions of Fe,Co,and B elements in a single layer.

    3.1. Static magnetic properties

    Figures 3(a)–3(h) show the hysteresis loops of the Fe-CoB/Ru/FeCoB trilayers with various values of Ru thickness along the EA direction and the hard axis (HA) direction. As illustrated, the FeCoB single layer (tRu=0 ?A) has obvious uniaxial magnetic anisotropy[Fig.3(a)]. For the trilayer withtRu=1 ?A,the hysteresis loops(not shown here)are very similar to those for the single layer, which can be attributed to the discontinuous Ru spacer, where the ferromagnetic layers are still interconnected. For the samples with the Ru thickness greater than 2 ?A(2 ?A≤tRu≤8 ?A),the remanence along the HA is larger than that along EA, showing an AFM-like coupling with an obtuse angle (>90?) between the magnetic moments in the upper FM layer and the lower FM layer. The sample withtRu=8 ?A is a representative AFM coupled sample. The magnetic moments of the two FM layers are antiparallel at low fields, resulting in a small remanence along the EA. When the applied magnetic field increases to 21 Oe(1 Oe=79.5775 A·m?1), a spin flip occurs due to antiferromagnetic coupling and uniaxial magnetic anisotropy. When the Ru thickness further increases in a range of 9 ?A≤tRu≤14.5 ?A, the remanence along the EA is larger than that along the HA, implying that the moment angle is changed from obtuse angle into acute angle, and an FM coupling appears.When the Ru thickness reachestRu=16 ?A,the interlayer coupling type reverts to an AFM-like coupling again. The static magnetic properties reveal that an oscillation of the interlayer coupling type takes place in the FeCoB/Ru/FeCoB trilayers with the variation of Ru thickness.

    Fig. 3. Hysteresis loops along EA directiion and HA direction for Fe-CoB/Ru/FeCoB trilayers with various values of thickness Ru.

    3.2. Dynamic magnetic properties

    From the static magnetic properties above,it can be concluded that the interlayer coupling oscillation with the Ru thickness is present,and the Ru thickness intervals of 0–2,2–8, 9–14.5, above 16 ?A correspond to FM, AFM, FM, AFM couplings, respectively. For simplicity, we choose some representative thickness values for each interval to discuss.

    3.2.1. tttRRRuuu===111?A?A?A, FM coupling

    Fig. 4. Applied field-dependent FMR frequency (fr–H) curves along EA for 50-nm-FeCoB single layer in (a) T-mode and (b) L-mode, and FeCoB/Ru/FeCoB(tRu=1 ?A)trilayer in(c)T-mode and(d)L-mode.

    Fig.5. Angle dependent FMR frequency(fr-curve)at T-mode for tRu=1-?A trilayer in various magnetic fields.

    The in-plane distribution of FMR frequency and intensity are characterized by an in-plane angle rotation method (fr–θcurve). Figure 5 shows thefr–θcurves oftRu=1-?A trilayer measured at T-mode at various applied magnetic fields. Since the Ru spacer is discontinuous and FM coupling between the two ferromagnetic layers is present,the polar FMR spectra is very similar to that of the single layer. At zero applied field,thefr–θcurve looks like a pair of “parentheses”, indicating a good uniaxial magnetic anisotropy in the sample. With the applied magnetic field increasing from 50 Oe to 100 Oe,the intensity and frequency of the resonance along the EA increase,but the intensity of the resonance along the EA is enhanced with the increase of applied field, and an “8”-shapedfr–θcurves are observed in Figs.5(b)and 5(c). As the applied field further increases[Figs.5(d)and 5(f)],the magnetic moments will rotate following the applied field, leading to a superposition between the UMA field (HK) and external fields. As a result,an ellipticfr–θcurve is observed.

    Fig.6. The fr–H curves of FeCoB/Ru/FeCoB(tRu=5 ?A)trilayer along EA at(a)T-mode and(b)L-mode.

    Fig.7. The in-plane angle-dependent FMR frequency and intensity at T-mode for the tRu=5-?A trilayer in various magnetic fields.

    3.2.2. 222?A?A?A≤≤≤tttRRRuuu≤≤≤888?A?A?A, AFM coupling

    Thefr–Hcurve at T-mode for thetRu=5-?A trilayer(the representative sample),shown in Fig.6,reveals that there is an OM resonance peak at about 12 GHz in zero field[Fig.6(a)].The OM resonance can also be verified by the L-mode measurement, which is sensitive to the OM resonance, and only one OM peak is observed [Fig. 6(b)]. Comparing Fig. 6(a)with Fig.6(b),the resonance peak at higher frequency can be assigned to the OM resonance, indicating an AFM interlayer coupling in thetRu=5-?A trilayer. As the field increases, the OM resonance frequency increases slightly,but when the field reaches a critical field around 197 Oe[Fig.6(a)],the resonance mode suddenly switches from OM to AM,i.e., the interlayer coupling switches from AFM to FM. Further increasing the magnetic field,only AM resonance is observed infr–Hcurve.

    Figure 7 shows the in-plane angle-dependent FMR frequency and intensity for thetRu=5-?A trilayer in various magnetic fields.In zero field,only one OM resonance withθ=50?can be observed. In a field range of 50 Oe≤H ≤150 Oe,the AM resonance appears in the direction of the intensity maximum perpendicular to that of the OM resonance. Moreover,the intensity and frequency of the AM resonance increase with the applied magnetic field increasing, while the intensity of OM resonance decreases gradually till disappearing. The fact is consistent with the result in Fig.6(a),where the critical field of OM resonance disappearing is about 200 Oe. When the applied field further increases,thefr–θcurve,which is close to the fourfold symmetry, indicates that the magnetic moments in the upper and lower FM layer are both 90?, but because of the existence of UMA fieldHK, it deviates from complete symmetry.

    3.2.3. 999?A?A?A≤≤≤tttRRRuuu≤≤≤111444...555?A?A?A, FM coupling

    When the Ru thickness is in a range of 9 ?A≤tRu≤14.5 ?A,the interlayer coupling reverts from AFM to FM again. Taking thetRu=10-?A trilayer as a representative sample,thefr–Hcurve shown in Fig.8(a),reveals that there are two resonance modes observed at T-mode measurement. Comparing with the L-mode result [Fig. 8(b)], the resonance mode at higher frequency and lower frequency can be assigned as AM and OM modes, respectively. The intensity of AM resonance is far stronger than that of OM resonance, indicating that the FM interlayer coupling is dominated.

    Fig.8. fr–H curves along EA direction for tRu=10-?A trilayer at T-mode(a)and L-mode(b).

    Figure 9 shows the in-plane angle dependent FMR frequency and intensity at T-mode fortRu=10-?A trilayer in various magnetic fields.As illustrated,the two resonances overlap and only the AM resonance can be observed in the orthogonal directions[as indicated by the arrows in Fig.9(c)]. As the applied field increases,the frequency and intensity of the AM resonance increase. However, the intensity of the OM resonance (along 0?/180?and 90?/270?) remains very weak, and gradually combines together with the AM resonance with the increase of magnetic fields[see Figs.9(d)–9(f)].

    In addition,when the Ru thickness is 16 ?A,the interlayer coupling type reverts to the AFM coupling again, which will not be described here. The overall variations of FMR frequency and resonance modes with the Ru thickness for the trilayers along the EA direction are summarized in Fig. 10.As illustrated,when the Ru thickness is thinner than 2 ?A,theS21–fcurve of the trilayer is almost the same as that of the single layer [Fig. 10(a)], single layer andtRu=1 ?A). As the Ru thickness increases, two resonance peaks appear in theS21–fcurve. It is exciting that an ultrahigh OM FMR frequency of 20.02 GHz is present in thetRu=2.5 ?A trilayer with the AFM coupling. The fact indicates that the AFM interlayer coupling is an effective way to obtain an ultrahigh FMR frequency. In addition,a pure OM ferromagnetic resonance with a frequency of 19.42 GHz is also obtained attRu=3 ?A. For the trilayers with Ru thickness in the range of 2 ?A≤tRu≤8 ?A,the antiferromagnetic interlayer coupling exists with the OM frequency higher than the AM one. However, in the range of 9 ?A≤tRu≤14.5 ?A,the ferromagnetic interlayer coupling appears with the AM frequency becoming higher than OM frequency. WhentRu=16 ?A,the interlayer coupling type reverts to the AFM again. The oscillation of interlayer coupling is summarized in Fig.10(b).

    Fig.9. In-plane angle dependence of FMR frequency and intensity at T-mode for tRu=10-?A trilayer in various magnetic fields.

    Fig. 10. (a) Curves of scattering parameter S21 versus frequency (S21–f) along EA direction for FeCoB/Ru(tRu)/FeCoB trilayers, and (b) Ruthickness-dependent AM and OM frequencies in zero magnetic field.

    3.3. Analysis of interlayer exchange coupling coefficients

    The effect of interlayer coupling on FMR properties has been extensively investigated.[39,43–46]Like the spin–exchange interaction of electrons, the interlayer exchange coupling energy between the trilayers of the film can be expressed as[22]

    whereM1andM2are the magnetization vectors of the two ferromagnetic layers respectively,J1is the bilinear coupling coefficient, andJ2is the biquadratic coupling coefficient. IfJ1plays a dominant role, whenJ1> 0, the magnetic moments are aligned parallel to minimize the free energy, thus the ferromagnetic coupling occurs;whenJ1<0,the magnetic moments are antiparallel, and antiferromagnetic coupling is present. WhenJ2plays a dominant role andJ2< 0, when the magnetic moments are orthogonal,the free energy is minimized.

    Fig.11. Schematic diagram of FMR coordinates of FM/NM/FM trilayer.

    A schematic diagram of the FMR coordinates of the FM/NM/FM trilayers is shown in Fig.11. Supposing that the thickness of ferromagnetic layer A istA, the anisotropic field along thexdirection isHA, the magnetization isMA, and the direction can be uniquely determined byθAand?A,and so is the case for ferromagnetic layer B.Since the thickness of the non-magnetic layer is less than the critical coupling thickness,there is interlayer coupling between the two ferromagnetic layers A and B.

    Now,a case is considered here that only the applied magnetic field within the film surface is considered and the angle between the magnetic field direction and thexaxis is set to beδ, and the direction of the microwave field h is along theyaxis. For this trilayer film structure,in addition to the interlayer exchange coupling energy, the respective energy of the two ferromagnetic layers should also be considered,so the free energy per unit area of the structure can be expressed as

    Fig. 12. (a)–(e) Comparison between the simulation results and experimental results for trilayers, and (f) coupling coefficients J1 and J2 oscillating with variation of Ru thickness in middle layer. The unit 1 erg=10?7 J.

    The parameters of the film are substituted into the equation, and by setting different coupling coefficientsJ1andJ2,the calculated results are compared with the experimental ones so that the optimized coefficients are obtained. Figures 12(a)–12(e) show the comparisons between the theoretical simulation and the experimental results. The simulated coupling coefficientsJ1andJ2are summarized in Fig. 12(f). It is interesting to note that the simulation results are well consistent with the experimental ones. AttRu≤1 ?A, the FM interlayer coupling occurs. In the range of 2 ?A≤tRu≤8 ?A,J1<0 is dominant, and AFM coupling appears. In the range of 9 ?A≤tRu≤14.5 ?A,J1>0 and the coupling type changes into the FM coupling. When the Ru thickness increases to 16 ?A,the coupling type reverts to the AFM coupling again. In addition,the bilinear and biquadratic coupling(J1andJ2)are present simultaneously for the trilayers withtRu=6 ?A–8 ?A in the transition region from AFM to FM coupling[Fig.12(f)].

    4. Conclusions

    The FeCoB/Ru/FeCoB trilayers with various values of Ru thickness are prepared by a composition gradient sputtering method to realize the interlayer coupling and investigate its effect on the FMR performances. Interestingly, it is observed that the interlayer coupling oscillates with two periods from FM to AFM by varying Ru thickness. The Ru thickness dependence of two oscillation periods can be divided into four segments: 0–2, 2–8, 9–14.5, and above 16 ?A, corresponding to FM,AFM,FM,and AFM couplings,respectively. In addition, in the first AFM coupling region oftRu=2 ?A–8 ?A, the OM resonance frequency is far higher than the AM one. In the trilayer withtRu=2.5 ?A,an ultrahigh OM frequency over 20 GHz is achieved. This means that the AFM interlayer coupling is an effective way to enhance the FMR frequency. This study provides a way to control the interlayer coupling type and intensity, and therefore obtaining the excellent ultrahigh FMR performances.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.51871127 and 11674187).

    猜你喜歡
    山東
    圖說(shuō)山東
    新航空(2023年9期)2023-09-18 18:59:16
    開(kāi)放的山東,乘風(fēng)前行
    金橋(2022年6期)2022-06-20 01:35:36
    聚焦鄉(xiāng)村振興的“山東作為”
    金橋(2022年4期)2022-05-05 06:10:00
    讓世界了解山東 讓山東走向世界
    走向世界(2022年3期)2022-04-19 12:38:54
    逆勢(shì)上揚(yáng)的山東,再出發(fā)
    金橋(2022年3期)2022-03-29 01:16:24
    冬奧會(huì)背后的“山東力量”
    金橋(2022年3期)2022-03-29 01:16:20
    『山東艦』入列一周年
    大運(yùn)河,行走山東
    金橋(2021年6期)2021-07-23 01:27:06
    山東電改僵局
    能源(2020年10期)2020-11-13 07:05:40
    山東濟(jì)寧卷
    欧美又色又爽又黄视频| 丰满人妻熟妇乱又伦精品不卡| 国产成人av激情在线播放| 少妇高潮的动态图| 无遮挡黄片免费观看| 99在线人妻在线中文字幕| 午夜亚洲福利在线播放| av片东京热男人的天堂| 亚洲无线观看免费| 亚洲国产精品sss在线观看| 露出奶头的视频| 久久久色成人| 国产欧美日韩精品一区二区| 97碰自拍视频| 国产三级黄色录像| 美女 人体艺术 gogo| 国产成人a区在线观看| 变态另类成人亚洲欧美熟女| 亚洲片人在线观看| 欧美成人性av电影在线观看| 夜夜夜夜夜久久久久| 色综合婷婷激情| 一进一出抽搐gif免费好疼| 88av欧美| 99精品久久久久人妻精品| 欧美一级a爱片免费观看看| av福利片在线观看| 久久久成人免费电影| 亚洲国产精品成人综合色| 免费看日本二区| 香蕉久久夜色| 午夜福利在线在线| 日韩欧美免费精品| 成熟少妇高潮喷水视频| 黄色成人免费大全| 久久久久久久久久黄片| 99精品久久久久人妻精品| 免费在线观看日本一区| 成人国产一区最新在线观看| 深爱激情五月婷婷| 色综合欧美亚洲国产小说| 99国产精品一区二区三区| 国产午夜精品久久久久久一区二区三区 | 99国产极品粉嫩在线观看| 国产黄a三级三级三级人| 久久久色成人| 国产精品电影一区二区三区| 麻豆久久精品国产亚洲av| 美女高潮喷水抽搐中文字幕| 欧美日韩福利视频一区二区| 欧美乱码精品一区二区三区| 3wmmmm亚洲av在线观看| 久久久久国内视频| 欧美最黄视频在线播放免费| 日韩免费av在线播放| 九色成人免费人妻av| 最近在线观看免费完整版| 怎么达到女性高潮| 女人高潮潮喷娇喘18禁视频| 亚洲狠狠婷婷综合久久图片| 成年女人毛片免费观看观看9| 国产精品99久久久久久久久| 久久婷婷人人爽人人干人人爱| 欧美黑人巨大hd| 欧美中文综合在线视频| 在线天堂最新版资源| 国产91精品成人一区二区三区| 色精品久久人妻99蜜桃| 黄色丝袜av网址大全| 日本成人三级电影网站| 国产91精品成人一区二区三区| 国产成人影院久久av| 中文字幕人妻熟人妻熟丝袜美 | 18禁黄网站禁片午夜丰满| 看片在线看免费视频| 大型黄色视频在线免费观看| 欧美日韩乱码在线| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品久久久久久毛片| 国产精品久久久人人做人人爽| 亚洲精华国产精华精| 久久久久精品国产欧美久久久| 精品不卡国产一区二区三区| 亚洲av免费在线观看| 日韩亚洲欧美综合| 国产亚洲精品av在线| 国产男靠女视频免费网站| 免费看美女性在线毛片视频| 亚洲人成网站在线播| 欧美日韩精品网址| 免费av毛片视频| 久久性视频一级片| 在线观看舔阴道视频| 亚洲国产精品999在线| av视频在线观看入口| 精品久久久久久成人av| 麻豆成人av在线观看| 亚洲激情在线av| 青草久久国产| netflix在线观看网站| 成人三级黄色视频| 嫁个100分男人电影在线观看| 国产在线精品亚洲第一网站| 日本五十路高清| 黄色视频,在线免费观看| 国产精品亚洲av一区麻豆| 日韩国内少妇激情av| 日韩 欧美 亚洲 中文字幕| 久久亚洲真实| 可以在线观看毛片的网站| 嫩草影视91久久| 欧美性感艳星| 精品99又大又爽又粗少妇毛片 | 精品久久久久久久毛片微露脸| 美女 人体艺术 gogo| 欧美乱色亚洲激情| 精品乱码久久久久久99久播| 别揉我奶头~嗯~啊~动态视频| 国产激情偷乱视频一区二区| 亚洲成人中文字幕在线播放| 国产精品嫩草影院av在线观看 | 国产日本99.免费观看| 99国产精品一区二区三区| 久久这里只有精品中国| 国产成人aa在线观看| 91在线观看av| 国产免费av片在线观看野外av| 亚洲av免费高清在线观看| 真人做人爱边吃奶动态| 最新中文字幕久久久久| 成人av在线播放网站| 在线观看舔阴道视频| 久久精品国产自在天天线| 久久久久九九精品影院| 精品国内亚洲2022精品成人| 国产成人系列免费观看| 毛片女人毛片| 欧美精品啪啪一区二区三区| 国产精品免费一区二区三区在线| 夜夜夜夜夜久久久久| 少妇高潮的动态图| 丰满乱子伦码专区| 国产高清videossex| ponron亚洲| 叶爱在线成人免费视频播放| 欧美大码av| 国产高清视频在线播放一区| 天天躁日日操中文字幕| 免费在线观看日本一区| 国产主播在线观看一区二区| 精品欧美国产一区二区三| 18+在线观看网站| 18禁黄网站禁片免费观看直播| 亚洲精品影视一区二区三区av| 日本一本二区三区精品| 少妇人妻一区二区三区视频| 男人的好看免费观看在线视频| 人妻丰满熟妇av一区二区三区| 亚洲精品在线观看二区| 国模一区二区三区四区视频| 99久久99久久久精品蜜桃| 午夜a级毛片| 禁无遮挡网站| 天天一区二区日本电影三级| 九色成人免费人妻av| 女人被狂操c到高潮| 国产老妇女一区| 久久久久久国产a免费观看| 女人被狂操c到高潮| 国产精品亚洲一级av第二区| 欧美一区二区亚洲| 国产色爽女视频免费观看| 嫩草影视91久久| 欧美zozozo另类| 九色国产91popny在线| 此物有八面人人有两片| 91久久精品国产一区二区成人 | 草草在线视频免费看| 免费观看的影片在线观看| 午夜视频国产福利| 91麻豆精品激情在线观看国产| 女警被强在线播放| 波野结衣二区三区在线 | 真实男女啪啪啪动态图| 欧美日本亚洲视频在线播放| 欧美乱妇无乱码| 好看av亚洲va欧美ⅴa在| 一区福利在线观看| 亚洲人与动物交配视频| 三级男女做爰猛烈吃奶摸视频| 亚洲熟妇中文字幕五十中出| 国产精品久久久久久久久免 | 女人高潮潮喷娇喘18禁视频| 午夜福利视频1000在线观看| www日本在线高清视频| 亚洲熟妇中文字幕五十中出| 亚洲不卡免费看| 亚洲电影在线观看av| 婷婷六月久久综合丁香| 久久久久性生活片| 国产毛片a区久久久久| 午夜福利18| www.www免费av| 看黄色毛片网站| 久久亚洲精品不卡| 亚洲人成伊人成综合网2020| 999久久久精品免费观看国产| 国产精品自产拍在线观看55亚洲| 亚洲av成人精品一区久久| 欧美日本亚洲视频在线播放| 在线观看免费午夜福利视频| av福利片在线观看| 最近最新中文字幕大全免费视频| 中文字幕av在线有码专区| 国产精品av视频在线免费观看| 国产精品美女特级片免费视频播放器| 99视频精品全部免费 在线| 一个人免费在线观看的高清视频| 九色国产91popny在线| 亚洲欧美日韩无卡精品| 国产成人aa在线观看| 国产精品99久久99久久久不卡| 九九热线精品视视频播放| 欧洲精品卡2卡3卡4卡5卡区| 欧美av亚洲av综合av国产av| 国产麻豆成人av免费视频| 三级男女做爰猛烈吃奶摸视频| 噜噜噜噜噜久久久久久91| 最新美女视频免费是黄的| 亚洲欧美日韩无卡精品| 亚洲人成伊人成综合网2020| 国产精品综合久久久久久久免费| 免费搜索国产男女视频| 熟妇人妻久久中文字幕3abv| 欧美日韩中文字幕国产精品一区二区三区| 最近最新中文字幕大全电影3| 成人三级黄色视频| 18禁黄网站禁片午夜丰满| 一级黄色大片毛片| 最近视频中文字幕2019在线8| 最近最新中文字幕大全电影3| 久久久国产成人免费| www.熟女人妻精品国产| 身体一侧抽搐| 变态另类丝袜制服| 国产成人av教育| 又黄又爽又免费观看的视频| 国产精品久久久人人做人人爽| 亚洲人与动物交配视频| 亚洲最大成人中文| 亚洲,欧美精品.| 久久久久性生活片| 岛国在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 给我免费播放毛片高清在线观看| 日日夜夜操网爽| 亚洲精品在线观看二区| 听说在线观看完整版免费高清| 亚洲成a人片在线一区二区| 成人精品一区二区免费| 日本五十路高清| 狠狠狠狠99中文字幕| 91麻豆av在线| 偷拍熟女少妇极品色| 欧美成人免费av一区二区三区| 国内精品一区二区在线观看| avwww免费| 黄片大片在线免费观看| 免费在线观看日本一区| 日韩欧美国产一区二区入口| 观看美女的网站| 国产精品久久电影中文字幕| 国产精品1区2区在线观看.| 五月玫瑰六月丁香| 99久久精品国产亚洲精品| 熟妇人妻久久中文字幕3abv| 草草在线视频免费看| 久9热在线精品视频| 亚洲人成网站高清观看| 中出人妻视频一区二区| 成年女人毛片免费观看观看9| 国产午夜精品论理片| 国产高清视频在线播放一区| 欧美性感艳星| 亚洲av不卡在线观看| 国产伦在线观看视频一区| 日韩欧美 国产精品| 久久久久久久午夜电影| 免费在线观看成人毛片| 少妇熟女aⅴ在线视频| 国产精品久久久久久精品电影| 午夜福利视频1000在线观看| 国产精品电影一区二区三区| 久久人人精品亚洲av| 中亚洲国语对白在线视频| 怎么达到女性高潮| 亚洲精品一区av在线观看| 欧美激情在线99| 欧美大码av| 人人妻,人人澡人人爽秒播| 亚洲av熟女| 黑人欧美特级aaaaaa片| 欧美又色又爽又黄视频| 老鸭窝网址在线观看| 精品国内亚洲2022精品成人| 日韩成人在线观看一区二区三区| 97超级碰碰碰精品色视频在线观看| 1000部很黄的大片| 欧美色视频一区免费| 麻豆成人av在线观看| 亚洲aⅴ乱码一区二区在线播放| 麻豆一二三区av精品| 亚洲精品成人久久久久久| 日韩 欧美 亚洲 中文字幕| av欧美777| 性色av乱码一区二区三区2| www.熟女人妻精品国产| 色哟哟哟哟哟哟| 超碰av人人做人人爽久久 | 亚洲男人的天堂狠狠| 悠悠久久av| 久久6这里有精品| 尤物成人国产欧美一区二区三区| 全区人妻精品视频| 美女高潮喷水抽搐中文字幕| av女优亚洲男人天堂| 国产伦精品一区二区三区四那| 伊人久久大香线蕉亚洲五| 最近视频中文字幕2019在线8| 又爽又黄无遮挡网站| 激情在线观看视频在线高清| 久久精品夜夜夜夜夜久久蜜豆| 久久久久国内视频| 国产成人av激情在线播放| 中文字幕av成人在线电影| 香蕉丝袜av| 一卡2卡三卡四卡精品乱码亚洲| 国产精品1区2区在线观看.| 亚洲精品色激情综合| 成人性生交大片免费视频hd| 99久久99久久久精品蜜桃| 精华霜和精华液先用哪个| 精品久久久久久久末码| 精品久久久久久久久久免费视频| 久久人人精品亚洲av| 欧美成人性av电影在线观看| 精品99又大又爽又粗少妇毛片 | 日韩欧美精品免费久久 | 高潮久久久久久久久久久不卡| 神马国产精品三级电影在线观看| 久久亚洲真实| 天堂av国产一区二区熟女人妻| 一区福利在线观看| 久99久视频精品免费| 色老头精品视频在线观看| 久久香蕉国产精品| 日本三级黄在线观看| 精品人妻1区二区| 免费观看人在逋| 国产黄色小视频在线观看| 国产精品永久免费网站| 黄色日韩在线| 亚洲狠狠婷婷综合久久图片| 亚洲久久久久久中文字幕| 国产免费一级a男人的天堂| 少妇的逼好多水| 精品日产1卡2卡| 亚洲中文字幕日韩| av视频在线观看入口| 久久久精品大字幕| 在线视频色国产色| 好男人在线观看高清免费视频| 国内精品一区二区在线观看| 国产成人福利小说| 亚洲不卡免费看| 女人高潮潮喷娇喘18禁视频| 久久久久九九精品影院| 国产伦一二天堂av在线观看| 天堂动漫精品| 亚洲av电影不卡..在线观看| 中文字幕av成人在线电影| 在线观看午夜福利视频| 日韩国内少妇激情av| 女生性感内裤真人,穿戴方法视频| 久久伊人香网站| 亚洲精品一区av在线观看| 午夜精品在线福利| 黄色日韩在线| 日本免费a在线| 欧美日韩国产亚洲二区| 一夜夜www| 成人国产综合亚洲| 国产成人影院久久av| 小说图片视频综合网站| 欧美色视频一区免费| ponron亚洲| 在线免费观看不下载黄p国产 | 无限看片的www在线观看| 在线观看美女被高潮喷水网站 | 国产亚洲精品久久久久久毛片| 男人的好看免费观看在线视频| 国产午夜福利久久久久久| 1024手机看黄色片| 神马国产精品三级电影在线观看| 成年女人毛片免费观看观看9| 色噜噜av男人的天堂激情| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品色激情综合| 国产激情欧美一区二区| 欧美性感艳星| 97超视频在线观看视频| 精品一区二区三区av网在线观看| 国产一区二区在线av高清观看| 午夜视频国产福利| 18禁在线播放成人免费| 又黄又爽又免费观看的视频| 99riav亚洲国产免费| 亚洲中文字幕一区二区三区有码在线看| 麻豆国产av国片精品| 欧美+亚洲+日韩+国产| e午夜精品久久久久久久| 在线视频色国产色| 国产av一区在线观看免费| 宅男免费午夜| 一区二区三区国产精品乱码| 18禁美女被吸乳视频| 国产精品99久久99久久久不卡| 十八禁人妻一区二区| 欧美日韩黄片免| 精品一区二区三区视频在线 | 老司机福利观看| 日韩欧美一区二区三区在线观看| 久久久精品大字幕| 舔av片在线| 天天一区二区日本电影三级| 99riav亚洲国产免费| 成人av一区二区三区在线看| 最新在线观看一区二区三区| www.熟女人妻精品国产| 国产免费av片在线观看野外av| 国产精品一区二区免费欧美| 国产精品爽爽va在线观看网站| 欧美+日韩+精品| 日韩av在线大香蕉| 亚洲成人免费电影在线观看| 51国产日韩欧美| 美女大奶头视频| 成人18禁在线播放| 哪里可以看免费的av片| 欧美+日韩+精品| 欧美黑人巨大hd| 国产一区二区三区视频了| 国产中年淑女户外野战色| 18禁黄网站禁片免费观看直播| 国产av一区在线观看免费| 亚洲av成人av| 国产精品99久久久久久久久| 午夜老司机福利剧场| 一进一出抽搐gif免费好疼| 夜夜夜夜夜久久久久| 亚洲片人在线观看| 免费观看精品视频网站| 国产精品精品国产色婷婷| 国产毛片a区久久久久| 午夜福利视频1000在线观看| 亚洲精品在线观看二区| 亚洲国产精品久久男人天堂| 国产高清视频在线观看网站| 中文资源天堂在线| 中国美女看黄片| 亚洲一区二区三区色噜噜| 久久久久性生活片| 九九久久精品国产亚洲av麻豆| 啦啦啦观看免费观看视频高清| 亚洲av电影在线进入| 少妇高潮的动态图| 99在线视频只有这里精品首页| 国产精品影院久久| 亚洲久久久久久中文字幕| 中文字幕人妻丝袜一区二区| 国产熟女xx| 中亚洲国语对白在线视频| 国产高潮美女av| www国产在线视频色| 国产精品一及| 99久久99久久久精品蜜桃| 久久亚洲真实| 精品电影一区二区在线| 熟女少妇亚洲综合色aaa.| 日韩欧美三级三区| 99久久精品一区二区三区| а√天堂www在线а√下载| 国产亚洲精品久久久久久毛片| 狂野欧美白嫩少妇大欣赏| 国产一区二区在线观看日韩 | 久久婷婷人人爽人人干人人爱| 精品国内亚洲2022精品成人| 69人妻影院| 亚洲成人免费电影在线观看| 国产视频内射| 国产精品久久久人人做人人爽| 成人一区二区视频在线观看| 亚洲av第一区精品v没综合| 亚洲电影在线观看av| av片东京热男人的天堂| 久久精品国产清高在天天线| 免费人成在线观看视频色| 51午夜福利影视在线观看| 精品国产亚洲在线| 成人鲁丝片一二三区免费| 国产私拍福利视频在线观看| 久久久久久久久中文| 国产精品 国内视频| 国内少妇人妻偷人精品xxx网站| www国产在线视频色| 岛国视频午夜一区免费看| 亚洲一区二区三区不卡视频| 亚洲五月婷婷丁香| 亚洲自拍偷在线| 制服人妻中文乱码| 舔av片在线| 在线观看免费视频日本深夜| 国产淫片久久久久久久久 | 亚洲国产欧洲综合997久久,| 一个人看视频在线观看www免费 | 亚洲国产精品sss在线观看| 国产在线精品亚洲第一网站| 午夜亚洲福利在线播放| 色哟哟哟哟哟哟| 国产v大片淫在线免费观看| 国产精品一区二区三区四区久久| 熟妇人妻久久中文字幕3abv| tocl精华| 欧美bdsm另类| 国产激情偷乱视频一区二区| 天天躁日日操中文字幕| 日韩欧美国产一区二区入口| 国产在视频线在精品| 亚洲性夜色夜夜综合| 老司机深夜福利视频在线观看| 最近最新中文字幕大全免费视频| 婷婷亚洲欧美| 母亲3免费完整高清在线观看| 国产乱人伦免费视频| 69av精品久久久久久| 国产亚洲精品久久久久久毛片| av片东京热男人的天堂| 97超视频在线观看视频| 国产探花极品一区二区| 精品一区二区三区视频在线 | 欧美一级a爱片免费观看看| 91在线精品国自产拍蜜月 | 亚洲精品456在线播放app | 国产精品免费一区二区三区在线| 国产伦在线观看视频一区| 亚洲最大成人手机在线| 3wmmmm亚洲av在线观看| 日日摸夜夜添夜夜添小说| 免费搜索国产男女视频| 欧美又色又爽又黄视频| 国产色爽女视频免费观看| 搡老妇女老女人老熟妇| 老熟妇仑乱视频hdxx| 内地一区二区视频在线| 欧美日韩中文字幕国产精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 欧美色欧美亚洲另类二区| 97超视频在线观看视频| 成人高潮视频无遮挡免费网站| 国产精品嫩草影院av在线观看 | 在线十欧美十亚洲十日本专区| 成人av在线播放网站| 99久久精品热视频| 91在线观看av| 美女cb高潮喷水在线观看| 少妇人妻一区二区三区视频| 窝窝影院91人妻| 久久天躁狠狠躁夜夜2o2o| 午夜福利在线在线| 最近最新中文字幕大全电影3| 国产黄色小视频在线观看| 国产精品综合久久久久久久免费| 国产精品永久免费网站| 国内毛片毛片毛片毛片毛片| 1000部很黄的大片| 丰满人妻熟妇乱又伦精品不卡| 18禁在线播放成人免费| 免费在线观看影片大全网站| 日本在线视频免费播放| 国产黄a三级三级三级人| 欧美日韩国产亚洲二区| 久久久久久久午夜电影| 亚洲成人久久爱视频| 国产午夜精品久久久久久一区二区三区 | 在线观看一区二区三区| 内地一区二区视频在线| 国产精品三级大全| 欧美精品啪啪一区二区三区| 亚洲av免费高清在线观看| 欧美日本亚洲视频在线播放| 国产精品永久免费网站| 国产三级黄色录像| 搞女人的毛片| 午夜老司机福利剧场| 亚洲专区中文字幕在线| 91麻豆av在线| 88av欧美| 亚洲无线观看免费| 在线观看午夜福利视频| 伊人久久大香线蕉亚洲五| 一卡2卡三卡四卡精品乱码亚洲| 久久中文看片网| 亚洲成av人片在线播放无| 老鸭窝网址在线观看| 国产高潮美女av|